adapt architecture, added new prototype for WF-200

This commit is contained in:
Florian Förster 2025-11-14 14:06:03 +01:00
parent 7488bc19b1
commit 4eeb92f939
5 changed files with 264 additions and 88 deletions

View File

@ -1,16 +1,21 @@
# %%
import importlib
from collections.abc import Sequence
from pathlib import Path
from pprint import pprint
import dopt_basics.datetime as dt
import polars as pl
import sqlalchemy as sql
from umbreit import db
from umbreit import db, types
# %%
# import importlib
# db = importlib.reload(db)
# types = importlib.reload(types)
# %%
types.Freigabe.WF_100.value
# %%
db_path = (Path.cwd() / "../data/data.db").resolve()
@ -20,12 +25,85 @@ assert data_path.exists() and data_path.is_dir()
engine = sql.create_engine(f"sqlite:///{str(db_path)}", echo=True)
# %%
# delete existing results
def delete_results() -> None:
with engine.begin() as conn:
res = conn.execute(sql.delete(db.results))
print("Rows deleted: ", res.rowcount)
# %%
delete_results()
stmt = sql.select(db.results.c.bedarf_nr, db.results.c.bedarf_sequenz)
with engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
# %%
current_dt = dt.current_time_tz(cut_microseconds=True)
current_dt
td = dt.timedelta_from_val(90, dt.TimeUnitsTimedelta.DAYS)
td
# %%
start_dt = current_dt - td
start_date = dt.dt_to_timezone(start_dt, target_tz=dt.TIMEZONE_CEST).date()
start_date
# %%
# WF-200: filter for relevant orders with current BEDP set
# missing: order types which are relevant
filter_K_rech = (608991, 260202)
join_condition = sql.and_(
db.ext_bedpbed.c.BEDP_TITELNR == db.EXT_AUFPAUF.c.TITELNR,
db.ext_bedpbed.c.BEDP_MAN == db.EXT_AUFPAUF.c.MANDANT,
)
where_condition = sql.and_(
db.EXT_AUFPAUF.c.AUFTRAGS_DATUM > start_date,
db.EXT_AUFPAUF.c.KUNDE_RECHNUNG.not_in(filter_K_rech),
)
stmt = (
sql.select(
db.ext_bedpbed.c.BEDARFNR,
db.ext_bedpbed.c.BEDP_SEQUENZ,
db.ext_bedpbed.c.BEDP_TITELNR,
db.ext_bedpbed.c.BEDP_MAN,
db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM,
db.EXT_AUFPAUF,
)
.select_from(db.ext_bedpbed.join(db.EXT_AUFPAUF, join_condition))
.where(where_condition)
)
# %%
print(stmt.compile(engine))
# %%
df_order = pl.read_database(stmt, engine, schema_overrides=db.raw_data_query_schema_map)
df_order
# %%
# AUFPAUF
stmt = sql.select(db.EXT_AUFPAUF)
df_aufpauf = pl.read_database(stmt, engine, schema_overrides=db.raw_data_query_schema_map)
df_aufpauf
# %%
df_aufpauf.filter(pl.col("TITELNR") == 6315273)
# %%
# VM_CRITERION = "MENGE_VORMERKER"
VM_CRITERION = "BEDP_MENGE_BEDARF_VM"
def get_raw_data() -> pl.DataFrame:
join_condition = sql.and_(
db.ext_bedpbed.c.BEDP_TITELNR == db.ext_titel_info.c.TI_NUMMER,
db.ext_bedpbed.c.BEDP_MAN == db.ext_titel_info.c.MANDFUEHR,
)
stmt = sql.select(
db.ext_bedpbed.c.BEDARFNR,
db.ext_bedpbed.c.BEDP_SEQUENZ,
@ -36,35 +114,17 @@ stmt = sql.select(
db.ext_titel_info.c.MENGE_VORMERKER,
).select_from(db.ext_bedpbed.join(db.ext_titel_info, join_condition))
# %%
print(stmt.compile(engine))
# %%
df_raw = pl.read_database(stmt, engine)
# %%
df_raw
# %%
filter_meldenummer = pl.col("MELDENUMMER") == 18
# %%
# df_new = df.filter(pl.col("MENGE_VORMERKER").is_not_null() & pl.col("MENGE_VORMERKER") > 0)
# filter mandant: Umbreit
filter_mandant_umbreit = pl.col("BEDP_MAN") == 1
df_mandant = df_raw.filter(filter_mandant_umbreit)
df_mandant
return pl.read_database(
stmt,
engine,
schema_overrides=db.raw_data_query_schema_map,
)
# %%
# filter #VM
# VM_CRITERION = "MENGE_VORMERKER"
VM_CRITERION = "BEDP_MENGE_BEDARF_VM"
df_mandant = df_mandant.with_columns(pl.col(VM_CRITERION).fill_null(0))
filter_vm = pl.col(VM_CRITERION) > 0 # pl.col("MENGE_VORMERKER").is_not_null() &
df_new = df_mandant.filter(filter_vm)
# df_new = df_mandant.filter(pl.col("MENGE_VORMERKER").is_not_null()).filter(pl.col("MENGE_VORMERKER") > 0)
df_new
# %%
def get_empyt_result_df() -> pl.DataFrame:
schema = db.results_schema_map.copy()
del schema["id"]
return pl.DataFrame(schema=schema)
def apply_several_filters(
@ -87,62 +147,54 @@ def apply_several_filters(
def prepare_base_data(df: pl.DataFrame) -> pl.DataFrame:
df = df.with_columns(pl.col("MENGE_VORMERKER").fill_null(0))
df = df.with_columns(pl.col("BEDP_MENGE_BEDARF_VM").fill_null(0))
return df
# def workflow_100_start(
# df: pl.DataFrame,
# ) -> tuple[pl.DataFrame, pl.DataFrame]:
# return apply_several_filters(df, (filter,))
def workflow_100_umbreit(
df: pl.DataFrame,
results: pl.DataFrame,
data: pl.DataFrame,
vm_criterion: str,
) -> tuple[pl.DataFrame, pl.DataFrame]:
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col("BEDP_MAN") == 1
filter_number_vm = pl.col(vm_criterion) > 0
return apply_several_filters(df, (filter_meldenummer, filter_mandant, filter_number_vm))
relevant, filt = apply_several_filters(
data, (filter_meldenummer, filter_mandant, filter_number_vm)
)
results = _results_workflow_100(
results,
relevant,
vorlage=True,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
)
return results, filt
# %%
out_remainder: list[pl.DataFrame] = []
df_start = prepare_base_data(df_raw)
df_start
# %%
df, filt_out = workflow_100_umbreit(df_start, VM_CRITERION)
# filt_out at this point represents all entries which are to be analysed in other workflows
out_remainder.append(filt_out)
pipe_removed = pl.concat(out_remainder)
# %%
df
# %%
pipe_removed
# idea: use pipe_removed for other workflows
# in the end there should not be any open positions left (assuming all cases are implemented)
# %%
# post-processing the results
def results_workflow_100(
df: pl.DataFrame,
def _results_workflow_100(
results: pl.DataFrame,
data: pl.DataFrame,
vorlage: bool,
wf_id: int,
freigabe_auto: types.Freigabe,
) -> pl.DataFrame:
df = df.rename(db.map_to_result)
df = df.with_columns(
data = data.rename(db.map_to_result)
data = data.with_columns(
[
pl.lit(vorlage).alias("vorlage").cast(db.results_schema_map["vorlage"]),
pl.lit(wf_id).alias("wf_id").cast(db.results_schema_map["wf_id"]),
pl.col("BEDP_MENGE_BEDARF_VM").alias("best_menge"),
pl.lit(True).alias("vorlage"),
pl.lit(100).alias("wf_id"),
pl.lit(False).alias("freigabe_auto"),
pl.lit(freigabe_auto.value)
.alias("freigabe_auto")
.cast(db.results_schema_map["freigabe_auto"]),
]
)
df = df.drop(
data = data.drop(
[
"BEDP_TITELNR",
"BEDP_MAN",
@ -152,34 +204,117 @@ def results_workflow_100(
]
)
return df
return pl.concat([results, data])
# Petersen not present in data
# %%
pipe_post = results_workflow_100(df)
pipe_post
df_raw = get_raw_data()
df_start = prepare_base_data(df_raw)
df_start
# %%
pipe_post.write_database(db.results.fullname, engine, if_table_exists="replace")
results_init = get_empyt_result_df()
results, filt_out = workflow_100_umbreit(results_init, df_start, VM_CRITERION)
# df is where results are known
# filt_out contains entries for other workflows
# filt_out at this point represents all entries which are to be analysed in other workflows
# %%
stmt = sql.select(db.results.c.bedarf_nr, db.results.c.bedarf_sequenz)
with engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
results
# %%
filt_out
# %%
df_umbreit_18 = workflow_100_umbreit(df, VM_CRITERION)
df_umbreit_18
# ----------------------------------------------------------------------------
# %%
target_bednr = df_new["BEDARFNR"].to_list()
target_seq = df_new["BEDP_SEQUENZ"].to_list()
# ---------------------------------------------------------------------------- #
# Workflow 200 (Umbreit only)
# ---------------------------------------------------------------------------- #
# %%
wf_200_start_data = filt_out.clone()
wf_200_start_data
# %%
def _init_workflow_200_umbreit(
results: pl.DataFrame,
data: pl.DataFrame,
vm_criterion: str,
) -> tuple[pl.DataFrame, pl.DataFrame]:
relevant_mnr: tuple[int, ...] = (17, 18)
filter_meldenummer = pl.col("MELDENUMMER").is_in(relevant_mnr)
filter_mandant = pl.col("BEDP_MAN") == 1
filter_number_vm = pl.col(vm_criterion) == 0
relevant, filt = apply_several_filters(
data, (filter_meldenummer, filter_mandant, filter_number_vm)
)
return relevant, filt
# %%
df, filt_out = _init_workflow_200_umbreit(results, wf_200_start_data, VM_CRITERION)
df
# %%
df.filter(pl.col("BEDARFNR") == 884607)
# %%
df_order.filter(pl.col("BEDARFNR") == 884607)
# %%
# now obtain order data for entries
t = df.join(df_order, on=["BEDARFNR", "BEDP_SEQUENZ"], how="inner")
t = t.with_columns(pl.col("AUFP_POSITION").fill_null(0))
t
# %%
agg_t = (
t.group_by(["BEDARFNR", "BEDP_SEQUENZ"])
.agg(
pl.count("AUFP_POSITION").alias("pos_count"),
pl.col("KUNDE_RECHNUNG").alias("count_customer").n_unique(),
)
.filter(pl.col("count_customer") >= 0) # !! should be 3
)
agg_t
# %%
df_order.filter((pl.col("BEDARFNR") == 883608) & (pl.col("BEDP_SEQUENZ") == 65))
# %%
# ---------------------------------------------------------------------------- #
# Writing results in DB
# ---------------------------------------------------------------------------- #
delete_results()
pipe_post.write_database(db.results.fullname, engine, if_table_exists="append")
stmt = sql.select(db.results)
db_results = pl.read_database(stmt, engine)
db_results
# ---------------------------------------------------------------------------- #
# Further Data Analysis
# ---------------------------------------------------------------------------- #
# %%
stmt = sql.select(db.ext_bedpbed)
df = pl.read_database(
stmt,
engine,
schema_overrides=db.ext_bedpbed_schema_map,
)
# %%
df.group_by("BEDP_TITELNR").agg(
pl.col("BEDP_MAN").n_unique().alias("unique_BEDP_MAN")
).filter(pl.col("unique_BEDP_MAN") > 1)
# %%
df["BEDP_MAN"].unique()
# %%
df.estimated_size(unit="mb")
# %%
target_bednr = df_raw["BEDARFNR"].to_list()
target_seq = df_raw["BEDP_SEQUENZ"].to_list()
# %%
stmt = (
sql.select(

