generated from dopt-python/py311
additions from Susanne #14
@ -140,10 +140,10 @@ def measure_length(
|
|||||||
f"expected value: count = {num_contours}, expected = {const.NUM_VALID_ELECTRODES}"
|
f"expected value: count = {num_contours}, expected = {const.NUM_VALID_ELECTRODES}"
|
||||||
)
|
)
|
||||||
|
|
||||||
x_min = min(np.min(c[:, 0, 0]) for c in filtered_cnts) - 20
|
x_min = max(min(np.min(c[:, 0, 0]) for c in filtered_cnts) - 20, 0)
|
||||||
x_max = max(np.max(c[:, 0, 0]) for c in filtered_cnts) + 20
|
x_max = min(max(np.max(c[:, 0, 0]) for c in filtered_cnts) + 20, orig.shape[1])
|
||||||
y_min = min(np.min(c[:, 0, 1]) for c in filtered_cnts) - 20
|
y_min = max(min(np.min(c[:, 0, 1]) for c in filtered_cnts) - 20, 0)
|
||||||
y_max = max(np.max(c[:, 0, 1]) for c in filtered_cnts) + 20
|
y_max = min(max(np.max(c[:, 0, 1]) for c in filtered_cnts) + 20, orig.shape[0])
|
||||||
|
|
||||||
rightmost_x_third = max(filtered_cnts[2][:, 0, 0])
|
rightmost_x_third = max(filtered_cnts[2][:, 0, 0])
|
||||||
leftmost_x_fourth = min(filtered_cnts[3][:, 0, 0])
|
leftmost_x_fourth = min(filtered_cnts[3][:, 0, 0])
|
||||||
@ -176,7 +176,7 @@ def infer_image(
|
|||||||
output = model(input_tensor)
|
output = model(input_tensor)
|
||||||
|
|
||||||
anomaly_score = output.pred_score.item()
|
anomaly_score = output.pred_score.item()
|
||||||
anomaly_label = output.pred_label.item()
|
anomaly_label = 1 if anomaly_score >= .2 else 0
|
||||||
anomaly_map = output.anomaly_map.squeeze().cpu().numpy()
|
anomaly_map = output.anomaly_map.squeeze().cpu().numpy()
|
||||||
|
|
||||||
img_np = np.array(pil_image)
|
img_np = np.array(pil_image)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user