adapt architecture for pipelines, add WF-100 Petersen requirements

This commit is contained in:
Florian Förster 2026-01-09 16:02:09 +01:00
parent 759010993f
commit f98a2e2829
3 changed files with 510 additions and 158 deletions

View File

@ -1,4 +1,7 @@
# %%
from __future__ import annotations
import datetime
import json
import time
import typing
@ -7,9 +10,11 @@ from pathlib import Path
from pprint import pprint
import dopt_basics.datetime as dt
import oracledb
import polars as pl
import sqlalchemy as sql
from dopt_basics import configs, io
from sqlalchemy import event
from umbreit import db, types
@ -34,18 +39,24 @@ USER_NAME = CFG["user"]["name"]
USER_PASS = CFG["user"]["pass"]
# %%
# !! init thick mode
# p_oracle_client = Path(r"C:\Databases\Oracle\instantclient_19_29")
# assert p_oracle_client.exists()
# assert p_oracle_client.is_dir()
# oracledb.init_oracle_client(lib_dir=str(p_oracle_client))
# %%
types.Freigabe.WF_100.value
p_oracle_client = Path(r"C:\Databases\Oracle\instantclient_19_29")
assert p_oracle_client.exists()
assert p_oracle_client.is_dir()
oracledb.init_oracle_client(lib_dir=str(p_oracle_client))
# %%
conn_string = (
f"oracle+oracledb://{USER_NAME}:{USER_PASS}@{HOST}:{PORT}?service_name={SERVICE}"
)
engine = sql.create_engine(conn_string)
# engine = sql.create_engine(conn_string)
engine = sql.create_engine(conn_string, execution_options={"stream_results": True})
@event.listens_for(engine, "after_cursor_execute")
def set_fetch_sizes(conn, cursor, statement, parameters, context, executemany):
cursor.arraysize = 1000
cursor.prefetchrows = 1000
# %%
########### RESULTS ###########
# temporary
@ -129,35 +140,36 @@ df_order
# prefilter amount columns for invalid entries
print("--------------- ext_bedpbed --------------")
t1 = time.perf_counter()
AMOUNT_COLS = frozenset(
(
"BEDP_MENGE_BEDARF",
"BEDP_MENGE_VERKAUF",
"BEDP_MENGE_ANFRAGE",
"BEDP_MENGE_BESTELLUNG",
"BEDP_MENGE_FREI",
"BEDP_MENGE_BEDARF_VM",
)
)
# // tests with ext_bedpbed
# print("--------------- ext_bedpbed --------------")
# t1 = time.perf_counter()
# AMOUNT_COLS = frozenset(
# (
# "BEDP_MENGE_BEDARF",
# "BEDP_MENGE_VERKAUF",
# "BEDP_MENGE_ANFRAGE",
# "BEDP_MENGE_BESTELLUNG",
# "BEDP_MENGE_FREI",
# "BEDP_MENGE_BEDARF_VM",
# )
# )
case_stmts = []
for col in AMOUNT_COLS:
case_stmts.append(
sql.case(
(db.ext_bedpbed.c[col] <= -1, sql.null()),
else_=db.ext_bedpbed.c[col],
).label(col)
)
# case_stmts = []
# for col in AMOUNT_COLS:
# case_stmts.append(
# sql.case(
# (db.ext_bedpbed.c[col] <= -1, sql.null()),
# else_=db.ext_bedpbed.c[col],
# ).label(col)
# )
stmt = sql.select(
*[c for c in db.ext_bedpbed.c if c.name not in AMOUNT_COLS],
*case_stmts,
)
df = pl.read_database(stmt, engine, schema_overrides=db.ext_bedpbed_schema_map)
t2 = time.perf_counter()
elapsed = t2 - t1
# stmt = sql.select(
# *[c for c in db.ext_bedpbed.c if c.name not in AMOUNT_COLS],
# *case_stmts,
# )
# df = pl.read_database(stmt, engine, schema_overrides=db.ext_bedpbed_schema_map)
# t2 = time.perf_counter()
# elapsed = t2 - t1
# %%
# df.select(pl.col("BEDP_MENGE_BEDARF").is_null().sum())
@ -217,7 +229,7 @@ df.head()
# %%
# // NO LIVE DATA NEEDED
# SAVING/LOADING
p_save = Path.cwd() / "raw_data_from_sql_query_20251211-1.arrow"
p_save = Path.cwd() / "raw_data_from_sql_query_20260109-1.arrow"
# df.write_ipc(p_save)
df = pl.read_ipc(p_save)
# %%
@ -336,6 +348,16 @@ print(len(df.filter(pl.col("MELDENUMMER") == 18)))