18
pdm.lock generated
View File

@ -5,7 +5,7 @@
groups = ["default", "data", "dev", "lint", "nb", "tests"]
strategy = ["inherit_metadata"]
lock_version = "4.5.0"
content_hash = "sha256:1ae1f4583c19e6eacb7e148e056e96b8e8efd64b3372362da0c954cbe6cbb4ee"
content_hash = "sha256:840ff2052fc1669708f329a0e3733da307684a31ddea2105c6aec1949c9293bf"
[[metadata.targets]]
requires_python = ">=3.11"
@ -723,6 +723,20 @@ files = [
{file = "distlib-0.4.0.tar.gz", hash = "sha256:feec40075be03a04501a973d81f633735b4b69f98b05450592310c0f401a4e0d"},
]
[[package]]
name = "dopt-basics"
version = "0.2.4"
requires_python = ">=3.11"
summary = "basic cross-project tools for Python-based d-opt projects"
groups = ["default"]
dependencies = [
"tzdata>=2025.1",
]
files = [
{file = "dopt_basics-0.2.4-py3-none-any.whl", hash = "sha256:b7d05b80dde1f856b352580aeac500fc7505e4513ed162791d8735cdc182ebc1"},
{file = "dopt_basics-0.2.4.tar.gz", hash = "sha256:c21fbe183bec5eab4cfd1404e10baca670035801596960822d0019e6e885983f"},
]
[[package]]
name = "execnet"
version = "2.1.1"
@ -2817,7 +2831,7 @@ name = "tzdata"
version = "2025.2"
requires_python = ">=2"
summary = "Provider of IANA time zone data"
groups = ["data", "nb"]
groups = ["default", "data", "nb"]
files = [
{file = "tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8"},
{file = "tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9"},

View File

@ -5,7 +5,7 @@ description = "Umbreit's Python-based application"
authors = [
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
]
dependencies = ["sqlalchemy>=2.0.44"]
dependencies = ["sqlalchemy>=2.0.44", "dopt-basics>=0.2.4"]
requires-python = ">=3.11"
readme = "README.md"
license = {text = "LicenseRef-Proprietary"}

View File

@ -168,11 +168,32 @@ results = Table(
Column("bedarf_sequenz", sql.Integer, nullable=False),
Column("vorlage", sql.Boolean, nullable=False),
Column("wf_id", sql.Integer, nullable=False),
Column("best_menge", sql.Integer, nullable=False),
Column("best_menge", sql.Integer, nullable=True),
Column("freigabe_auto", sql.Boolean, nullable=False),
)
results_schema_map: PolarsSchema = {
"id": pl.UInt32,
"bedarf_nr": pl.UInt32,
"bedarf_sequenz": pl.UInt32,
"vorlage": pl.Boolean,
"wf_id": pl.UInt16,
"best_menge": pl.UInt32,
"freigabe_auto": pl.Boolean,
}
map_to_result: dict[str, str] = {
"BEDARFNR": "bedarf_nr",
"BEDP_SEQUENZ": "bedarf_sequenz",
}
raw_data_query_schema_map: PolarsSchema = {
"BEDARFNR": pl.UInt32,
"BEDP_SEQUENZ": pl.UInt32,
"BEDP_TITELNR": pl.UInt32,
"BEDP_MAN": pl.UInt8,
"BEDP_MENGE_BEDARF_VM": pl.UInt32,
"MELDENUMMER": pl.UInt8,
"MENGE_VORMERKER": pl.UInt32,
}

View File

@ -1,5 +1,6 @@
from __future__ import annotations
import enum
from dataclasses import dataclass
from typing import TypeAlias
@ -7,3 +8,8 @@ import polars as pl
PolarsSchema: TypeAlias = dict[str, type[pl.DataType]]
PolarsNullValues: TypeAlias = dict[str, str]
class Freigabe(enum.Enum):
WF_100 = False
WF_200 = False