refactoring

This commit is contained in:
Florian Förster 2025-03-14 06:58:48 +01:00
parent 405e9a9c3c
commit 02ec161a30
4 changed files with 55 additions and 63 deletions

View File

@ -72,14 +72,14 @@ def _parse_df_to_results(
@wrap_result()
def _parse_api_resp_to_df_wrapped(
resp: SalesPrognosisResponse,
) -> pd.DataFrame: # pragma: no cover
) -> pd.DataFrame:
return _parse_api_resp_to_df(resp)
@wrap_result()
def _parse_df_to_api_resp_wrapped(
data: pd.DataFrame,
) -> SalesPrognosisResponse: # pragma: no cover
) -> SalesPrognosisResponse:
return _parse_df_to_api_resp(data)
@ -109,7 +109,7 @@ def _parse_df_to_results_wrapped(
# TODO set min number of data points as constant, not parameter
def _preprocess_sales_per_customer(
def _preprocess_sales(
resp: SalesPrognosisResponse,
feature_map: Mapping[str, str],
target_features: Set[str],
@ -151,9 +151,8 @@ def _preprocess_sales_per_customer(
return pipe
def _process_sales_per_customer(
def _process_sales(
pipe: PipeResult[SalesPrognosisResultsExport],
# company_id: int,
min_num_data_points: int = 100,
) -> PipeResult[SalesPrognosisResultsExport]:
"""n = 1
@ -174,11 +173,9 @@ def _process_sales_per_customer(
PipeResult
_description_
"""
# cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
# filter data
# TODO change away from nested DataFrames: just use "f_umsatz_fakt"
# TODO with strong type checks
data = pipe.data
assert data is not None, "processing not existing pipe result"
data = data.copy()
@ -208,48 +205,46 @@ def _process_sales_per_customer(
if len(df_cust) < min_num_data_points:
pipe.fail(STATUS_HANDLER.pipe_states.TOO_FEW_POINTS)
return pipe
else:
# Entwicklung der Umsätze: definierte Zeiträume Monat
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
monthly_sum[DATE_FEAT] = (
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
)
monthly_sum[DATE_FEAT] = pd.to_datetime(monthly_sum[DATE_FEAT], format="%m.%Y")
monthly_sum = monthly_sum.set_index(DATE_FEAT)
# Entwicklung der Umsätze: definierte Zeiträume Monat
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
train = monthly_sum.iloc[:-5].copy()
test = monthly_sum.iloc[-5:].copy()
monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
monthly_sum[DATE_FEAT] = (
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
)
monthly_sum[DATE_FEAT] = pd.to_datetime(monthly_sum[DATE_FEAT], format="%m.%Y")
monthly_sum = monthly_sum.set_index(DATE_FEAT)
features = ["jahr", "monat"]
target = SALES_FEAT
train = monthly_sum.iloc[:-5].copy()
test = monthly_sum.iloc[-5:].copy()
X_train, y_train = train[features], train[target]
X_test, y_test = test[features], test[target]
features = ["jahr", "monat"]
target = SALES_FEAT
reg = XGBRegressor(
base_score=0.5,
booster="gbtree",
n_estimators=1000,
early_stopping_rounds=50,
objective="reg:squarederror",
max_depth=3,
learning_rate=0.01,
)
reg.fit(
X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=100
)
X_train, y_train = train[features], train[target]
X_test, y_test = test[features], test[target]
test.loc[:, "vorhersage"] = reg.predict(X_test)
test = test.reset_index(drop=True)
reg = XGBRegressor(
base_score=0.5,
booster="gbtree",
n_estimators=1000,
early_stopping_rounds=50,
objective="reg:squarederror",
max_depth=3,
learning_rate=0.01,
)
reg.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=100)
pipe.success(test, STATUS_HANDLER.SUCCESS)
return pipe
test.loc[:, "vorhersage"] = reg.predict(X_test)
test = test.reset_index(drop=True)
pipe.success(test, STATUS_HANDLER.SUCCESS)
return pipe
def _postprocess_sales_per_customer(
def _postprocess_sales(
pipe: PipeResult[SalesPrognosisResultsExport],
feature_map: Mapping[str, str],
) -> PipeResult[SalesPrognosisResultsExport]:
@ -287,7 +282,7 @@ def _export_on_fail(
return SalesPrognosisResultsExport(response=response, status=status)
def pipeline(
def pipeline_sales(
session: Session,
company_id: int | None = None,
start_date: Datetime | None = None,
@ -300,7 +295,7 @@ def pipeline(
if status != STATUS_HANDLER.SUCCESS:
return _export_on_fail(status)
pipe = _preprocess_sales_per_customer(
pipe = _preprocess_sales(
response,
feature_map=COL_MAP_SALES_PROGNOSIS,
target_features=FEATURES_SALES_PROGNOSIS,
@ -308,14 +303,14 @@ def pipeline(
if pipe.status != STATUS_HANDLER.SUCCESS:
return _export_on_fail(pipe.status)
pipe = _process_sales_per_customer(
pipe = _process_sales(
pipe,
min_num_data_points=MIN_NUMBER_DATAPOINTS,
)
if pipe.status != STATUS_HANDLER.SUCCESS:
return _export_on_fail(pipe.status)
pipe = _postprocess_sales_per_customer(
pipe = _postprocess_sales(
pipe,
feature_map=DualDict(),
)