# %%
# VM_CRITERION = "MENGE_VORMERKER"
VM_CRITERION = "BEDP_MENGE_BEDARF_VM"
MANDANT_CRITERION = "BEDP_MAN"
def get_starting_date(
days: int,
) -> datetime.date:
current_dt = dt.current_time_tz(cut_microseconds=True)
td = dt.timedelta_from_val(days, dt.TimeUnitsTimedelta.DAYS)
return (current_dt - td).date()
# TODO exchange to new query focusing on TINFO table
@ -364,13 +386,10 @@ def get_raw_data() -> pl.DataFrame:
)
def get_empty_pipeline_result(
data: pl.DataFrame,
) -> types.PipelineResult:
schema = db.results_schema_map.copy()
del schema["id"]
results = pl.DataFrame(schema=schema)
return types.PipelineResult(results=results, open=data)
# def get_empty_pipeline_result(
# data: pl.DataFrame,
# ) -> PipelineResult:
# return PipelineResult(data)
def _apply_several_filters(
@ -391,63 +410,204 @@ def _apply_several_filters(
return types.FilterResult(in_=df_current, out_=df_removed)
class PipelineResult:
__slots__ = ("_results", "_open", "_subtracted_indices")
_index_cols: tuple[str, ...] = ("BEDARFNR", "BEDP_SEQUENZ")
def __init__(
self,
data: pl.DataFrame,
) -> None:
self._open = data
schema = db.results_schema_map.copy()
del schema["id"]
self._results = pl.DataFrame(schema=schema)
schema = {}
for col in self._index_cols:
schema[col] = db.raw_data_query_schema_map[col]
self._subtracted_indices = pl.DataFrame(schema=schema)
def __len__(self) -> int:
return len(self._results) + len(self._open)
@property
def open(self) -> pl.DataFrame:
return self._open
@property
def results(self) -> pl.DataFrame:
return self._results
@property
def subtracted_indices(self) -> pl.DataFrame:
return self._subtracted_indices
def update_open(
self,
data: pl.DataFrame,
) -> None:
self._open = data
def _subtract_data(
self,
data: pl.DataFrame,
) -> None:
self._open = self._open.join(data, on=self._index_cols, how="anti")
self._subtracted_indices = pl.concat(
(self._subtracted_indices, data[self._index_cols])
)
# TODO remove
# def _subtract_from_open(
# self,
# data: pl.DataFrame,
# ) -> None:
# self._open = self._open.join(data, on=self._index_cols, how="anti")
# self._subtracted_indices = pl.concat(
# (self._subtracted_indices, data[self._index_cols])
# )
# def _subtract_from_indices(
# self,
# indices: pl.DataFrame,
# ) -> None:
# self._open = self._open.join(indices, on=self._index_cols, how="anti")
# self._subtracted_indices = pl.concat(
# (self._subtracted_indices, indices[self._index_cols])
# )
def _add_results(
self,
data: pl.DataFrame,
) -> None:
self._results = pl.concat([self._results, data])
# TODO remove
# def add_pipeline_results(self, pipeline: PipelineResult) -> None:
# self._add_results(pipeline.results)
# def subtract_pipeline(
# self,
# pipeline: PipelineResult,
# ) -> None:
# self._subtract_data(pipeline.subtracted_indices)
def merge_pipeline(
self,
pipeline: PipelineResult,
) -> None:
self._subtract_data(pipeline.subtracted_indices)
self._add_results(pipeline.results)
def write_results(
self,
data: pl.DataFrame,
vorlage: bool,
wf_id: int,
freigabe_auto: types.Freigabe,
is_out: bool,
) -> None:
ORDER_QTY_CRIT: typing.Final[str] = "BEDP_MENGE_BEDARF_VM"
results = data.rename(db.map_to_result)
order_qty_expr: pl.Expr
if is_out:
order_qty_expr = (
pl.lit(0)
.alias("ORDER_QTY_CRIT")
.alias("best_menge")
.cast(db.results_schema_map["best_menge"])
)
else:
order_qty_expr = pl.col(ORDER_QTY_CRIT).alias("best_menge")
results = results.with_columns(
[
pl.lit(vorlage).alias("vorlage").cast(db.results_schema_map["vorlage"]),
pl.lit(wf_id).alias("wf_id").cast(db.results_schema_map["wf_id"]),
order_qty_expr,
pl.lit(freigabe_auto.value)
.alias("freigabe_auto")
.cast(db.results_schema_map["freigabe_auto"]),
]
)
results = results.drop(
[
"BEDP_TITELNR",
"BEDP_MAN",
"BEDP_MENGE_BEDARF_VM",
"MELDENUMMER",
"VERLAGSNR",
"MENGE_VORMERKER",
"MANDFUEHR",
]
)
self._subtract_data(data)
self._add_results(results)
# post-processing the results
# TODO: order quantity not always necessary
# TODO: change relevant criterion for order quantity
def _write_results(
results_table: pl.DataFrame,
data: pl.DataFrame,
vorlage: bool,
wf_id: int,
freigabe_auto: types.Freigabe,
is_out: bool,
) -> pl.DataFrame:
ORDER_QTY_CRIT: typing.Final[str] = "BEDP_MENGE_BEDARF_VM"
# def _write_results(
# pipe_result: PipelineResult,
# data: pl.DataFrame,
# vorlage: bool,
# wf_id: int,
# freigabe_auto: types.Freigabe,
# is_out: bool,
# ) -> PipelineResult:
# ORDER_QTY_CRIT: typing.Final[str] = "BEDP_MENGE_BEDARF_VM"
data = data.rename(db.map_to_result)
order_qty_expr: pl.Expr
if is_out:
order_qty_expr = (
pl.lit(0)
.alias("ORDER_QTY_CRIT")
.alias("best_menge")
.cast(db.results_schema_map["best_menge"])
)
else:
order_qty_expr = pl.col(ORDER_QTY_CRIT).alias("best_menge")
# results = data.rename(db.map_to_result)
# order_qty_expr: pl.Expr
# if is_out:
# order_qty_expr = (
# pl.lit(0)
# .alias("ORDER_QTY_CRIT")
# .alias("best_menge")
# .cast(db.results_schema_map["best_menge"])
# )
# else:
# order_qty_expr = pl.col(ORDER_QTY_CRIT).alias("best_menge")
data = data.with_columns(
[
pl.lit(vorlage).alias("vorlage").cast(db.results_schema_map["vorlage"]),
pl.lit(wf_id).alias("wf_id").cast(db.results_schema_map["wf_id"]),
order_qty_expr,
pl.lit(freigabe_auto.value)
.alias("freigabe_auto")
.cast(db.results_schema_map["freigabe_auto"]),
]
)
data = data.drop(
[
"BEDP_TITELNR",
"BEDP_MAN",
"BEDP_MENGE_BEDARF_VM",
"MELDENUMMER",
"VERLAGSNR",
"MENGE_VORMERKER",
"MANDFUEHR",
]
)
# results = results.with_columns(
# [
# pl.lit(vorlage).alias("vorlage").cast(db.results_schema_map["vorlage"]),
# pl.lit(wf_id).alias("wf_id").cast(db.results_schema_map["wf_id"]),
# order_qty_expr,
# pl.lit(freigabe_auto.value)
# .alias("freigabe_auto")
# .cast(db.results_schema_map["freigabe_auto"]),
# ]
# )
# results = results.drop(
# [
# "BEDP_TITELNR",
# "BEDP_MAN",
# "BEDP_MENGE_BEDARF_VM",
# "MELDENUMMER",
# "VERLAGSNR",
# "MENGE_VORMERKER",
# "MANDFUEHR",
# ]
# )
return pl.concat([results_table, data])
# pipe_result.subtract_from_open(data)
# pipe_result.add_results(results)
# return pipe_result
def workflow_900(
pipe_result: types.PipelineResult,
) -> types.PipelineResult:
"""pre-routine to handle non-feasible entries"""
pipe_result: PipelineResult,
) -> PipelineResult:
"""filter 'Meldenummer' and fill non-feasible entries"""
filter_meldenummer_null = pl.col("MELDENUMMER").is_not_null()
filter_mandant = pl.col("MANDFUEHR").is_in((1, 90))
filter_mandant = pl.col(MANDANT_CRITERION).is_in((1, 90))
res = _apply_several_filters(
pipe_res.open,
(
@ -456,8 +616,7 @@ def workflow_900(
),
)
pipe_result.results = _write_results(
pipe_result.results,
pipe_result.write_results(
data=res.out_,
vorlage=False,
wf_id=900,
@ -465,18 +624,18 @@ def workflow_900(
is_out=True,
)
pipe_result.open = res.in_.with_columns(pl.col("MENGE_VORMERKER").fill_null(0))
pipe_result.open = res.in_.with_columns(pl.col("BEDP_MENGE_BEDARF_VM").fill_null(0))
pipe_result.update_open(res.in_.with_columns(pl.col("MENGE_VORMERKER").fill_null(0)))
pipe_result.update_open(res.in_.with_columns(pl.col("BEDP_MENGE_BEDARF_VM").fill_null(0)))
return pipe_result
# main routine
# results for filtered out entries written
def workflow_910(
pipe_result: types.PipelineResult,
) -> types.PipelineResult:
filter_mandant = pl.col("MANDFUEHR").is_in((1, 90))
pipe_result: PipelineResult,
) -> PipelineResult:
# TODO check if necessary because of WF-900
filter_mandant = pl.col(MANDANT_CRITERION).is_in((1, 90))
filter_ignore_MNR26 = pl.col("MELDENUMMER") != 26
res = _apply_several_filters(
@ -487,15 +646,13 @@ def workflow_910(
),
)
# write results for entries which were filtered out
pipe_result.results = _write_results(
pipe_result.results,
pipe_result.write_results(
data=res.out_,
vorlage=False,
wf_id=910,
freigabe_auto=types.Freigabe.WF_910,
is_out=True,
)
pipe_result.open = res.in_
return pipe_result
@ -503,11 +660,11 @@ def workflow_910(
# this a main routine:
# receives and gives back result objects
def workflow_100_umbreit(
pipe_result: types.PipelineResult,
pipe_result: PipelineResult,
vm_criterion: str,
) -> types.PipelineResult:
) -> PipelineResult:
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col("MANDFUEHR") == 1
filter_mandant = pl.col(MANDANT_CRITERION) == 1
filter_number_vm = pl.col(vm_criterion) > 0
res = _apply_several_filters(
@ -518,53 +675,27 @@ def workflow_100_umbreit(
filter_number_vm,
),
)
pipe_result.results = _write_results(
results_table=pipe_result.results,
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
pipe_result.open = res.out_
return pipe_result
def workflow_100_petersen(
pipe_result: types.PipelineResult,
pipe_result: PipelineResult,
vm_criterion: str,
) -> types.PipelineResult:
) -> PipelineResult:
# difference WDB and others
# // WDB branch
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col("MANDFUEHR") == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
filter_number_vm = pl.col(vm_criterion) > 0
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
filter_number_vm,
),
)
pipe_result.results = _write_results(
results_table=pipe_result.results,
data=res.in_,
vorlage=True,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
pipe_result.open = res.out_
# order quantity 0, no further action in other WFs
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col("MANDFUEHR") == 90
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
filter_number_vm = pl.col(vm_criterion) == 0
@ -577,19 +708,37 @@ def workflow_100_petersen(
filter_number_vm,
),
)
pipe_result.results = _write_results(
results_table=pipe_result.results,
pipe_result.write_results(
data=res.in_,
vorlage=False,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
pipe_result.open = res.out_
# TODO add check for orders or quantity to transform
# TODO show them
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
filter_number_vm = pl.col(vm_criterion) > 0
res_candidates = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
filter_number_vm,
),
)
wdb_sub_pipe = PipelineResult(res_candidates.in_)
wdb_sub_pipe = wf100_petersen_wdb_sub1(wdb_sub_pipe)
assert len(wdb_sub_pipe.open) == 0
pipe_result.merge_pipeline(wdb_sub_pipe)
# // other branch
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col("MANDFUEHR") == 90
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_number_vm = pl.col(vm_criterion) > 0
res = _apply_several_filters(
@ -600,27 +749,85 @@ def workflow_100_petersen(
filter_number_vm,
),
)
pipe_result.results = _write_results(
results_table=pipe_result.results,
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
pipe_result.open = res.out_
return pipe_result
def wf100_petersen_wdb_sub1(
pipe_result: PipelineResult,
) -> PipelineResult:
# input: pre-filtered entries (WDB titles and #VM > 0)
# more then 1 VM
# !! show these entries
filter_number_vm = pl.col(VM_CRITERION) > 1
res = _apply_several_filters(
pipe_result.open,
(filter_number_vm,),
)
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
# filtered out entries (WDB with #VM == 1) must be analysed for orders in the
# past 6 months
title_nos = res.out_["BEDP_TITELNR"].to_list()
# !! query used because of slow pre-filtering queries
# TODO check for more native pre-filtering within the database when
# TODO performance problems are solved
start_date = get_starting_date(180)
filter_ = sql.and_(
db.EXT_BESPBES_INFO.c.BESP_TITELNR.in_(title_nos),
db.EXT_BESPBES_INFO.c.BES_DATUM >= start_date,
)
stmt = sql.select(db.EXT_BESPBES_INFO).where(filter_)
df_order = pl.read_database(stmt, engine, schema_overrides=db.EXT_BESPBES_INFO_schema_map)
df_show = (
df_order.group_by("BESP_TITELNR")
.agg(pl.col("BESP_TITELNR").count().alias("count"))
.filter(pl.col("count") > 1)
)
entries_to_show = df_show["BESP_TITELNR"].to_list()
filter_titleno = pl.col("BEDP_TITELNR").is_in(entries_to_show)
res = _apply_several_filters(pipe_result.open, (filter_titleno,))
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
pipe_result.write_results(
data=pipe_result.open,
vorlage=False,
wf_id=100,
freigabe_auto=types.Freigabe.WF_100,
is_out=False,
)
return pipe_result
# %%
# SAVING/LOADING
p_save = Path.cwd() / "raw_data_from_sql_query_20251211-1.arrow"
p_save = Path.cwd() / "raw_data_from_sql_query_20260109-1.arrow"
df = pl.read_ipc(p_save)
print(f"Number of entries: {len(df)}")
# %%
df.head()
# %%
# removed_rows = []
@ -659,7 +866,8 @@ df.head()
# %%
raw_data = df.clone()
pipe_res = get_empty_pipeline_result(raw_data)
# pipe_res = get_empty_pipeline_result(raw_data)
pipe_res = PipelineResult(raw_data)
pipe_res.results
pipe_res = workflow_900(pipe_res)
print(f"Length of base data: {len(raw_data):>18}")
@ -916,3 +1124,124 @@ for col, dtype in zip(df.columns, df.dtypes):
print("dtypes of DF...")
pprint(col_dtype)
# %%
# ** Petersen WDB
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
filter_number_vm = pl.col(VM_CRITERION) > 0
res = _apply_several_filters(
df,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
filter_number_vm,
),
)
# %%
res.in_
# %%
# !! show these entries
filter_number_vm = pl.col(VM_CRITERION) > 1
res_vm_crit = _apply_several_filters(
res.in_,
(filter_number_vm,),
)
# %%
res_vm_crit.out_
# %%
# filtered out entries (WDB with #VM == 1) must be analysed for orders in the past 6 months
title_nos = res_vm_crit.out_["BEDP_TITELNR"].to_list()
len(title_nos)
# %%
# define starting date for 6 month interval
# returns UTC time
start_date = get_starting_date(180)
filter_ = sql.and_(
db.EXT_BESPBES_INFO.c.BESP_TITELNR.in_(title_nos),
db.EXT_BESPBES_INFO.c.BES_DATUM >= start_date,
)
stmt = sql.select(db.EXT_BESPBES_INFO).where(filter_)
df_order = pl.read_database(stmt, engine, schema_overrides=db.EXT_BESPBES_INFO_schema_map)
df_order
# %%
# filter entries which have
df_show = (
df_order.group_by("BESP_TITELNR")
