add full pipeline including tests

This commit is contained in:
Florian Förster 2025-10-23 10:25:30 +02:00
parent bdf6456111
commit a9f9ffc5e7
4 changed files with 1834 additions and 1686 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,24 +1,20 @@
import csv
import warnings
from os import path
from pathlib import Path
from typing import Any, Final, cast
# Image.MAX_IMAGE_PIXELS = None
import cv2
import imutils
import matplotlib.pyplot as plt
import numpy as np
import numpy.typing as npt
import torch
# from anomalib.engine import Engine
from anomalib.models import Patchcore
from dopt_basics import result_pattern
from imutils import contours, perspective
from pandas import DataFrame
from PIL import Image
from scipy.spatial import distance as dist
from torchvision.transforms.v2.functional import to_dtype, to_image
import dopt_sensor_anomalies._find_paths
from dopt_sensor_anomalies import constants as const
@ -67,14 +63,14 @@ def check_box_redundancy(
# ** main function
def measure_length(
file_path: Path,
img_path: Path,
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> tuple[t.CsvData, t.SensorImages]:
data_csv: list[str | int] = []
image = cv2.imread(str(file_path))
image = cv2.imread(str(img_path))
if image is None:
raise errors.ImageNotReadError(f"Image could not be read from: >{file_path}<")
raise errors.ImageNotReadError(f"Image could not be read from: >{img_path}<")
cropped = image[500:1500, 100 : image.shape[1] - 100]
orig = cropped.copy()
@ -229,13 +225,13 @@ def infer_image(
# ** main function
def anomaly_detection(
file_path: Path,
img_path: Path,
detection_models: t.DetectionModels,
data_csv: t.CsvData,
sensor_images: t.SensorImages,
) -> None:
file_stem = file_path.stem
folder_path = file_path.parent
file_stem = img_path.stem
folder_path = img_path.parent
# reconstruct the model and initialize the engine
model = Patchcore(
@ -277,12 +273,13 @@ def anomaly_detection(
)
@result_pattern.wrap_result(100)
def pipeline(
user_file_path: str,
user_img_path: str,
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> None:
file_path = Path(user_file_path)
file_path = Path(user_img_path)
if not file_path.exists():
raise FileNotFoundError("The provided path seems not to exist")
@ -295,7 +292,7 @@ def pipeline(
file_path, pixels_per_metric_X, pixels_per_metric_Y
)
anomaly_detection(
file_path=file_path,
img_path=file_path,
detection_models=DETECTION_MODELS,
data_csv=data_csv,
sensor_images=sensor_images,

View File

@ -3,6 +3,7 @@ from pathlib import Path
import numpy as np
import numpy.typing as npt
from anomalib.models import Patchcore
from dopt_basics import result_pattern
from dopt_sensor_anomalies import types as t
@ -50,7 +51,7 @@ def check_box_redundancy(
...
def measure_length(
file_path: Path,
img_path: Path,
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> tuple[t.CsvData, t.SensorImages]:
@ -58,7 +59,7 @@ def measure_length(
Parameters
----------
file_path : Path
img_path : Path
path to file to analyse
pixels_per_metric_X : float
scaling parameter x dimension, Pixels per micrometer in image
@ -108,7 +109,7 @@ def infer_image(
...
def anomaly_detection(
file_path: Path,
img_path: Path,
detection_models: t.DetectionModels,
data_csv: t.CsvData,
sensor_images: t.SensorImages,
@ -117,7 +118,7 @@ def anomaly_detection(
Parameters
----------
file_path : Path
img_path : Path
path to file to analyse
detection_models : t.DetectionModels
collection of model paths for the left and right sensor
@ -128,8 +129,26 @@ def anomaly_detection(
"""
...
@result_pattern.wrap_result(100)
def pipeline(
user_file_path: str,
user_img_path: str,
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> None: ...
) -> None:
"""full pipeline defined by the agreed requirements
wrapped as result pattern, handle errors on higher abstraction level
Parameters
----------
user_img_path : str
file path to the image which is to be analysed
pixels_per_metric_X : float
calibration value for the x axis to measure the size of the electrodes
pixels_per_metric_Y : float
calibration value for the y axis to measure the size of the electrodes
Raises
------
FileNotFoundError
provided image path was not found
"""