View File

@ -11,7 +11,7 @@ def pipeline_sales_forecast(
company_id: int | None,
start_date: Datetime | None,
) -> tuple[JsonResponse, JsonStatus]:
result = forecast.pipeline(SESSION, company_id=company_id, start_date=start_date)
result = forecast.pipeline_sales(SESSION, company_id=company_id, start_date=start_date)
response = JsonResponse(result.response.model_dump_json())
status = JsonStatus(result.status.model_dump_json())

View File

@ -135,13 +135,13 @@ def test_parse_df_to_results_InvalidData(invalid_results):
_ = fc._parse_df_to_results(invalid_results)
def test_preprocess_sales_per_customer_Success(
def test_preprocess_sales_Success(
exmpl_api_sales_prognosis_resp,
feature_map,
target_features,
):
resp = exmpl_api_sales_prognosis_resp
pipe = fc._preprocess_sales_per_customer(
pipe = fc._preprocess_sales(
resp,
feature_map=feature_map,
target_features=target_features,
@ -153,14 +153,14 @@ def test_preprocess_sales_per_customer_Success(
assert any(feat not in df.columns for feat in feature_map.keys())
def test_preprocess_sales_per_customer_FailOnTargetFeature(
def test_preprocess_sales_FailOnTargetFeature(
exmpl_api_sales_prognosis_resp,
feature_map,
target_features,
):
resp = exmpl_api_sales_prognosis_resp
target_features = {"not_known_feature", "test2"}
pipe = fc._preprocess_sales_per_customer(
pipe = fc._preprocess_sales(
resp,
feature_map=feature_map,
target_features=target_features,
@ -170,23 +170,23 @@ def test_preprocess_sales_per_customer_FailOnTargetFeature(
assert pipe.results is None
def test_sales_per_customer_Success(sales_data_real_preproc):
def test_process_sales_Success(sales_data_real_preproc):
data = sales_data_real_preproc.copy()
# fc._preprocess_sales_per_customer()
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
pipe = fc._process_sales_per_customer(pipe)
pipe = fc._process_sales(pipe)
assert pipe.status == STATUS_HANDLER.SUCCESS
assert pipe.data is not None
assert pipe.results is None
def test_sales_per_customer_FailTooFewPoints(sales_data_real_preproc):
def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
data = sales_data_real_preproc.copy()
data = data.iloc[:20, :]
# fc._preprocess_sales_per_customer()
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
pipe = fc._process_sales_per_customer(pipe)
pipe = fc._process_sales(pipe)
assert pipe.status != STATUS_HANDLER.SUCCESS
assert pipe.status == STATUS_HANDLER.pipe_states.TOO_FEW_POINTS
@ -194,13 +194,13 @@ def test_sales_per_customer_FailTooFewPoints(sales_data_real_preproc):
assert pipe.results is None
def test_postprocess_sales_per_customer_Success(
def test_postprocess_sales_Success(
valid_results,
):
data = valid_results
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
pipe = fc._postprocess_sales_per_customer(
pipe = fc._postprocess_sales(
pipe,
feature_map=DualDict(),
)
@ -209,13 +209,13 @@ def test_postprocess_sales_per_customer_Success(
assert pipe.results is not None
def test_postprocess_sales_per_customer_FailValidation(
def test_postprocess_sales_FailValidation(
invalid_results,
):
data = invalid_results
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
pipe = fc._postprocess_sales_per_customer(
pipe = fc._postprocess_sales(
pipe,
feature_map=DualDict(),
)
@ -225,7 +225,7 @@ def test_postprocess_sales_per_customer_FailValidation(
assert "ValidationError" in pipe.status.description
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp):
def test_pipeline_sales_prognosis(exmpl_api_sales_prognosis_resp):
def mock_request(*args, **kwargs):
return exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS
@ -234,7 +234,7 @@ def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp):
new=mock_request,
):
importlib.reload(delta_barth.analysis.forecast)
result = fc.pipeline(None) # type: ignore
result = fc.pipeline_sales(None) # type: ignore
assert result.status == STATUS_HANDLER.SUCCESS
assert len(result.response.daten) > 0

View File

@ -2,14 +2,11 @@ import importlib
import json
from unittest.mock import patch
import pytest
import delta_barth.pipelines
from delta_barth import pipelines as pl
from delta_barth.errors import STATUS_HANDLER
@pytest.mark.new
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp):
def mock_request(*args, **kwargs):
return exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS