sensor-anomalies/tests/test_detection.py

176 lines
6.2 KiB
Python

import shutil
from pathlib import Path
from unittest.mock import patch
import numpy as np
import pytest
from dopt_basics import result_pattern
import dopt_sensor_anomalies._find_paths
import dopt_sensor_anomalies.detection as detect
import dopt_sensor_anomalies.types as t
from dopt_sensor_anomalies import constants, errors
@pytest.fixture(scope="module")
def single_img_path() -> Path:
img_folder = Path(__file__).parent / "_img"
if not img_folder.exists():
raise FileNotFoundError("Img path not existing")
img_paths = tuple(img_folder.glob("*_12.bmp"))
if not img_paths:
raise ValueError("No images found")
return img_paths[0]
def test_midpoint():
ptA = np.array([1.0, 2.0])
ptB = np.array([3.0, 4.0])
mid_x, mid_y = detect.midpoint(ptA, ptB)
assert mid_x == 2.0
assert mid_y == 3.0
def test_check_box_redundancy_SameBox():
box_1: t.Box = (
(64.70450592041016, 505.09185791015625),
(32.305301666259766, 162.31748962402344),
2.385944128036499,
)
box_2: t.Box = (
(64.5450592041016, 504.59185791015625),
(32.305301666259766, 163.01748962402344),
2.415944128036499,
)
assert detect.check_box_redundancy(box_1, box_2)
def test_check_box_redundancy_DifferentBox():
box_1: t.Box = (
(64.70450592041016, 505.09185791015625),
(32.305301666259766, 162.31748962402344),
2.385944128036499,
)
box_2: t.Box = (
(84.5450592041016, 104.59185791015625),
(31.305301666259766, 150.01748962402344),
2.35944128036499,
)
assert not detect.check_box_redundancy(box_1, box_2)
def test_measure_length(single_img_path):
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
data, imgs = detect.measure_length(
single_img_path,
pixels_per_metric_X,
pixels_per_metric_Y,
)
assert len(data) == 18
assert isinstance(data[0], str)
assert float(data[0].replace(",", ".")) == pytest.approx(1266.932)
img_left = imgs["left"]
assert 235 < img_left.shape[0] < 260
assert 910 < img_left.shape[1] < 960
assert img_left.shape[2] == 3
img_right = imgs["right"]
assert 235 < img_right.shape[0] < 260
assert 910 < img_right.shape[1] < 960
assert img_right.shape[2] == 3
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_isolated_pipeline(results_folder, path_img_with_failure_TrainedModel):
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
MODEL_FOLDER = dopt_sensor_anomalies._find_paths.get_model_folder()
assert MODEL_FOLDER.exists(), "model folder not existing"
DETECTION_MODELS = dopt_sensor_anomalies._find_paths.get_detection_models(MODEL_FOLDER)
assert DETECTION_MODELS["left"].exists()
assert DETECTION_MODELS["right"].exists()
data_csv, sensor_images = detect.measure_length(
path_img_with_failure_TrainedModel,
pixels_per_metric_X,
pixels_per_metric_Y,
)
# measured sizes
assert len(data_csv) == 18
assert sensor_images["left"] is not None
assert sensor_images["right"] is not None
detect.anomaly_detection(
img_path=path_img_with_failure_TrainedModel,
detection_models=DETECTION_MODELS,
data_csv=data_csv,
sensor_images=sensor_images,
)
# check files for existence
root_img = path_img_with_failure_TrainedModel.parent
file_stem = path_img_with_failure_TrainedModel.stem
csv_file = root_img / f"{file_stem}.csv"
heatmap_file = root_img / f"{file_stem}{constants.HEATMAP_FILENAME_SUFFIX}.png"
assert csv_file.exists()
assert heatmap_file.exists()
shutil.copy(csv_file, (results_folder / csv_file.name))
shutil.copy(heatmap_file, (results_folder / heatmap_file.name))
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_full_pipeline_wrapped_FailImagePath(setup_temp_dir):
img_path = str(setup_temp_dir / "not-existing.bmp")
MESSAGE = "The provided path seems not to exist"
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
ret = detect.pipeline(img_path, pixels_per_metric_X, pixels_per_metric_Y)
assert ret.status != result_pattern.STATUS_HANDLER.SUCCESS
assert ret.status.ExceptionType is FileNotFoundError
assert ret.status.message == MESSAGE
with pytest.raises(FileNotFoundError, match=MESSAGE):
_ = ret.unwrap()
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_full_pipeline_wrapped_FailElectrodeCount(path_img_with_failure_ElectrodeCount):
img_path = str(path_img_with_failure_ElectrodeCount)
MESSAGE = "Number of counted electrodes does not match the"
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
ret = detect.pipeline(img_path, pixels_per_metric_X, pixels_per_metric_Y)
assert ret.status != result_pattern.STATUS_HANDLER.SUCCESS
assert ret.status.ExceptionType is errors.InvalidElectrodeCount
assert MESSAGE in ret.status.message
with pytest.raises(errors.InvalidElectrodeCount, match=MESSAGE):
_ = ret.unwrap()
@patch("dopt_sensor_anomalies._find_paths.STOP_FOLDER_NAME", "lib")
def test_full_pipeline_wrapped_Success(results_folder, path_img_with_failure_TrainedModel):
# paths: check files for existence and delete because of other tests
root_img = path_img_with_failure_TrainedModel.parent
file_stem = path_img_with_failure_TrainedModel.stem
csv_file = root_img / f"{file_stem}.csv"
heatmap_file = root_img / f"{file_stem}{constants.HEATMAP_FILENAME_SUFFIX}.png"
if csv_file.exists():
csv_file.unlink()
if heatmap_file.exists():
heatmap_file.unlink()
img_path = str(path_img_with_failure_TrainedModel)
pixels_per_metric_X: float = 0.251
pixels_per_metric_Y: float = 0.251
ret = detect.pipeline(img_path, pixels_per_metric_X, pixels_per_metric_Y)
assert ret.status == result_pattern.STATUS_HANDLER.SUCCESS
assert ret.status.code == 0
assert ret.status.ExceptionType is None
assert csv_file.exists()
assert heatmap_file.exists()
shutil.copy(csv_file, (results_folder / csv_file.name))
shutil.copy(heatmap_file, (results_folder / heatmap_file.name))