View File

@ -1,36 +1,36 @@
import shutil
from pathlib import Path
from unittest.mock import patch
import numpy as np
import pytest
from dopt_basics import result_pattern
import dopt_sensor_anomalies._find_paths
import dopt_sensor_anomalies.detection as detect
import dopt_sensor_anomalies.types as t
from dopt_sensor_anomalies import constants
from dopt_sensor_anomalies import constants, errors
# TODO remove
# @pytest.fixture(scope="module")
# def img_paths() -> tuple[Path, ...]:
# img_folder = Path(__file__).parent / "_img"
# if not img_folder.exists():
# raise FileNotFoundError("Img path not existing")
# img_paths = tuple(img_folder.glob("*.bmp"))
# if not img_paths:
# raise ValueError("No images found")
# return img_paths
@pytest.fixture(scope="module")
def img_paths() -> tuple[Path, ...]:
img_folder = Path(__file__).parent / "_img"
if not img_folder.exists():
raise FileNotFoundError("Img path not existing")
img_paths = tuple(img_folder.glob("*.bmp"))
if not img_paths:
raise ValueError("No images found")
return img_paths
@pytest.fixture(scope="module")
def single_img_path() -> Path:
img_folder = Path(__file__).parent / "_img"
if not img_folder.exists():
raise FileNotFoundError("Img path not existing")
img_paths = tuple(img_folder.glob("*_12.bmp"))
if not img_paths:
raise ValueError("No images found")
return img_paths[0]
# @pytest.fixture(scope="module")
# def single_img_path() -> Path:
# img_folder = Path(__file__).parent / "_img"
# if not img_folder.exists():
# raise FileNotFoundError("Img path not existing")
# img_paths = tuple(img_folder.glob("*_12.bmp"))
# if not img_paths:
# raise ValueError("No images found")
# return img_paths[0]
def test_midpoint():
@ -90,7 +90,6 @@ def test_measure_length(single_img_path):
assert img_right.shape[2] == 3
@pytest.mark.new
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_isolated_pipeline(results_folder, path_img_with_failure_TrainedModel):
pixels_per_metric_X: float = 0.251
@ -111,7 +110,7 @@ def test_isolated_pipeline(results_folder, path_img_with_failure_TrainedModel):
assert sensor_images["left"] is not None
assert sensor_images["right"] is not None
detect.anomaly_detection(
file_path=path_img_with_failure_TrainedModel,
img_path=path_img_with_failure_TrainedModel,
detection_models=DETECTION_MODELS,
data_csv=data_csv,
sensor_images=sensor_images,
@ -125,3 +124,57 @@ def test_isolated_pipeline(results_folder, path_img_with_failure_TrainedModel):
assert heatmap_file.exists()
shutil.copy(csv_file, (results_folder / csv_file.name))
shutil.copy(heatmap_file, (results_folder / heatmap_file.name))
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_full_pipeline_wrapped_FailImagePath(setup_temp_dir):
img_path = str(setup_temp_dir / "not-existing.bmp")
MESSAGE = "The provided path seems not to exist"
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
ret = detect.pipeline(img_path, pixels_per_metric_X, pixels_per_metric_Y)
assert ret.status != result_pattern.STATUS_HANDLER.SUCCESS
assert ret.status.ExceptionType is FileNotFoundError
assert ret.status.message == MESSAGE
with pytest.raises(FileNotFoundError, match=MESSAGE):
_ = ret.unwrap()
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_full_pipeline_wrapped_FailElectrodeCount(path_img_with_failure_ElectrodeCount):
img_path = str(path_img_with_failure_ElectrodeCount)
MESSAGE = "Number of counted electrodes does not match the"
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
ret = detect.pipeline(img_path, pixels_per_metric_X, pixels_per_metric_Y)
assert ret.status != result_pattern.STATUS_HANDLER.SUCCESS
assert ret.status.ExceptionType is errors.InvalidElectrodeCount
assert MESSAGE in ret.status.message
with pytest.raises(errors.InvalidElectrodeCount, match=MESSAGE):
_ = ret.unwrap()
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_full_pipeline_wrapped_Success(results_folder, path_img_with_failure_TrainedModel):
img_path = str(path_img_with_failure_TrainedModel)
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
ret = detect.pipeline(img_path, pixels_per_metric_X, pixels_per_metric_Y)
assert ret.status == result_pattern.STATUS_HANDLER.SUCCESS
assert ret.status.code == 0
assert ret.status.ExceptionType is None
# check files for existence
root_img = path_img_with_failure_TrainedModel.parent
file_stem = path_img_with_failure_TrainedModel.stem
csv_file = root_img / f"{file_stem}.csv"
heatmap_file = root_img / f"{file_stem}{constants.HEATMAP_FILENAME_SUFFIX}.png"
assert csv_file.exists()
assert heatmap_file.exists()
shutil.copy(csv_file, (results_folder / csv_file.name))
shutil.copy(heatmap_file, (results_folder / heatmap_file.name))