umbreit-py/data_analysis/02-3_oracle_workflow_test.py

1667 lines
47 KiB
Python

# %%
from __future__ import annotations
import datetime
import json
import time
import typing
from collections.abc import Sequence
from pathlib import Path
from pprint import pprint
import dopt_basics.datetime as dt
import oracledb
import polars as pl
import polars.selectors as cs
import sqlalchemy as sql
from dopt_basics import configs, io
from sqlalchemy import event
from umbreit import db, types
# %%
# import importlib
# types = importlib.reload(types)
# db = importlib.reload(db)
# %%
p_cfg = io.search_file_iterative(
starting_path=Path.cwd(),
glob_pattern="CRED*.toml",
stop_folder_name="umbreit-py",
)
assert p_cfg is not None
CFG = configs.load_toml(p_cfg)
HOST = CFG["server"]["host"]
PORT = CFG["server"]["port"]
SERVICE = CFG["server"]["service"]
USER_NAME = CFG["user"]["name"]
USER_PASS = CFG["user"]["pass"]
# %%
# !! init thick mode
# p_oracle_client = Path(r"C:\Databases\Oracle\instantclient_19_29")
# assert p_oracle_client.exists()
# assert p_oracle_client.is_dir()
# oracledb.init_oracle_client(lib_dir=str(p_oracle_client))
# %%
conn_string = (
f"oracle+oracledb://{USER_NAME}:{USER_PASS}@{HOST}:{PORT}?service_name={SERVICE}"
)
# engine = sql.create_engine(conn_string)
engine = sql.create_engine(conn_string, execution_options={"stream_results": True})
@event.listens_for(engine, "after_cursor_execute")
def set_fetch_sizes(conn, cursor, statement, parameters, context, executemany):
cursor.arraysize = 1000
cursor.prefetchrows = 1000
# %%
########### RESULTS ###########
# temporary
res_engine = sql.create_engine("sqlite://")
db.metadata.create_all(res_engine, tables=(db.results_local,))
# %%
# delete existing results
def delete_results(
res_engine: sql.Engine,
) -> None:
with res_engine.begin() as conn:
res = conn.execute(sql.delete(db.results_local))
print("Rows deleted: ", res.rowcount)
delete_results(res_engine)
stmt = sql.select(db.results_local.c.bedarf_nr, db.results_local.c.bedarf_sequenz)
with res_engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
# %%
# define starting date for 3 month interval
# returns UTC time
current_dt = dt.current_time_tz(cut_microseconds=True)
print("Current DT: ", current_dt)
td = dt.timedelta_from_val(90, dt.TimeUnitsTimedelta.DAYS)
print("Timedelta: ", td)
start_date = (current_dt - td).date()
print("Starting date: ", start_date)
# %%
# // ---------- LIVE DATA -----------
# TODO find way to filter more efficiently
# WF-200: filter for relevant orders with current BEDP set
# missing: order types which are relevant
filter_K_rech = (608991, 260202)
join_condition = sql.and_(
db.ext_bedpbed.c.BEDP_TITELNR == db.EXT_AUFPAUF.c.TITELNR,
db.ext_bedpbed.c.BEDP_MAN == db.EXT_AUFPAUF.c.MANDANT,
)
join_condition = sql.and_(
db.ext_bedpbed.c.BEDP_TITELNR == db.EXT_AUFPAUF.c.TITELNR,
)
where_condition = sql.and_(
db.EXT_AUFPAUF.c.AUFTRAGS_DATUM > start_date,
db.EXT_AUFPAUF.c.KUNDE_RECHNUNG.not_in(filter_K_rech),
)
stmt = (
sql.select(
db.ext_bedpbed.c.BEDARFNR,
db.ext_bedpbed.c.BEDP_SEQUENZ,
db.ext_bedpbed.c.BEDP_TITELNR,
db.ext_bedpbed.c.BEDP_MAN,
db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM,
db.EXT_AUFPAUF,
)
.select_from(db.ext_bedpbed.join(db.EXT_AUFPAUF, join_condition))
.where(where_condition)
.limit(100) # full query really slow
)
# %%
print(stmt.compile(engine))
# %%
df_order = pl.read_database(stmt, engine, schema_overrides=db.raw_data_query_schema_map)
df_order
# %%
# AUFPAUF
# stmt = sql.select(db.EXT_AUFPAUF)
# df_aufpauf = pl.read_database(stmt, engine, schema_overrides=db.raw_data_query_schema_map)
# df_aufpauf
# df_aufpauf.filter(pl.col("TITELNR") == 6315273)
# prefilter amount columns for invalid entries
# // tests with ext_bedpbed
# print("--------------- ext_bedpbed --------------")
# t1 = time.perf_counter()
# AMOUNT_COLS = frozenset(
# (
# "BEDP_MENGE_BEDARF",
# "BEDP_MENGE_VERKAUF",
# "BEDP_MENGE_ANFRAGE",
# "BEDP_MENGE_BESTELLUNG",
# "BEDP_MENGE_FREI",
# "BEDP_MENGE_BEDARF_VM",
# )
# )
# case_stmts = []
# for col in AMOUNT_COLS:
# case_stmts.append(
# sql.case(
# (db.ext_bedpbed.c[col] <= -1, sql.null()),
# else_=db.ext_bedpbed.c[col],
# ).label(col)
# )
# stmt = sql.select(
# *[c for c in db.ext_bedpbed.c if c.name not in AMOUNT_COLS],
# *case_stmts,
# )
# df = pl.read_database(stmt, engine, schema_overrides=db.ext_bedpbed_schema_map)
# t2 = time.perf_counter()
# elapsed = t2 - t1
# %%
# df.select(pl.col("BEDP_MENGE_BEDARF").is_null().sum())
# print(f"Query duration: {elapsed:.4f} sec")
# print("Number of entries: ", len(df))
# print(f"Estimated size in memory: {df.estimated_size(unit='mb')} MB")
# %%
# try title_info parsing
stmt = sql.select(db.ext_titel_info)
print(stmt.compile(engine))
# %%
# raw data query
# TODO look for entries which do not have an associated title number
print("--------------- raw data query --------------")
t1 = time.perf_counter()
