Cython Integration and Test Case Enhancements #1

Merged
foefl merged 10 commits from test_cython into main 2025-10-22 10:17:38 +00:00
3 changed files with 1661 additions and 1612 deletions
Showing only changes of commit b2162af624 - Show all commits

File diff suppressed because it is too large Load Diff

View File

@ -35,20 +35,6 @@ def midpoint(
pt_A: npt.NDArray[np.floating],
pt_B: npt.NDArray[np.floating],
) -> tuple[float, float]:
"""to identify the midpoint of a 2D area
Parameters
----------
pt_A : npt.NDArray[np.floating]
tuple of coordinates x, y; shape (2, )
pt_B : npt.NDArray[np.floating]
tuple of coordinates x, y; shape (2, )
Returns
-------
tuple[float, float]
tuple of midpoint coordinates
"""
return ((pt_A[0] + pt_B[0]) * 0.5, (pt_A[1] + pt_B[1]) * 0.5)
@ -57,22 +43,6 @@ def check_box_redundancy(
box_2: t.Box,
tolerance: float = 5.0,
) -> bool:
"""to check if bounding box has already been identified and is just a redundant one
Parameters
----------
box_1 : t.Box
tuple of box values: ((center_x, center_y), (width, height), angle)
box_2 : t.Box
tuple of box values: ((center_x, center_y), (width, height), angle)
tolerance : float, optional
distance threshold for width and height, by default 5.0
Returns
-------
bool
redundancy evaluation
"""
# unpack the boxes
c1, s1, _ = box_1
c2, s2, _ = box_2
@ -93,32 +63,6 @@ def measure_length(
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> tuple[t.CsvData, t.SensorImages]:
"""detect and measure the size of the electrodes
Parameters
----------
file_path : Path
path to file to analyse
pixels_per_metric_X : float
scaling parameter x dimension, Pixels per micrometer in image
pixels_per_metric_Y : float
scaling parameter y dimension, Pixels per micrometer in image
Returns
-------
tuple[t.CsvData, t.SensorImages]
t.CsvData: (list) data to save as CSV according to requirements, contains strings and ints
t.SensorImages: (TypedDict) contains left and right image corresponding to each sensor
Raises
------
errors.ImageNotReadError
image was not read successfully
errors.ContourCalculationError
during contour detection there were several possible error causes
errors.InvalidElectrodeCount
an invalid number of electrodes were detected
"""
data_csv: list[str | int] = []
image = cv2.imread(str(file_path))
if image is None:
@ -243,25 +187,6 @@ def infer_image(
image: npt.NDArray[np.uint8],
model: Patchcore,
) -> t.InferenceResult:
"""evaluate one image
Parameters
----------
image : npt.NDArray[np.uint8]
represents image to be checked for anomalies
model : Patchcore
(loaded PyTorch state dictionary): model for anomaly detection
Returns
-------
t.InferenceResult
contains:
img (numpy.ndarray)
anomaly_map_resized (numpy.ndarray): heatmap to visualize detected anomalies
anomaly_score (float): evaluation metric, in [0, 1] with close to 0 being no
anomaly detected
anomaly_label (bool): anomaly detected (1) or not (0)
"""
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(torch_device)
@ -270,7 +195,7 @@ def infer_image(
pil_image = pil_image.convert("RGB")
image_np = np.array(pil_image).astype(np.float32) / 255.0
input_tensor = torch.from_numpy(image_np).permute(2, 0, 1)
input_tensor = input_tensor.unsqueeze(0)
input_tensor = input_tensor.to(torch_device)
@ -301,19 +226,6 @@ def anomaly_detection(
data_csv: t.CsvData,
sensor_images: t.SensorImages,
) -> None:
"""load the model, call function for anomaly detection and store the results
Parameters
----------
file_path : Path
path to file to analyse
detection_models : t.DetectionModels
collection of model paths for the left and right sensor
data_csv : t.CsvData
(list) data to save as CSV according to requirements, contains strings and ints
sensor_images : t.SensorImages
_description_
"""
file_stem = file_path.stem
folder_path = file_path.parent

View File

@ -0,0 +1,135 @@
from pathlib import Path
import numpy as np
import numpy.typing as npt
from anomalib.models import Patchcore
from dopt_sensor_anomalies import types as t
def midpoint(
pt_A: npt.NDArray[np.floating],
pt_B: npt.NDArray[np.floating],
) -> tuple[float, float]:
"""to identify the midpoint of a 2D area
Parameters
----------
pt_A : npt.NDArray[np.floating]
tuple of coordinates x, y; shape (2, )
pt_B : npt.NDArray[np.floating]
tuple of coordinates x, y; shape (2, )
Returns
-------
tuple[float, float]
tuple of midpoint coordinates
"""
...
def check_box_redundancy(
box_1: t.Box,
box_2: t.Box,
tolerance: float = 5.0,
) -> bool:
"""to check if bounding box has already been identified and is just a redundant one
Parameters
----------
box_1 : t.Box
tuple of box values: ((center_x, center_y), (width, height), angle)
box_2 : t.Box
tuple of box values: ((center_x, center_y), (width, height), angle)
tolerance : float, optional
distance threshold for width and height, by default 5.0
Returns
-------
bool
redundancy evaluation
"""
...
def measure_length(
file_path: Path,
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> tuple[t.CsvData, t.SensorImages]:
"""detect and measure the size of the electrodes
Parameters
----------
file_path : Path
path to file to analyse
pixels_per_metric_X : float
scaling parameter x dimension, Pixels per micrometer in image
pixels_per_metric_Y : float
scaling parameter y dimension, Pixels per micrometer in image
Returns
-------
tuple[t.CsvData, t.SensorImages]
t.CsvData: (list) data to save as CSV according to requirements, contains strings and ints
t.SensorImages: (TypedDict) contains left and right image corresponding to each sensor
Raises
------
errors.ImageNotReadError
image was not read successfully
errors.ContourCalculationError
during contour detection there were several possible error causes
errors.InvalidElectrodeCount
an invalid number of electrodes were detected
"""
...
def infer_image(
image: npt.NDArray[np.uint8],
model: Patchcore,
) -> t.InferenceResult:
"""evaluate one image
Parameters
----------
image : npt.NDArray[np.uint8]
represents image to be checked for anomalies
model : Patchcore
(loaded PyTorch state dictionary): model for anomaly detection
Returns
-------
t.InferenceResult
contains:
img (numpy.ndarray)
anomaly_map_resized (numpy.ndarray): heatmap to visualize detected anomalies
anomaly_score (float): evaluation metric, in [0, 1] with close to 0 being no
anomaly detected
anomaly_label (bool): anomaly detected (1) or not (0)
"""
...
def anomaly_detection(
file_path: Path,
detection_models: t.DetectionModels,
data_csv: t.CsvData,
sensor_images: t.SensorImages,
) -> None:
"""load the model, call function for anomaly detection and store the results
Parameters
----------
file_path : Path
path to file to analyse
detection_models : t.DetectionModels
collection of model paths for the left and right sensor
data_csv : t.CsvData
(list) data to save as CSV according to requirements, contains strings and ints
sensor_images : t.SensorImages
_description_
"""
...
def pipeline(
user_file_path: str,
pixels_per_metric_X: float,
pixels_per_metric_Y: float,
) -> None: ...