basic data analysis

This commit is contained in:
Florian Förster 2026-01-13 16:13:22 +01:00
parent f65e1f2981
commit d5546b7fd0
3 changed files with 207 additions and 11 deletions

75
pdm.lock generated
View File

@ -5,7 +5,7 @@
groups = ["default", "data", "dev", "lint", "nb", "tests"]
strategy = ["inherit_metadata"]
lock_version = "4.5.0"
content_hash = "sha256:17e3ecabeaf176fccc05c9f1c4d567ce29a09cf0cf905e53f399e4319116285c"
content_hash = "sha256:c32739e18120fad1a688e3030b22d6e3a8a1d1412f5f16295cab4ea173479591"
[[metadata.targets]]
requires_python = ">=3.11"
@ -2935,6 +2935,79 @@ files = [
{file = "ruff-0.14.11.tar.gz", hash = "sha256:f6dc463bfa5c07a59b1ff2c3b9767373e541346ea105503b4c0369c520a66958"},
]
[[package]]
name = "scipy"
version = "1.17.0"
requires_python = ">=3.11"
summary = "Fundamental algorithms for scientific computing in Python"
groups = ["data"]
dependencies = [
"numpy<2.7,>=1.26.4",
]
files = [
{file = "scipy-1.17.0-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:2abd71643797bd8a106dff97894ff7869eeeb0af0f7a5ce02e4227c6a2e9d6fd"},
{file = "scipy-1.17.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:ef28d815f4d2686503e5f4f00edc387ae58dfd7a2f42e348bb53359538f01558"},
{file = "scipy-1.17.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:272a9f16d6bb4667e8b50d25d71eddcc2158a214df1b566319298de0939d2ab7"},
{file = "scipy-1.17.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:7204fddcbec2fe6598f1c5fdf027e9f259106d05202a959a9f1aecf036adc9f6"},
{file = "scipy-1.17.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fc02c37a5639ee67d8fb646ffded6d793c06c5622d36b35cfa8fe5ececb8f042"},
{file = "scipy-1.17.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:dac97a27520d66c12a34fd90a4fe65f43766c18c0d6e1c0a80f114d2260080e4"},
{file = "scipy-1.17.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ebb7446a39b3ae0fe8f416a9a3fdc6fba3f11c634f680f16a239c5187bc487c0"},
{file = "scipy-1.17.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:474da16199f6af66601a01546144922ce402cb17362e07d82f5a6cf8f963e449"},
{file = "scipy-1.17.0-cp311-cp311-win_amd64.whl", hash = "sha256:255c0da161bd7b32a6c898e7891509e8a9289f0b1c6c7d96142ee0d2b114c2ea"},
{file = "scipy-1.17.0-cp311-cp311-win_arm64.whl", hash = "sha256:85b0ac3ad17fa3be50abd7e69d583d98792d7edc08367e01445a1e2076005379"},
{file = "scipy-1.17.0-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:0d5018a57c24cb1dd828bcf51d7b10e65986d549f52ef5adb6b4d1ded3e32a57"},
{file = "scipy-1.17.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:88c22af9e5d5a4f9e027e26772cc7b5922fab8bcc839edb3ae33de404feebd9e"},
{file = "scipy-1.17.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:f3cd947f20fe17013d401b64e857c6b2da83cae567adbb75b9dcba865abc66d8"},
{file = "scipy-1.17.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:e8c0b331c2c1f531eb51f1b4fc9ba709521a712cce58f1aa627bc007421a5306"},
{file = "scipy-1.17.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5194c445d0a1c7a6c1a4a4681b6b7c71baad98ff66d96b949097e7513c9d6742"},
{file = "scipy-1.17.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9eeb9b5f5997f75507814ed9d298ab23f62cf79f5a3ef90031b1ee2506abdb5b"},
{file = "scipy-1.17.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:40052543f7bbe921df4408f46003d6f01c6af109b9e2c8a66dd1cf6cf57f7d5d"},
{file = "scipy-1.17.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:0cf46c8013fec9d3694dc572f0b54100c28405d55d3e2cb15e2895b25057996e"},
{file = "scipy-1.17.0-cp312-cp312-win_amd64.whl", hash = "sha256:0937a0b0d8d593a198cededd4c439a0ea216a3f36653901ea1f3e4be949056f8"},
{file = "scipy-1.17.0-cp312-cp312-win_arm64.whl", hash = "sha256:f603d8a5518c7426414d1d8f82e253e454471de682ce5e39c29adb0df1efb86b"},
{file = "scipy-1.17.0-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:65ec32f3d32dfc48c72df4291345dae4f048749bc8d5203ee0a3f347f96c5ce6"},
{file = "scipy-1.17.0-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:1f9586a58039d7229ce77b52f8472c972448cded5736eaf102d5658bbac4c269"},
{file = "scipy-1.17.0-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:9fad7d3578c877d606b1150135c2639e9de9cecd3705caa37b66862977cc3e72"},
{file = "scipy-1.17.0-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:423ca1f6584fc03936972b5f7c06961670dbba9f234e71676a7c7ccf938a0d61"},
{file = "scipy-1.17.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fe508b5690e9eaaa9467fc047f833af58f1152ae51a0d0aed67aa5801f4dd7d6"},
{file = "scipy-1.17.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6680f2dfd4f6182e7d6db161344537da644d1cf85cf293f015c60a17ecf08752"},
{file = "scipy-1.17.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:eec3842ec9ac9de5917899b277428886042a93db0b227ebbe3a333b64ec7643d"},
{file = "scipy-1.17.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d7425fcafbc09a03731e1bc05581f5fad988e48c6a861f441b7ab729a49a55ea"},
{file = "scipy-1.17.0-cp313-cp313-win_amd64.whl", hash = "sha256:87b411e42b425b84777718cc41516b8a7e0795abfa8e8e1d573bf0ef014f0812"},
{file = "scipy-1.17.0-cp313-cp313-win_arm64.whl", hash = "sha256:357ca001c6e37601066092e7c89cca2f1ce74e2a520ca78d063a6d2201101df2"},
{file = "scipy-1.17.0-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:ec0827aa4d36cb79ff1b81de898e948a51ac0b9b1c43e4a372c0508c38c0f9a3"},
{file = "scipy-1.17.0-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:819fc26862b4b3c73a60d486dbb919202f3d6d98c87cf20c223511429f2d1a97"},
{file = "scipy-1.17.0-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:363ad4ae2853d88ebcde3ae6ec46ccca903ea9835ee8ba543f12f575e7b07e4e"},
{file = "scipy-1.17.0-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:979c3a0ff8e5ba254d45d59ebd38cde48fce4f10b5125c680c7a4bfe177aab07"},
{file = "scipy-1.17.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:130d12926ae34399d157de777472bf82e9061c60cc081372b3118edacafe1d00"},
{file = "scipy-1.17.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6e886000eb4919eae3a44f035e63f0fd8b651234117e8f6f29bad1cd26e7bc45"},
{file = "scipy-1.17.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:13c4096ac6bc31d706018f06a49abe0485f96499deb82066b94d19b02f664209"},
{file = "scipy-1.17.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:cacbaddd91fcffde703934897c5cd2c7cb0371fac195d383f4e1f1c5d3f3bd04"},
{file = "scipy-1.17.0-cp313-cp313t-win_amd64.whl", hash = "sha256:edce1a1cf66298cccdc48a1bdf8fb10a3bf58e8b58d6c3883dd1530e103f87c0"},
{file = "scipy-1.17.0-cp313-cp313t-win_arm64.whl", hash = "sha256:30509da9dbec1c2ed8f168b8d8aa853bc6723fede1dbc23c7d43a56f5ab72a67"},
{file = "scipy-1.17.0-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:c17514d11b78be8f7e6331b983a65a7f5ca1fd037b95e27b280921fe5606286a"},
{file = "scipy-1.17.0-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:4e00562e519c09da34c31685f6acc3aa384d4d50604db0f245c14e1b4488bfa2"},
{file = "scipy-1.17.0-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:f7df7941d71314e60a481e02d5ebcb3f0185b8d799c70d03d8258f6c80f3d467"},
{file = "scipy-1.17.0-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:aabf057c632798832f071a8dde013c2e26284043934f53b00489f1773b33527e"},
{file = "scipy-1.17.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a38c3337e00be6fd8a95b4ed66b5d988bac4ec888fd922c2ea9fe5fb1603dd67"},
{file = "scipy-1.17.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:00fb5f8ec8398ad90215008d8b6009c9db9fa924fd4c7d6be307c6f945f9cd73"},
{file = "scipy-1.17.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:f2a4942b0f5f7c23c7cd641a0ca1955e2ae83dedcff537e3a0259096635e186b"},
{file = "scipy-1.17.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:dbf133ced83889583156566d2bdf7a07ff89228fe0c0cb727f777de92092ec6b"},
{file = "scipy-1.17.0-cp314-cp314-win_amd64.whl", hash = "sha256:3625c631a7acd7cfd929e4e31d2582cf00f42fcf06011f59281271746d77e061"},
{file = "scipy-1.17.0-cp314-cp314-win_arm64.whl", hash = "sha256:9244608d27eafe02b20558523ba57f15c689357c85bdcfe920b1828750aa26eb"},
{file = "scipy-1.17.0-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:2b531f57e09c946f56ad0b4a3b2abee778789097871fc541e267d2eca081cff1"},
{file = "scipy-1.17.0-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:13e861634a2c480bd237deb69333ac79ea1941b94568d4b0efa5db5e263d4fd1"},
{file = "scipy-1.17.0-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:eb2651271135154aa24f6481cbae5cc8af1f0dd46e6533fb7b56aa9727b6a232"},
{file = "scipy-1.17.0-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:c5e8647f60679790c2f5c76be17e2e9247dc6b98ad0d3b065861e082c56e078d"},
{file = "scipy-1.17.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5fb10d17e649e1446410895639f3385fd2bf4c3c7dfc9bea937bddcbc3d7b9ba"},
{file = "scipy-1.17.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8547e7c57f932e7354a2319fab613981cde910631979f74c9b542bb167a8b9db"},
{file = "scipy-1.17.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:33af70d040e8af9d5e7a38b5ed3b772adddd281e3062ff23fec49e49681c38cf"},
{file = "scipy-1.17.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f9eb55bb97d00f8b7ab95cb64f873eb0bf54d9446264d9f3609130381233483f"},
{file = "scipy-1.17.0-cp314-cp314t-win_amd64.whl", hash = "sha256:1ff269abf702f6c7e67a4b7aad981d42871a11b9dd83c58d2d2ea624efbd1088"},
{file = "scipy-1.17.0-cp314-cp314t-win_arm64.whl", hash = "sha256:031121914e295d9791319a1875444d55079885bbae5bdc9c5e0f2ee5f09d34ff"},
{file = "scipy-1.17.0.tar.gz", hash = "sha256:2591060c8e648d8b96439e111ac41fd8342fdeff1876be2e19dea3fe8930454e"},
]
[[package]]
name = "seaborn"
version = "0.13.2"