# join_condition = sql.and_(
# db.ext_bedpbed.c.BEDP_TITELNR == db.ext_titel_info.c.TI_NUMMER,
# db.ext_bedpbed.c.BEDP_MAN == db.ext_titel_info.c.MANDFUEHR,
# )
join_condition = sql.and_(
db.ext_bedpbed.c.BEDP_TITELNR == db.ext_titel_info.c.TI_NUMMER,
)
stmt = sql.select(
db.ext_bedpbed.c.BEDARFNR,
db.ext_bedpbed.c.BEDP_SEQUENZ,
db.ext_bedpbed.c.BEDP_TITELNR,
db.ext_bedpbed.c.BEDP_MAN,
db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM,
# sql.case(
# (db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM <= -1, sql.null()),
# else_=db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM,
# ).label("BEDP_MENGE_BEDARF_VM"),
db.ext_titel_info.c.MELDENUMMER,
db.ext_titel_info.c.VERLAGSNR,
db.ext_titel_info.c.MENGE_VORMERKER,
db.ext_titel_info.c.MANDFUEHR,
).select_from(db.ext_bedpbed.join(db.ext_titel_info, join_condition, isouter=True))
print(stmt.compile(engine))
df = pl.read_database(
stmt,
engine,
schema_overrides=db.raw_data_query_schema_map,
)
t2 = time.perf_counter()
elapsed = t2 - t1
# %%
print(f"Query duration: {elapsed:.4f} sec")
print("Number of entries: ", len(df))
print(f"Estimated size in memory: {df.estimated_size(unit='mb')} MB")
# %%
df.head()
# %%
temp = df.with_columns(
pl.col.BEDP_MENGE_BEDARF_VM.fill_null(0),
)
temp.filter(pl.col.BEDP_MENGE_BEDARF_VM < 0)
# %%
# // NO LIVE DATA NEEDED
# SAVING/LOADING
# p_save = Path.cwd() / "raw_data_from_sql_query_20260115-altered_query.arrow"
p_save = Path.cwd() / "raw_data_from_sql_query_20260116-1.arrow"
# df.write_ipc(p_save)
df = pl.read_ipc(p_save)
# %%
print(len(df))
df.head()
# %%
temp = df.fill_null(0)
mask = df.select(pl.exclude("BEDARFNR", "BEDP_SEQUENZ")).is_duplicated()
temp.filter(mask).sort("BEDP_TITELNR")
# %%
temp = df.filter(pl.col.BEDP_MAN.is_in((1, 90))).with_columns(
pl.col.BEDP_MENGE_BEDARF_VM.fill_null(0),
)
temp = df.with_columns(
pl.col.BEDP_MENGE_BEDARF_VM.fill_null(0),
)
temp.filter(pl.col.BEDP_MENGE_BEDARF_VM < 0)
# %%
df.filter(pl.col.BEDP_MENGE_BEDARF_VM < 0)
# %%
# ** CHECK: duplicates
temp = df.fill_null(0)
mask = temp.select(pl.exclude(("BEDARFNR", "BEDP_SEQUENZ"))).is_duplicated()
temp.filter(mask)
# %%
df.filter(pl.col.BEDP_TITELNR.is_duplicated()).sort("BEDP_TITELNR", descending=False)
# %%
# ** CHECK: positions without titlenumber
df.filter(pl.col.VERLAGSNR.is_null())["BEDP_MAN"].unique()
# %%
# ** CHECK: unique title number?
df.group_by("BEDP_TITELNR").agg(
pl.col("BEDP_TITELNR").len().alias("count"),
pl.col.BEDP_MAN.unique().alias("unique_bedp_man"),
pl.col.MANDFUEHR.unique().alias("unique_man_fuehr"),
).unique().filter(pl.col("count") > 1)
# %%
df.filter(pl.col.BEDP_TITELNR == 8679893)
# %%
df.with_columns(
pl.col("BEDP_TITELNR").count().over("BEDP_TITELNR").alias("titlenumber_count")
).select(["BEDP_TITELNR", "titlenumber_count"]).unique().filter(
pl.col("titlenumber_count") > 1
)
# %%
# ** CHECK: distribution of MELDENUMMER
temp = df.filter(pl.col.BEDP_MAN.is_in((1, 90)))
sum_entries = len(temp)
temp = (
temp.group_by("MELDENUMMER")
.agg(pl.col("MELDENUMMER").len().alias("count"))
.sort("count", descending=True)
)
temp = temp.with_columns((pl.col.count / sum_entries).alias("proportion"))
temp = temp.with_columns(pl.col.proportion.cum_sum().alias("cum"))
temp
# df.filter(pl.col("MELDENUMMER").is_not_null() & pl.col("MELDENUMMER").is_in((17, 18))).select(
# pl.len()
# )
# p_save = Path.cwd() / "meldenummer_anteile_20260114-2.xlsx"
# temp.write_excel(p_save)
# %%
# ** CHECK: differences MANDANT in BEDP and in TINFO
# 4591588: in title database with different MANDANT (are MANDANTFUEHR and BEDP_MAN feasible for matching?)
df.filter(pl.col("BEDP_MAN") != pl.col("MANDFUEHR")).select(pl.col("BEDP_MAN").unique())
# %%
df.group_by("BEDP_MAN").agg(pl.col("MANDFUEHR").unique())
# %%
df.filter(pl.col("MANDFUEHR").is_null()).filter(pl.col("BEDP_MAN") == 1)
# %%
# df.filter(pl.col("BEDP_MAN") != pl.col("MANDFUEHR")).filter(pl.col("BEDP_MAN") == 5)
df.filter(pl.col("BEDP_MAN") == 60).filter(pl.col("MANDFUEHR").is_null())
# %%
# ** CHECK: different MANDANTEN
# check for valid entries for unknown MANDANTEN
# MANDANTEN others than (1, 90) do not possess relevant properties such as
# "MELDENUMMER" and others --> conclusion: not relevant
# MANDANT = 80
# print(f"Mandant: {MANDANT}")
# print(
# df.filter(pl.col("BEDP_MAN") == MANDANT).select(
# ["BEDP_MENGE_BEDARF_VM", "MELDENUMMER", "MENGE_VORMERKER"]
# )
# )
# print(
# df.filter(pl.col("BEDP_MAN") == MANDANT).select(
# ["BEDP_MENGE_BEDARF_VM", "MELDENUMMER", "MENGE_VORMERKER"]
# ).null_count()
# )
# print("Unique value counts: ", df.select(pl.col("BEDP_MAN").value_counts()))
# %%
df.filter(pl.col("MELDENUMMER").is_null()).filter(pl.col("MANDFUEHR").is_not_null())
# %%
# ** PREFILTER
# always needed, entries filtered out are to be disposed
filter_meldenummer_null = pl.col("MELDENUMMER").is_not_null()
filter_mandant = pl.col("MANDFUEHR").is_in((1, 90))
df.filter(filter_meldenummer_null).filter(filter_mandant)
# df = df.filter(pl.col("BEDP_MAN").is_in((1, 90))).filter(pl.col("MELDENUMMER") != 26)
# %%
len(df)