.agg(pl.col("BESP_TITELNR").count().alias("count"))
.filter(pl.col("count") > 1)
)
# %%
# !! show these entries
# !! do not show others
entries_to_show = df_show["BESP_TITELNR"].to_list()
print(f"Number of entries relevant: {len(entries_to_show)}")
# %%
res_vm_crit.out_
# %%
filter_titleno = pl.col("BEDP_TITELNR").is_in(entries_to_show)
res_wdb = _apply_several_filters(res_vm_crit.out_, (filter_titleno,))
# %%
res_wdb.in_
# %%
res_wdb.out_
# %%
# %%
# %%
# %%
schema = {}
for col in ("BEDARFNR", "BEDP_SEQUENZ"):
schema[col] = db.raw_data_query_schema_map[col]
base = pl.DataFrame(schema=schema)
# %%
data = {"BEDARFNR": list(range(10)), "BEDP_SEQUENZ": list(range(10))}
orig_data = pl.DataFrame(data, schema=schema)
data = orig_data[:5].clone()
# %%
pl.concat([base, data])
# %%
orig_data.join(data, on=["BEDARFNR", "BEDP_SEQUENZ"], how="anti")
# %%
orig_data[("BEDARFNR", "BEDP_SEQUENZ")]
# %%
raw_data = df.clone()
pipe_res = PipelineResult(raw_data)
pipe_res.open
# %%
pipe_res.results
# %%
sub_data = pipe_res.open[:20].clone()
sub_data
# %%
pipe_res.write_results(
sub_data,
vorlage=True,
wf_id=30,
freigabe_auto=types.Freigabe.WF_100,
is_out=True,
)
# %%
pipe_res.open
# %%
pipe_res.results
# %%
raw_data = df.clone()
pipe_res_main = PipelineResult(raw_data)
pipe_res_main.open
# %%
pipe_res_main.merge_pipeline(pipe_res)
# %%
pipe_res_main.open
# %%
pipe_res.results
# %%

View File

@ -19,8 +19,27 @@ set timing on
-- AND bedp.BEDP_MAN = t_info.MANDFUEHR;
-- PROMPT ####################################
PROMPT >>>>>>>>> All allowed
SELECT COUNT(*) FROM (
-- PROMPT >>>>>>>>> All allowed
-- SELECT COUNT(*) FROM (
-- SELECT
-- bedp.BEDARFNR,
-- bedp.BEDP_SEQUENZ,
-- bedp.BEDP_TITELNR,
-- bedp.BEDP_MAN,
-- bedp.BEDP_MENGE_BEDARF_VM,
-- t_info.MELDENUMMER,
-- t_info.VERLAGSNR
-- t_info.MENGE_VORMERKER
-- t_info.MANDFUEHR
-- FROM EXT_BEDPBED bedp
-- LEFT JOIN EXT_TITEL_INFO t_info
-- ON bedp.BEDP_TITELNR = t_info.TI_NUMMER
-- );
-- -- WHERE bedp.BEDP_MAN IN (1, 90) AND t_info.MELDENUMMER != 26;
-- PROMPT ######################################
PROMPT #################################################
SELECT * FROM (
SELECT
bedp.BEDARFNR,
bedp.BEDP_SEQUENZ,
@ -28,17 +47,21 @@ SELECT COUNT(*) FROM (
bedp.BEDP_MAN,
bedp.BEDP_MENGE_BEDARF_VM,
t_info.MELDENUMMER,
t_info.VERLAGSNR
t_info.MENGE_VORMERKER
t_info.VERLAGSNR,
t_info.MENGE_VORMERKER,
t_info.MANDFUEHR
FROM EXT_BEDPBED bedp
LEFT JOIN EXT_TITEL_INFO t_info
ON bedp.BEDP_TITELNR = t_info.TI_NUMMER
);
-- -- WHERE bedp.BEDP_MAN IN (1, 90) AND t_info.MELDENUMMER != 26;
-- PROMPT ######################################
PROMPT #################################################
) view1
WHERE view1.VERLAGSNR IN (76008, 76070)
FETCH FIRST 100 ROWS ONLY;
SELECT * FROM EXT_BESPBES_INFO besp
WHERE besp.BESP_TITELNR = 7590554 AND
besp.BES_DATUM > TO_DATE('2023-06-01', 'YYYY-MM-DD');
-- SELECT COUNT(*) FROM (
-- SELECT /*+ NO_USE_HASH(bedp t_info) */
-- view1.BEDP_TITELNR,

View File

@ -16,13 +16,13 @@ class FilterResult:
out_: pl.DataFrame
@dataclass(slots=True, kw_only=True, eq=False)
class PipelineResult:
results: pl.DataFrame
open: pl.DataFrame
# @dataclass(slots=True, kw_only=True, eq=False)
# class PipelineResult:
# results: pl.DataFrame
# open: pl.DataFrame
def __len__(self) -> int:
return len(self.results) + len(self.open)
# def __len__(self) -> int:
# return len(self.results) + len(self.open)
class Freigabe(enum.Enum):