View File

@ -2,12 +2,13 @@
import json
import pprint
from collections import Counter
from datetime import datetime
from pathlib import Path
from zoneinfo import ZoneInfo
import pandas as pd
import polars as pl
WRITE_TO_DISK = False
from scipy import stats
# %%
p_data_base = (Path.cwd() / "../data/Datenauszug_20251212").resolve()
@ -75,7 +76,7 @@ folder_to_types
# [timestep, process_step, pressure_value, valve_value]
# valid states are ps = [101, 102, 110]
schema = {
schema_read = {
"DU1260": pl.Float64,
"V1560": pl.Boolean,
"ps": pl.UInt32,
@ -83,37 +84,60 @@ schema = {
"type_num": pl.UInt8,
"id": pl.UInt64,
}
df = pl.DataFrame(schema=schema)
schema = {
"DU1260": pl.Float64,
"V1560": pl.Boolean,
"ps": pl.UInt32,
"ts": pl.Datetime,
"type_num": pl.UInt8,
"id": pl.UInt64,
"ts_delta_step": pl.Duration,
"ts_delta_cum": pl.Duration,
}
df = pl.DataFrame(schema=schema).with_columns(pl.col("ts").dt.replace_time_zone("UTC"))
count = 0
for idx, file in enumerate(p_data_base.glob("**/*.json")):
with open(file, "r") as f:
data = json.load(f)
type_num = data["initial"]["dsc_TypeNumber"]["value"]
df_file = pl.DataFrame(data["rows"], schema_overrides=schema)
df_file = pl.DataFrame(data["rows"], schema_overrides=schema_read)
df_file = df_file.with_columns(
pl.col("ts").str.to_datetime(time_zone="UTC"),
pl.lit(type_num).alias("type_num").cast(pl.UInt8),
pl.lit(idx).alias("id").cast(pl.UInt64),
)
df_file = df_file.with_columns(
(pl.col.ts - pl.col.ts.shift(1))
.alias("ts_delta_step")
.fill_null(pl.lit(0).cast(pl.Duration))
)
df_file = df_file.with_columns(
pl.col("ts_delta_step").cum_sum().alias("ts_delta_cum"),
)
df = pl.concat((df, df_file))
count += 1
df = df.with_columns(pl.col("ts").str.to_datetime(time_zone="UTC"))
df = df.select(["id", "type_num", "ts", "ps", "DU1260", "V1560"])
# df = df.with_columns(pl.col("ts").str.to_datetime(time_zone="UTC"))
df = df.select(
["id", "type_num", "ts", "ts_delta_step", "ts_delta_cum", "ps", "DU1260", "V1560"]
)
df.head()
# %%
print(f"Files processed: {count}")
print(f"Length of obtained data: {len(df)}")
# %%
WRITE_TO_DISK = False
concat_data = p_data_base / "all_data.parquet"
if WRITE_TO_DISK:
df.write_parquet(concat_data)
else:
df = pl.read_parquet(concat_data)
# %%
df.head()
print(f"Number of entries in data: {len(df)}")
print(f"Number of curves in data: {len(df.select('id').unique())}")
df.head()
# %%
# valid ps = 101, 102, 110
# filter all entries which contain invalid error states
@ -121,8 +145,106 @@ invalid_ids = df.filter(~pl.col("ps").is_in((101, 102, 110))).select("id").uniqu
print(f"Number of invalid IDs: {len(invalid_ids)}")
df = df.filter(~pl.col("id").is_in(invalid_ids["id"].implode()))
print(f"Number of curves in data after cleansing: {len(df.select('id').unique())}")
# sort chronologically
df = df.sort(by=["id", "ts"], descending=[False, False])
# %%
df.select(["ts", "DU1260"])
# filter for relevant type number with maximum number of entries
TARGET_TYPE_NUM = 2
df = df.filter(pl.col.type_num == TARGET_TYPE_NUM)
print(f"Number of entries for type num {TARGET_TYPE_NUM}: {len(df)}")
print(f"Number of curves in data: {len(df.select('id').unique())}")
# %%
df.plot.line(x="ts", y="DU1260")
current_time = datetime.now(tz=ZoneInfo("UTC"))
df_reconst = df.with_columns(
(pl.col.ts_delta_cum + pl.lit(current_time)).alias("reconstructed")
)
# %%
df_reconst
# %%
collection = df_reconst.select(pl.col.id).unique().sort(by="id")["id"][:10]
# %%
series = df_reconst.filter(pl.col.id.is_in(collection))
series
# %%
series.select(pl.exclude("ts_delta_step", "ts_delta_cum")).plot.line(
x="reconstructed", y="DU1260"
)
# %%
series.group_by("id").agg(pl.col("ts_delta_cum").max())
# %%
series.group_by("id").agg(pl.len())
# ** simple stats
# try to separate anomalies by time/duration
# // "Duration Anomalies"
# IQR
durations = df_reconst.group_by("id").agg(pl.col("ts_delta_cum").max())
durations = durations.with_columns(pl.col.ts_delta_cum.dt.total_microseconds())
durations.head()
FACTOR = 1.5
iqr = stats.iqr(durations["ts_delta_cum"])
quantiles = stats.quantile(durations["ts_delta_cum"], [0.25, 0.75])
print(f"Quantiles (0.25, 0.75): {quantiles}")
print(f"IQR: {iqr}")
iqr_lb = max(iqr - FACTOR * quantiles[0], 0)
iqr_ub = iqr + FACTOR * quantiles[1]
print(f"Lower bound: {iqr_lb}")
print(f"Upper bound: {iqr_ub}")
durations.describe()
# %%
df_reconst.filter(pl.col.ps == 102).filter(
pl.col.ts_delta_cum > pl.duration(microseconds=iqr_ub)
)
# %%
filter_out_time = (
df_reconst.filter(pl.col.ts_delta_cum > pl.duration(microseconds=iqr_ub))
.select("id")
.unique()
)
df_out_time = df_reconst.filter(pl.col.id.is_in(filter_out_time["id"].implode()))
df_out_time
# TODO calculate duration for each phase
ids_out = df_out_time["id"].unique().implode()
df_remain = df_reconst.filter(~pl.col.id.is_in(ids_out))
df_remain
# %%
df_analyse = (
df_remain.group_by("id")
.agg(pl.len().alias("count"), pl.col("ts_delta_cum").max())
.with_columns(
(pl.col.count / pl.col.ts_delta_cum.dt.total_microseconds()).alias(
"mean_sampling_rate"
)
)
)
# %%
df_analyse.describe()
# %%
df_analyse2 = (
df_reconst.group_by("id")
.agg(pl.len().alias("count"), pl.col("ts_delta_cum").max())
.with_columns(
(pl.col.count / pl.col.ts_delta_cum.dt.total_microseconds()).alias(
"mean_sampling_rate"
)
)
)
df_analyse2.describe()
# %%
df2
# %%
series
# %%
# %%
series.head()
# %%
temp = df.filter(pl.col.id.is_in(collection))
temp
# %%
temp = temp.with_columns((pl.col.ts_delta + pl.lit(current_time)).alias("reconstructed"))
# %%
temp
# %%

View File

@ -153,4 +153,5 @@ data = [
"polars>=1.37.1",
"seaborn>=0.13.2",
"altair>=6.0.0",
"scipy>=1.17.0",
]