# %%
# ** CHECK: null values set in the query with CASE statement
# not known if NULL because of CASE statement or already set in table
# unknown consequences: Are they relevant? How does it relate to "MENGE_VORMERKER"?
# from the title DB
df.filter(pl.col("BEDP_MENGE_BEDARF_VM").is_null())
df.filter(pl.col("BEDP_MENGE_BEDARF_VM") == 0)
# %%
df.select("MELDENUMMER").unique()
# %%
# ** CHECK: null values for "MENGE_VORMERKER"
df.filter(pl.col("MENGE_VORMERKER").is_null())
# df.filter(pl.col("BEDP_MENGE_BEDARF_VM") == 0)
agg_t = (
df.group_by(["MELDENUMMER"]).agg(
# pl.count("MENGE_VORMERKER").alias("pos_count").n_unique(),
pl.col("MENGE_VORMERKER").alias("VM_count").unique(),
)
# .filter(pl.col("count_customer") >= 0) # !! should be 3
) # .filter(pl.col("MELDENUMMER") == 18)
agg_t
# %%
df.filter(pl.col("MELDENUMMER") == 18).select(pl.col("MENGE_VORMERKER").is_null().sum())
# %%
# ** CHECK: relationship between "BEDP_MENGE_BEDARF_VM" and "MENGE_VORMERKER"
# ** not known at this point
# there are entries where BEDP_MENGE_BEDARF_VM > MENGE_VORMERKER -->
# BEDP_MENGE_BEDARF_VM as reference or ground truth not suitable
df_diff_VM_bedp_tinfo = df.filter(pl.col("BEDP_MENGE_BEDARF_VM") > pl.col("MENGE_VORMERKER"))
p_save_diff_VM_bedp_tinfo = (
Path.cwd() / "diff_BEDP-MENGE-BEDARF-VM_TINF-MENGE-VORMERKER_20251211-1.xlsx"
)
df_diff_VM_bedp_tinfo.to_pandas().to_excel(p_save_diff_VM_bedp_tinfo, index=False)
# why are there entries where "BEDP_MENGE_BEDARF_VM" > "MENGE_VORMERKER"?
# %%
# ** CHECK: titles with request where no title information is found
# result: there were entries found on 02.12., but not on 03.12.2025
not_in_title_table = df.filter(pl.col("MELDENUMMER").is_null())
EXPORT_FEAT = "BEDP_TITELNR"
to_save = {EXPORT_FEAT: not_in_title_table.select(EXPORT_FEAT).to_series().to_list()}
p_save_not_in_title_table = Path.cwd() / "not_in_title_table_20251211-1.json"
print(to_save)
# with open(p_save_not_in_title_table, "w") as file:
# json.dump(to_save, file, indent=4)
# %%
df.group_by("BEDP_MAN").agg(pl.len())
# %%
df.filter(pl.col("MELDENUMMER").is_null()).group_by("BEDP_MAN").agg(pl.len().alias("count"))
# %%
print(len(df.filter(pl.col("MELDENUMMER") == 18)))
# df.filter(pl.col("MELDENUMMER") == 18).filter((pl.col("BEDP_MENGE_BEDARF_VM").is_not_null()) & (pl.col("BEDP_MENGE_BEDARF_VM") > 0))
# %%
# VM_CRITERION = "MENGE_VORMERKER"
VM_CRITERION: typing.Final[str] = "BEDP_MENGE_BEDARF_VM"
MANDANT_CRITERION: typing.Final[str] = "BEDP_MAN"
ORDER_QTY_CRIT: typing.Final[str] = "BEDP_MENGE_BEDARF_VM"
RESULT_COLUMN_ORDER: typing.Final[tuple[str, ...]] = tuple(
db.EXT_DOPT_ERGEBNIS.columns.keys()
)
ORDER_QTY_EXPR_KWARGS: typing.Final[types.OrderQtyExprKwArgs] = types.OrderQtyExprKwArgs()
def get_starting_date(
days: int,
) -> datetime.date:
current_dt = dt.current_time_tz(cut_microseconds=True)
td = dt.timedelta_from_val(days, dt.TimeUnitsTimedelta.DAYS)
return (current_dt - td).date()
# TODO exchange to new query focusing on TINFO table
def get_raw_data() -> pl.DataFrame:
join_condition = sql.and_(
db.ext_bedpbed.c.BEDP_TITELNR == db.ext_titel_info.c.TI_NUMMER,
db.ext_bedpbed.c.BEDP_MAN == db.ext_titel_info.c.MANDFUEHR,
)
stmt = sql.select(
db.ext_bedpbed.c.BEDARFNR,
db.ext_bedpbed.c.BEDP_SEQUENZ,
db.ext_bedpbed.c.BEDP_TITELNR,
db.ext_bedpbed.c.BEDP_MAN,
sql.case(
(db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM <= -1, sql.null()),
else_=db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM,
).label("BEDP_MENGE_BEDARF_VM"),
db.ext_titel_info.c.MELDENUMMER,
db.ext_titel_info.c.MENGE_VORMERKER,
).select_from(db.ext_bedpbed.join(db.ext_titel_info, join_condition, isouter=True))
return pl.read_database(
stmt,
engine,
schema_overrides=db.raw_data_query_schema_map,
)
def save_tmp_data(df: pl.DataFrame) -> None:
with engine.begin() as conn:
conn.execute(sql.delete(db.tmp_data))
with engine.begin() as conn:
conn.execute(sql.insert(db.tmp_data), df.to_dicts())
def get_tmp_data() -> pl.DataFrame:
return pl.read_database(
sql.select(db.tmp_data),
engine,
schema_overrides=db.tmp_data_schema_map,
)
def get_result_data() -> pl.DataFrame:
return pl.read_database(
sql.select(db.EXT_DOPT_ERGEBNIS),
engine,
schema_overrides=db.results_schema_map,
)
def save_result_data(results: pl.DataFrame) -> None:
with engine.begin() as conn:
conn.execute(sql.insert(db.EXT_DOPT_ERGEBNIS), results.to_dicts())
def clear_result_data() -> None:
with engine.begin() as conn:
conn.execute(sql.delete(db.EXT_DOPT_ERGEBNIS))
def save_result_data_native(results: pl.DataFrame) -> None:
results = results.with_columns(
[
pl.when(pl.col(c)).then(pl.lit("Y")).otherwise(pl.lit("N")).alias(c)
for c in results.select(cs.boolean()).columns
]
)
stmt = """
INSERT INTO "EXT_DOPT_ERGEBNIS" ("BEDARF_NR", "BEDARF_SEQUENZ", "VORLAGE", "WF_ID", "BEST_MENGE", "FREIGABE_AUTO")
VALUES (:1, :2, :3, :4, :5, :6)
"""
with engine.begin() as conn:
raw_conn = conn.connection.connection
with raw_conn.cursor() as cursor:
cursor.executemany(stmt, results.to_pandas(use_pyarrow_extension_array=True))
def _apply_several_filters(
df: pl.DataFrame,
filters: Sequence[pl.Expr],
) -> types.FilterResult:
df_current = df
removed_rows: list[pl.DataFrame] = []
for filter in filters:
removed = df_current.filter(~filter)
removed_rows.append(removed)
df_current = df_current.filter(filter)
df_removed = pl.concat(removed_rows)
return types.FilterResult(in_=df_current, out_=df_removed)
class PipelineResult:
__slots__ = ("_results", "_open", "_subtracted_indices")
_index_cols: tuple[str, ...] = ("BEDARFNR", "BEDP_SEQUENZ")
def __init__(
self,
data: pl.DataFrame,
) -> None:
self._open = data
schema = db.results_schema_map.copy()
del schema["ID"]
self._results = pl.DataFrame(schema=schema)
schema = {}
for col in self._index_cols:
schema[col] = db.raw_data_query_schema_map[col]
self._subtracted_indices = pl.DataFrame(schema=schema)
def __len__(self) -> int:
return len(self._results) + len(self._open)
@property
def open(self) -> pl.DataFrame:
return self._open
@property
def results(self) -> pl.DataFrame:
return self._results
@property
def subtracted_indices(self) -> pl.DataFrame:
return self._subtracted_indices
def update_open(
self,
data: pl.DataFrame,
) -> None:
self._open = data
def _subtract_data(
self,
data: pl.DataFrame,
) -> None:
self._open = self._open.join(data, on=self._index_cols, how="anti")
self._subtracted_indices = pl.concat(
(self._subtracted_indices, data[self._index_cols])
)
def _add_results(
self,
data: pl.DataFrame,
) -> None:
print(self._results)
res = pl.concat([self._results, data])
# self._results = res.with_columns(
# (pl.arange(0, res.height) + 1).alias("ID").cast(db.results_schema_map["ID"])
# )
self._results = res
def merge_pipeline(
self,
pipeline: PipelineResult,
) -> None:
self._subtract_data(pipeline.subtracted_indices)
self._add_results(pipeline.results)
def write_results(
self,
data: pl.DataFrame,
vorlage: bool,
wf_id: types.Workflows,
freigabe_auto: types.Freigabe,
order_qty_expr: pl.Expr,
) -> None:
results = data.rename(db.map_data_to_result)
results = results.with_columns(
[
pl.lit(vorlage).alias("VORLAGE").cast(db.results_schema_map["VORLAGE"]),
pl.lit(wf_id.value).alias("WF_ID").cast(db.results_schema_map["WF_ID"]),
order_qty_expr,
pl.lit(freigabe_auto.value)
.alias("FREIGABE_AUTO")
.cast(db.results_schema_map["FREIGABE_AUTO"]),
]
)
results = results.drop(
[
"BEDP_TITELNR",
"BEDP_MAN",
"BEDP_MENGE_BEDARF_VM",
"MELDENUMMER",
"VERLAGSNR",
"MENGE_VORMERKER",
"MANDFUEHR",
]
)
# TODO remove
# results = results.select(RESULT_COLUMN_ORDER)
# print(results)
# print("####################")
# print(self._results)
self._subtract_data(data)
self._add_results(results)
class ExprOrderQty(typing.Protocol): ...
class ExprOrderQty_Base(ExprOrderQty, typing.Protocol):
def __call__(self) -> pl.Expr: ...
ExprOrderQty_Base_Types: typing.TypeAlias = (
typing.Literal[types.Workflows.ID_200]
| typing.Literal[types.Workflows.ID_900]
| typing.Literal[types.Workflows.ID_910]
)
class ExprOrderQty_WF100(ExprOrderQty, typing.Protocol):
def __call__(self, empty: bool) -> pl.Expr: ...
@typing.overload
def get_expr_order_qty(
wf_id: typing.Literal[types.Workflows.ID_100],
) -> ExprOrderQty_WF100: ...
@typing.overload
def get_expr_order_qty(
wf_id: ExprOrderQty_Base_Types,
) -> ExprOrderQty_Base: ...
def get_expr_order_qty(
wf_id: types.Workflows,
) -> ExprOrderQty:
empty_expr = (
pl.lit(0)
.alias(ORDER_QTY_CRIT)
.alias("BEST_MENGE")
.cast(db.results_schema_map["BEST_MENGE"])
)
def _empty() -> pl.Expr:
return empty_expr
func: ExprOrderQty
match wf_id:
case types.Workflows.ID_100:
def _func(empty: bool) -> pl.Expr:
order_qty_expr: pl.Expr
if empty:
order_qty_expr = empty_expr
else:
order_qty_expr = pl.col(ORDER_QTY_CRIT).alias("BEST_MENGE")
return order_qty_expr
func = _func
case types.Workflows.ID_200 | types.Workflows.ID_900 | types.Workflows.ID_910:
func = _empty
case _:
raise NotImplementedError(
f"Order expression for WF-ID {wf_id.value} is not implemented"
)
return func
# post-processing the results
# TODO: order quantity not always necessary
# TODO: change relevant criterion for order quantity
# def _write_results(
# pipe_result: PipelineResult,
# data: pl.DataFrame,
# vorlage: bool,
# wf_id: int,
# freigabe_auto: types.Freigabe,
# is_out: bool,
# ) -> PipelineResult:
# ORDER_QTY_CRIT: typing.Final[str] = "BEDP_MENGE_BEDARF_VM"
# results = data.rename(db.map_to_result)
# order_qty_expr: pl.Expr
# if is_out:
# order_qty_expr = (
# pl.lit(0)
# .alias("ORDER_QTY_CRIT")
# .alias("best_menge")
# .cast(db.results_schema_map["best_menge"])
# )
# else:
# order_qty_expr = pl.col(ORDER_QTY_CRIT).alias("best_menge")
# results = results.with_columns(
# [
# pl.lit(vorlage).alias("vorlage").cast(db.results_schema_map["vorlage"]),
# pl.lit(wf_id).alias("wf_id").cast(db.results_schema_map["wf_id"]),
# order_qty_expr,
# pl.lit(freigabe_auto.value)
# .alias("freigabe_auto")
# .cast(db.results_schema_map["freigabe_auto"]),
# ]
# )
# results = results.drop(
# [
# "BEDP_TITELNR",
# "BEDP_MAN",
# "BEDP_MENGE_BEDARF_VM",
# "MELDENUMMER",
# "VERLAGSNR",
# "MENGE_VORMERKER",
# "MANDFUEHR",
# ]
# )
# pipe_result.subtract_from_open(data)
# pipe_result.add_results(results)
# return pipe_result
def wf900(
pipe_result: PipelineResult,
) -> PipelineResult:
"""filter 'Meldenummer' and fill non-feasible entries"""
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_900)
filter_meldenummer_null = pl.col("MELDENUMMER").is_not_null()
filter_mandant = pl.col(MANDANT_CRITERION).is_in((1, 90))
res = _apply_several_filters(
pipe_res.open,
(
filter_meldenummer_null,
filter_mandant,
),
)
pipe_result.write_results(
data=res.out_,
vorlage=False,
wf_id=types.Workflows.ID_900,
freigabe_auto=types.Freigabe.WF_900,
order_qty_expr=ORDER_QTY_FUNC(),
)
pipe_result.update_open(
res.in_.with_columns(
pl.col("MENGE_VORMERKER").fill_null(0),
pl.col("BEDP_MENGE_BEDARF_VM").fill_null(0),
)
)
return pipe_result
def wf910(
pipe_result: PipelineResult,
) -> PipelineResult:
# TODO check if necessary because of WF-900
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_910)
filter_mandant = pl.col(MANDANT_CRITERION).is_in((1, 90))
filter_ignore_MNR26 = pl.col("MELDENUMMER") != 26
res = _apply_several_filters(
pipe_result.open,
filters=(
filter_mandant,
filter_ignore_MNR26,
),
)
pipe_result.write_results(
data=res.out_,
vorlage=False,
wf_id=types.Workflows.ID_910,
freigabe_auto=types.Freigabe.WF_910,
order_qty_expr=ORDER_QTY_FUNC(),
)
return pipe_result
# this a main routine:
# receives and gives back result objects
def wf100_umbreit(
pipe_result: PipelineResult,
vm_criterion: str,
) -> PipelineResult:
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_100)
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col(MANDANT_CRITERION) == 1
filter_number_vm = pl.col(vm_criterion) > 0
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_number_vm,
),
)
pipe_result.write_results(
data=res.in_,
vorlage=False,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=False),
)
return pipe_result
def wf100_petersen(
pipe_result: PipelineResult,
vm_criterion: str,
) -> PipelineResult:
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_100)
# difference WDB and others
# // WDB branch
# order quantity 0, no further action in other WFs
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
filter_number_vm = pl.col(vm_criterion) == 0
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
filter_number_vm,
),
)
pipe_result.write_results(
data=res.in_,
vorlage=False,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=True),
)
# TODO add check for orders or quantity to transform
# TODO show them
filter_number_vm = pl.col(vm_criterion) > 0
res_candidates = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
filter_number_vm,
),
)
wdb_sub_pipe = PipelineResult(res_candidates.in_)
wdb_sub_pipe = _wf100_petersen_sub1_wdb(wdb_sub_pipe)
assert wdb_sub_pipe.open.height == 0
pipe_result.merge_pipeline(wdb_sub_pipe)
# // other branch
# show always entries with #VM > 1
filter_number_vm = pl.col(vm_criterion) > 1
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_number_vm,
),
)
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=False),
)
filter_number_vm = pl.col(vm_criterion) > 0
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_number_vm,
),
)
pipe_result.write_results(
data=res.in_,
vorlage=False,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=False),
)
return pipe_result
def _wf100_petersen_sub1_wdb(
pipe_result: PipelineResult,
) -> PipelineResult:
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_100)
# input: pre-filtered entries (WDB titles and #VM > 0)
# more then 1 VM
# !! show these entries
filter_number_vm = pl.col(VM_CRITERION) > 1
res = _apply_several_filters(
pipe_result.open,
(filter_number_vm,),
)
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=False),
)
# filtered out entries (WDB with #VM == 1) must be analysed for orders in the
# past 6 months
start_date = get_starting_date(180)
filter_ = sql.and_(
db.EXT_BESPBES_INFO.c.BESP_TITELNR.in_(res.out_["BEDP_TITELNR"].to_list()),
db.EXT_BESPBES_INFO.c.BES_DATUM >= start_date,
)
stmt = sql.select(db.EXT_BESPBES_INFO).where(filter_)
df_order = pl.read_database(stmt, engine, schema_overrides=db.EXT_BESPBES_INFO_schema_map)
entries_show = (
df_order.group_by("BESP_TITELNR")
.agg(pl.col("BESP_TITELNR").count().alias("count"))
.filter(pl.col("count") > 1)
)
# TODO IS IN check good because of performance?
filter_titleno = pl.col("BEDP_TITELNR").is_in(entries_show["BESP_TITELNR"].to_list())
res = _apply_several_filters(pipe_result.open, (filter_titleno,))
pipe_result.write_results(
data=res.in_,
vorlage=True,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=False),
)
pipe_result.write_results(
data=pipe_result.open,
vorlage=False,
wf_id=types.Workflows.ID_100,
freigabe_auto=types.Freigabe.WF_100,
order_qty_expr=ORDER_QTY_FUNC(empty=False),
)
return pipe_result
def wf200_umbreit(
pipe_result: PipelineResult,
) -> PipelineResult:
relevant_mnr: tuple[int, ...] = (17, 18)
filter_meldenummer = pl.col("MELDENUMMER").is_in(relevant_mnr)
filter_mandant = pl.col("BEDP_MAN") == 1
res = _apply_several_filters(
pipe_result.open,
(filter_meldenummer, filter_mandant),
)
sub_pipe = PipelineResult(res.in_)
sub_pipe = _wf200_sub1(sub_pipe)
assert sub_pipe.open.height == 0
pipe_result.merge_pipeline(sub_pipe)
return pipe_result
def wf200_petersen(
pipe_result: PipelineResult,
) -> PipelineResult:
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_200)
RELEVANT_MNR: tuple[int, ...] = (17, 18)
# // WDB branch
filter_meldenummer = pl.col("MELDENUMMER").is_in(RELEVANT_MNR)
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
),
)
# ignore these
pipe_result.write_results(
data=res.in_,
vorlage=False,
wf_id=types.Workflows.ID_200,
freigabe_auto=types.Freigabe.WF_200,
order_qty_expr=ORDER_QTY_FUNC(),
)
# // other branch
res = _apply_several_filters(
pipe_result.open,
(
filter_meldenummer,
filter_mandant,
),
)
sub_pipe = PipelineResult(res.in_)
sub_pipe = _wf200_sub1(sub_pipe)
assert sub_pipe.open.height == 0
pipe_result.merge_pipeline(sub_pipe)
return pipe_result
def _wf200_sub1(
pipe_result: PipelineResult,
) -> PipelineResult:
save_tmp_data(pipe_result.open)
ORDER_QTY_FUNC = get_expr_order_qty(types.Workflows.ID_200)
RELEVANT_DATE = get_starting_date(90)
join_condition = db.tmp_data.c.BEDP_TITELNR == db.EXT_AUFPAUF.c.TITELNR
filter_ = sql.and_(
db.EXT_AUFPAUF.c.AUFTRAGS_DATUM >= RELEVANT_DATE,
db.EXT_AUFPAUF.c.KUNDE_RECHNUNG.not_in((608991, 260202)),
db.EXT_AUFPAUF.c.AUFTRAGS_ART.in_((1, 99)),
)
stmt = (
sql.select(
db.tmp_data,
db.EXT_AUFPAUF.c.KUNDE_RECHNUNG,
db.EXT_AUFPAUF.c.AUFTRAGS_ART,
)
.select_from(db.tmp_data.join(db.EXT_AUFPAUF, join_condition))
.where(filter_)
)
sub1 = stmt.subquery()
unique_count_col = sql.func.count(sub1.c.KUNDE_RECHNUNG.distinct())
stmt = (
sql.select(
sub1.c.BEDP_TITELNR,
sql.func.count().label("count"),
unique_count_col.label("customer_count"),
)
.select_from(sub1)
.group_by(sub1.c.BEDP_TITELNR)
.having(unique_count_col >= 3)
)
relevant_titles = pl.read_database(
stmt,
engine,
)
entries_to_show = pipe_result.open.filter(
pl.col.BEDP_TITELNR.is_in(relevant_titles["BEDP_TITELNR"].unique().implode())
)
pipe_result.write_results(
data=entries_to_show,
vorlage=True,
wf_id=types.Workflows.ID_200,
freigabe_auto=types.Freigabe.WF_200,
order_qty_expr=ORDER_QTY_FUNC(),
)
pipe_result.write_results(
data=pipe_result.open,
vorlage=False,
wf_id=types.Workflows.ID_200,
freigabe_auto=types.Freigabe.WF_200,
order_qty_expr=ORDER_QTY_FUNC(),
)
return pipe_result
# %%
# SAVING/LOADING
p_save = Path.cwd() / "raw_data_from_sql_query_20260116-1.arrow"
df = pl.read_ipc(p_save)
print(f"Number of entries: {len(df)}")
# %%
df.head()
# %%
# removed_rows = []
# raw_data = df.clone()
# print(f"Length raw data: {len(raw_data)}")
# filter_mandant = pl.col("BEDP_MAN").is_in((1, 90))
# filter_ignore_MNR26 = pl.col("MELDENUMMER") != 26
# filtered = raw_data.filter(filter_mandant)
# filtered_n = raw_data.filter(~filter_mandant)
# num_filter = len(filtered)
# num_filter_n = len(filtered_n)
# removed_rows.append(filtered_n)
# print(f"Length filtered: {num_filter}")
# print(f"Length filtered out: {num_filter_n}")
# print(f"Length all: {num_filter + num_filter_n}")
# raw_data = filtered
# out = pl.concat(removed_rows)
# print(f"Length out: {len(out)}")
# # %%
# print("---------------------------------------")
# filtered = raw_data.filter(filter_ignore_MNR26)
# filtered_n = raw_data.filter(~filter_ignore_MNR26)
# num_filter = len(filtered)
# num_filter_n = len(filtered_n)
# len(filtered_n)
# # %%
# removed_rows.append(filtered_n)
# print(f"Length filtered: {num_filter}")
# print(f"Length filtered out: {num_filter_n}")
# print(f"Length all: {num_filter + num_filter_n}")
# out = pl.concat(removed_rows)
# print(f"Length out: {len(out)}")
# %%
raw_data = df.clone()
# pipe_res = get_empty_pipeline_result(raw_data)
pipe_res = PipelineResult(raw_data)
pipe_res.results
pipe_res = wf900(pipe_res)
print(f"Length of base data: {len(raw_data):>18}")
print(f"Number of entries pipe data: {len(pipe_res):>10}")
print(f"Number of entries result data: {len(pipe_res.results):>8}")
print(f"Number of entries open data: {len(pipe_res.open):>10}")
# %%
pipe_res.results
# %%
# // test result writing
res = pipe_res.results.clone()
res.height
# raw_data.filter(pl.col("BEDARFNR") == 166982).filter(pl.col("BEDP_SEQUENZ") == 1)
# %%
# pipe_res.open.filter(pl.col("BEDP_MENGE_BEDARF_VM") > pl.col("MENGE_VORMERKER"))
# %%
pipe_res = wf910(pipe_res)
print(f"Length of base data: {len(raw_data):>18}")
print(f"Number of entries pipe data: {len(pipe_res):>10}")
print(f"Number of entries result data: {len(pipe_res.results):>8}")
print(f"Number of entries open data: {len(pipe_res.open):>10}")
# %%
# pipe_res.results.select(pl.col("vorlage").value_counts())
# %%
pipe_res = wf100_umbreit(pipe_res, VM_CRITERION)
print(f"Length of base data: {len(raw_data):>18}")
print(f"Number of entries pipe data: {len(pipe_res):>10}")
print(f"Number of entries result data: {len(pipe_res.results):>8}")
print(f"Number of entries open data: {len(pipe_res.open):>10}")
# %%
pipe_res = wf100_petersen(pipe_res, VM_CRITERION)
print(f"Length of base data: {len(raw_data):>18}")
print(f"Number of entries pipe data: {len(pipe_res):>10}")
print(f"Number of entries result data: {len(pipe_res.results):>8}")
print(f"Number of entries open data: {len(pipe_res.open):>10}")
# %%
pipe_res = wf200_umbreit(pipe_res)
print(f"Length of base data: {len(raw_data):>18}")
print(f"Number of entries pipe data: {len(pipe_res):>10}")
print(f"Number of entries result data: {len(pipe_res.results):>8}")
print(f"Number of entries open data: {len(pipe_res.open):>10}")
# %%
pipe_res = wf200_petersen(pipe_res)
print(f"Length of base data: {len(raw_data):>18}")
print(f"Number of entries pipe data: {len(pipe_res):>10}")
print(f"Number of entries result data: {len(pipe_res.results):>8}")
print(f"Number of entries open data: {len(pipe_res.open):>10}")
# %%
pipe_res.open.filter(pl.col.MELDENUMMER.is_in((17, 18)))
# %%
pipe_res.results.select(pl.col("VORLAGE").value_counts())
# %%
# ---------------------------------------------------------------------------- #
# Workflow 200 (Umbreit only)
# ---------------------------------------------------------------------------- #
# %%
wf_200_start_data = pipe_res.open.clone()
wf_200_start_data
# %%
# %%
relevant_mnr: tuple[int, ...] = (17, 18)
filter_meldenummer = pl.col("MELDENUMMER").is_in(relevant_mnr)
filter_mandant = pl.col("BEDP_MAN") == 1
res = _apply_several_filters(
wf_200_start_data,
(filter_meldenummer, filter_mandant),
)
# %%
# these entries must be checked for relevant orders
# therefore, a temp table must be created in the database to execute efficient
# queries, other approaches are just hacks
# SOLUTION:
# - save these entries to a temp table 'temp'
# - look up the order history of the past 3 months
# -- JOIN ON temp.BEDP_TITELNR = EXT_AUFPAUF.TITELNR
# -- WHERE EXT_AUFPAUF.AUFTRAGS_DATUM > (CURRENT_DATE - 3 months) AND
# -- EXT_AUFPAUF.KUNDE_RECHNUNG NOT IN (608991, 260202) AND
#
# this is a separate sub-pipeline like in Petersen WF-100
# these entries are either to be shown or not
sub_pipe_umbreit = PipelineResult(res.in_)
# %%
sub_pipe_umbreit.open
# %%
# %%
save_tmp_data(sub_pipe_umbreit.open)
# %%
rel_date = get_starting_date(90)
rel_date
# %%
# old way using in statements
# filter_ = sql.and_(
# db.EXT_AUFPAUF.c.TITELNR.in_(title_sub_choice),
# db.EXT_AUFPAUF.c.AUFTRAGS_DATUM >= rel_date,
# db.EXT_AUFPAUF.c.KUNDE_RECHNUNG.not_in((608991, 260202)),
# )
# join_condition = db.tmp_data.c.BEDP_TITELNR == db.EXT_AUFPAUF.c.TITELNR
# filter_ = sql.and_(
# db.EXT_AUFPAUF.c.AUFTRAGS_DATUM >= rel_date,
# db.EXT_AUFPAUF.c.KUNDE_RECHNUNG.not_in((608991, 260202)),
# db.EXT_AUFPAUF.c.AUFTRAGS_ART.in_((1, 99)),
# )
# stmt = (
# sql.select(
# db.tmp_data,
# db.EXT_AUFPAUF.c.KUNDE_RECHNUNG,
# db.EXT_AUFPAUF.c.AUFTRAGS_ART,
# )
# .select_from(db.tmp_data.join(db.EXT_AUFPAUF, join_condition))
# .where(filter_)
# )
# print(stmt.compile(engine))
# new_schema = db.EXT_AUFPAUF_schema_map.copy()
# new_schema.update(db.tmp_data_schema_map)
# new_schema
# %%
# demo = pl.read_database(
# stmt,
# engine,
# schema_overrides=db.EXT_AUFPAUF_schema_map,
# )
# # %%
# demo
# # %%
# demo.select(pl.col.AUFTRAGS_ART).unique()
# %%
get_tmp_data()
# %%
# demo_2 = demo.clone()
# # demo_2.head()
# print(f"Number of titles before filtering: {len(demo_2)}")
# demo_2 = demo_2.filter(pl.col.AUFTRAGS_ART.is_in((1, 99)))
# demo_2 = (
# demo_2.group_by("BEDP_TITELNR", maintain_order=True)
# .agg(
# pl.len().alias("count"),
# pl.col.KUNDE_RECHNUNG.n_unique().alias("customer_count"),
# )
# .filter(pl.col.customer_count >= 3)
# )
# # these remaining titles are relevant and should be shown
# # the others should be disposed
# print(f"Number of titles which are relevant: {len(demo_2)}")
# print(f"Number of titles which are to be disposed: {len(demo) - len(demo_2)}")
# demo_2
# %%
# make a subquery for the pre-filtered entries
# // query to obtain relevant title numbers
join_condition = db.tmp_data.c.BEDP_TITELNR == db.EXT_AUFPAUF.c.TITELNR
filter_ = sql.and_(
db.EXT_AUFPAUF.c.AUFTRAGS_DATUM >= rel_date,
db.EXT_AUFPAUF.c.KUNDE_RECHNUNG.not_in((608991, 260202)),
db.EXT_AUFPAUF.c.AUFTRAGS_ART.in_((1, 99)),
)
stmt = (
sql.select(
db.tmp_data,
db.EXT_AUFPAUF.c.KUNDE_RECHNUNG,
db.EXT_AUFPAUF.c.AUFTRAGS_ART,
)
.select_from(db.tmp_data.join(db.EXT_AUFPAUF, join_condition))
.where(filter_)
)
sub1 = stmt.subquery()
unique_count_col = sql.func.count(sub1.c.KUNDE_RECHNUNG.distinct())
stmt = (
sql.select(
sub1.c.BEDP_TITELNR,
sql.func.count().label("count"),
unique_count_col.label("customer_count"),
)
.select_from(sub1)
.group_by(sub1.c.BEDP_TITELNR)
.having(unique_count_col >= 3)
)
print(stmt.compile(engine))
# %%
demo_agg = pl.read_database(
stmt,
engine,
)
# %%
demo_agg
# %%
sub_pipe_umbreit.open
# sub_pipe_umbreit.open.select("BEDP_TITELNR").n_unique()
# %%
# now obtain these entries from the open data
demo_agg["BEDP_TITELNR"].unique().implode()
entries_to_show = sub_pipe_umbreit.open.filter(
pl.col.BEDP_TITELNR.is_in(demo_agg["BEDP_TITELNR"].unique().implode())
)
entries_to_show
# %%
sub_pipe_umbreit.open
# %%
df, filt_out = _init_workflow_200_umbreit(results, wf_200_start_data, VM_CRITERION)
df
# %%
df.filter(pl.col("BEDARFNR") == 884607)
# %%
df_order.filter(pl.col("BEDARFNR") == 884607)
# %%
# now obtain order data for entries
t = df.join(df_order, on=["BEDARFNR", "BEDP_SEQUENZ"], how="inner")
t = t.with_columns(pl.col("AUFP_POSITION").fill_null(0))
t
# %%
agg_t = (
t.group_by(["BEDARFNR", "BEDP_SEQUENZ"])
.agg(
pl.count("AUFP_POSITION").alias("pos_count"),
pl.col("KUNDE_RECHNUNG").alias("count_customer").n_unique(),
)
.filter(pl.col("count_customer") >= 0) # !! should be 3
)
agg_t
# %%
df_order.filter((pl.col("BEDARFNR") == 883608) & (pl.col("BEDP_SEQUENZ") == 65))
# %%
# ---------------------------------------------------------------------------- #
# Writing results in DB
# ---------------------------------------------------------------------------- #
delete_results()
pipe_post.write_database(db.results.fullname, engine, if_table_exists="append")
stmt = sql.select(db.results)
db_results = pl.read_database(stmt, engine)
db_results
# ---------------------------------------------------------------------------- #
# Further Data Analysis
# ---------------------------------------------------------------------------- #
# %%
stmt = sql.select(db.ext_bedpbed)
df = pl.read_database(
stmt,
engine,
schema_overrides=db.ext_bedpbed_schema_map,
)
# %%
df.group_by("BEDP_TITELNR").agg(
pl.col("BEDP_MAN").n_unique().alias("unique_BEDP_MAN")
).filter(pl.col("unique_BEDP_MAN") > 1)
# %%
df["BEDP_MAN"].unique()
# %%
df.estimated_size(unit="mb")
# %%
target_bednr = df_raw["BEDARFNR"].to_list()
target_seq = df_raw["BEDP_SEQUENZ"].to_list()
# %%
stmt = (
sql.select(
db.ext_bedpbed.c.BEDARFNR,
db.ext_bedpbed.c.BEDP_SEQUENZ,
db.ext_bedpbed.c.BEDP_TITELNR,
db.ext_bedpbed.c.BEDP_MENGE_BEDARF_VM,
)
.where(db.ext_bedpbed.c.BEDARFNR.in_(target_bednr))
.where(db.ext_bedpbed.c.BEDP_SEQUENZ.in_(target_seq))
)
df_targets = pl.read_database(stmt, engine)
# %%
# df_targets.filter(pl.col("BEDARFNR") == 884174)
df_targets.filter(pl.col("BEDP_MENGE_BEDARF_VM") > 0)
# %%
# interesting order: 883697, 1, titleno: 7945981, 9964027
TITLE_NO = 7945981
# TITLE_NO = 9964027
stmt = sql.select(db.EXT_BESPBES_INFO).where(db.EXT_BESPBES_INFO.c.BESP_TITELNR == TITLE_NO)
title_buy = pl.read_database(stmt, engine)
# %%
title_buy
# %% when were the orders placed
stmt = sql.select(db.EXT_AUFPAUF).where(db.EXT_AUFPAUF.c.TITELNR == 7945981)
title_order = pl.read_database(stmt, engine)
# %%
title_order
# -------------------------------------------------------------------------------------------
# %%
# title DB complete?
# - includes only titles which are deliverable since 01.06.2025 and who are assigned to
# buyer "Fröhlich"
stmt = sql.select(db.ext_titel_info) # .where(db.ext_titel_info.c.TI_NUMMER == 2928800)
titles = pl.read_database(stmt, engine, schema_overrides=db.ext_titel_info_schema_map)
# %%
titles["MANDFUEHR"].unique()
# %%
unique_titles = set(titles["TI_NUMMER"].to_list())
len(unique_titles)
# %%
# requirements?
# - includes only order since 05.11.2025
stmt = sql.select(db.ext_bedpbed) # .where(db.ext_titel_info.c.TI_NUMMER == 2928800)
reqs = pl.read_database(stmt, engine, schema_overrides=db.ext_bedpbed_schema_map)
# %%
reqs
# %%
reqs["BEDP_MAN"].unique()
# %%
# intersection between all titles and the titles contained in the requirements table
unique_titles_req = set(reqs["BEDP_TITELNR"].to_list())
len(unique_titles_req)
# %%
intersection = unique_titles & unique_titles_req
len(intersection)
# %%
# orders?
# - includes only order since 05.11.2025
stmt = sql.select(db.EXT_AUFPAUF)
orders = pl.read_database(stmt, engine, schema_overrides=db.EXT_AUFPAUF_schema_map)
# %%
orders.estimated_size(unit="mb")
# %%
with engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
# %%
stmt = sql.text("SELECT * FROM EXT_AUFPAUF WHERE AUFTRAGSNUMMER=37847548 and TITELNR=6315273")
with engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
# %%
stmt = sql.text("SELECT * FROM ext_bedpbed WHERE BEDARFNR=859131 and BEDP_SEQUENZ=2")
with engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
# %%
stmt = sql.text("SELECT * FROM EXT_BESPBES_INFO WHERE BESP_TITELNR=6312977")
with engine.connect() as conn:
res = conn.execute(stmt)
print(res.all())
# %%
df = dataframes[1]
# %%
col_dtype = {}
for col, dtype in zip(df.columns, df.dtypes):
col_dtype[col] = dtype
print("dtypes of DF...")
pprint(col_dtype)
# %%
len(df)
# %%
df.filter((pl.col("BEDP_MENGE_BEDARF_VM") != "") & (pl.col("BEDP_MENGE_BEDARF_VM") != "0"))
# %%
stmt = sql.text("SELECT * FROM ext_bedpbed")
df = pl.read_database(stmt, engine)
# %%
df
# %%
# %%
col_dtype = {}
for col, dtype in zip(df.columns, df.dtypes):
col_dtype[col] = dtype
print("dtypes of DF...")
pprint(col_dtype)
# %%
# ** Petersen WDB
filter_meldenummer = pl.col("MELDENUMMER") == 18
filter_mandant = pl.col(MANDANT_CRITERION) == 90
filter_WDB = pl.col("VERLAGSNR").is_in((76008, 76070))
filter_number_vm = pl.col(VM_CRITERION) > 0
res = _apply_several_filters(
df,
(
filter_meldenummer,
filter_mandant,
filter_WDB,
filter_number_vm,
),
)
# %%
res.in_
# %%
# !! show these entries
filter_number_vm = pl.col(VM_CRITERION) > 1
res_vm_crit = _apply_several_filters(
res.in_,
(filter_number_vm,),
)
# %%
res_vm_crit.out_
# %%
# filtered out entries (WDB with #VM == 1) must be analysed for orders in the past 6 months
title_nos = res_vm_crit.out_["BEDP_TITELNR"].to_list()
len(title_nos)
# %%
title_nos
# %%
# define starting date for 6 month interval
# returns UTC time
start_date = get_starting_date(180)
filter_ = sql.and_(
db.EXT_BESPBES_INFO.c.BESP_TITELNR.in_(title_nos),
db.EXT_BESPBES_INFO.c.BES_DATUM >= start_date,
)
stmt = sql.select(db.EXT_BESPBES_INFO).where(filter_)
df_order = pl.read_database(stmt, engine, schema_overrides=db.EXT_BESPBES_INFO_schema_map)
df_order
# %%
# filter entries which have
df_show = (
df_order.group_by("BESP_TITELNR")
.agg(pl.col("BESP_TITELNR").count().alias("count"))
.filter(pl.col("count") > 1)
)
df_show
# %%
# !! show these entries
# !! do not show others
entries_to_show = df_show["BESP_TITELNR"].to_list()
print(f"Number of entries relevant: {len(entries_to_show)}")
# %%
res_vm_crit.out_
# %%
filter_titleno = pl.col("BEDP_TITELNR").is_in(df_show["BESP_TITELNR"].implode())
res_wdb = _apply_several_filters(res_vm_crit.out_, (filter_titleno,))
# %%
res_wdb.in_
# %%
res_wdb.out_
# %%
# %%
# %%
# %%
schema = {}
for col in ("BEDARFNR", "BEDP_SEQUENZ"):
schema[col] = db.raw_data_query_schema_map[col]
base = pl.DataFrame(schema=schema)
# %%
data = {"BEDARFNR": list(range(10)), "BEDP_SEQUENZ": list(range(10))}
orig_data = pl.DataFrame(data, schema=schema)
data = orig_data[:5].clone()
# %%
pl.concat([base, data])
# %%
orig_data.join(data, on=["BEDARFNR", "BEDP_SEQUENZ"], how="anti")
# %%
orig_data[("BEDARFNR", "BEDP_SEQUENZ")]
# %%
raw_data = df.clone()
pipe_res = PipelineResult(raw_data)
pipe_res.open
# %%
pipe_res.results
# %%
sub_data = pipe_res.open[:20].clone()
sub_data
# %%
pipe_res.write_results(
sub_data,
vorlage=True,
wf_id=30,
freigabe_auto=types.Freigabe.WF_100,
is_out=True,
)
# %%
pipe_res.open
# %%
pipe_res.results
# %%
raw_data = df.clone()
pipe_res_main = PipelineResult(raw_data)
pipe_res_main.open
# %%
pipe_res_main.merge_pipeline(pipe_res)
# %%
pipe_res_main.open
# %%
pipe_res.results
# %%