major overhaul of forecast pipeline (#21)

includes several aspects:

- harden forecast logic with additional error checks
- fix wrong behaviour
- ensure minimum data viability
- extrapolate for multiple data points into the future

fix #19

Co-authored-by: frasu
Reviewed-on: #21
Co-authored-by: foefl <f.foerster@d-opt.com>
Co-committed-by: foefl <f.foerster@d-opt.com>
This commit is contained in:
Florian Förster 2025-04-16 09:24:33 +00:00 committed by Florian Förster
parent 6caa087efd
commit 063531a08e
6 changed files with 110 additions and 31 deletions

View File

@ -1,6 +1,6 @@
[project]
name = "delta-barth"
version = "0.5.7dev1"
version = "0.5.7dev2"
description = "workflows and pipelines for the Python-based Plugin of Delta Barth's ERP system"
authors = [
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
@ -44,7 +44,8 @@ filterwarnings = [
]
markers = [
"api_con_required: tests require an API connection (deselect with '-m \"not api_con_required\"')",
"new: to test only new tests, usually removed afterwards (deselect with '-m \"not quick\"')",
"new: to test only new tests, usually removed afterwards (deselect with '-m \"not new\"')",
"forecast: main components of forecast pipeline (deselect with '-m \"not forecast\"')"
]
log_cli = true
@ -73,7 +74,7 @@ directory = "reports/coverage"
[tool.bumpversion]
current_version = "0.5.7dev1"
current_version = "0.5.7dev2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@ -1,5 +1,6 @@
from __future__ import annotations
import copy
import datetime
import math
from collections.abc import Mapping, Set
@ -11,6 +12,9 @@ import numpy as np
import pandas as pd
import scipy.stats
import sqlalchemy as sql
# --- new: for calculating timedelta
from dateutil.relativedelta import relativedelta
from sklearn.metrics import mean_absolute_error, r2_score
from sklearn.model_selection import KFold, RandomizedSearchCV
from xgboost import XGBRegressor
@ -183,16 +187,14 @@ def _process_sales(
PipeResult
_description_
"""
# cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
# filter data
data = pipe.data
assert data is not None, "processing not existing pipe result"
DATE_FEAT: Final[str] = "buchungs_datum"
SALES_FEAT: Final[str] = "betrag"
df_firma = data[(data["betrag"] > 0)]
df_cust = df_firma.copy()
df_filter = data[(data["betrag"] > 0)]
df_cust = df_filter.copy()
df_cust = df_cust.sort_values(by=DATE_FEAT).reset_index()
len_ds = len(df_cust)
@ -206,7 +208,26 @@ def _process_sales(
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
monthly_sum_data_only = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
current_year = datetime.datetime.now().year
current_month = datetime.datetime.now().month
years = range(df_cust["jahr"].min(), current_year + 1)
all_month_year_combinations = pd.DataFrame(
[
(year, month)
for year in years
for month in range(1, 13)
if (year < current_year or (year == current_year and month <= current_month))
],
columns=["jahr", "monat"],
)
monthly_sum = pd.merge(
all_month_year_combinations, monthly_sum_data_only, on=["jahr", "monat"], how="left"
)
monthly_sum[SALES_FEAT] = monthly_sum[SALES_FEAT].fillna(0)
monthly_sum[DATE_FEAT] = (
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
)
@ -215,13 +236,17 @@ def _process_sales(
features = ["jahr", "monat"]
target = SALES_FEAT
current_year = datetime.datetime.now().year
first_year = cast(int, df_cust["jahr"].min())
last_date = pd.to_datetime(datetime.datetime.now().strftime("%m.%Y"), format="%m.%Y")
future_dates = pd.date_range(
start=last_date + pd.DateOffset(months=1), periods=6, freq="MS"
)
forecast = pd.DataFrame({"datum": future_dates}).set_index("datum")
# Randomized Search
kfold = KFold(n_splits=5, shuffle=True)
params: ParamSearchXGBRegressor = {
"n_estimators": scipy.stats.poisson(mu=1000),
"n_estimators": scipy.stats.poisson(mu=100),
"learning_rate": [0.03, 0.04, 0.05],
"max_depth": range(2, 9),
"min_child_weight": range(1, 5),
@ -231,26 +256,40 @@ def _process_sales(
"early_stopping_rounds": [20, 50],
}
best_estimator = None
best_params: BestParametersXGBRegressor | None = None
best_score_mae: float | None = float("inf")
best_score_r2: float | None = None
best_start_year: int | None = None
too_few_month_points: bool = True
forecast: pd.DataFrame | None = None
for start_year in range(current_year - 4, first_year - 1, -1):
dates = cast(pd.DatetimeIndex, monthly_sum.index)
# baseline: 3 years - 36 months
starting_date = datetime.datetime.now() - relativedelta(months=36)
target_index, _ = next(
((i, True) for i, date in enumerate(dates) if date >= starting_date),
(len(dates) - 1, False),
)
for add_year, date_idx in enumerate(range(target_index, -1, -12)):
first_date = dates[date_idx]
split_date = dates[-6]
train = cast(
pd.DataFrame,
monthly_sum[monthly_sum.index.year >= start_year].iloc[:-5].copy(), # type: ignore
monthly_sum.loc[first_date:split_date].copy(), # type: ignore
)
test = cast(
pd.DataFrame,
monthly_sum[monthly_sum.index.year >= start_year].iloc[-5:].copy(), # type: ignore
monthly_sum.loc[split_date:].copy(), # type: ignore
)
X_train, X_test = train[features], test[features]
y_train, y_test = train[target], test[target]
if len(train) >= (base_num_data_points_months + 10 * (current_year - 4 - start_year)):
# test set size fixed at 6 --> first iteration: baseline - 6 entries
# for each new year 10 new data points (i.e., sales strictly positive) needed
if len(train[train[SALES_FEAT] > 0]) >= (base_num_data_points_months + 10 * add_year):
too_few_month_points = False
rand = RandomizedSearchCV(
@ -273,13 +312,21 @@ def _process_sales(
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
best_score_mae = error
best_score_r2 = cast(float, r2_score(y_test, y_pred))
best_start_year = start_year
print("executed")
forecast = test.copy()
forecast.loc[:, "vorhersage"] = y_pred
# --- new: use first_date for best_start_year
best_start_year = first_date.year
# --- new: store best_estimator
best_estimator = copy.copy(rand.best_estimator_)
if best_estimator is not None:
X_future = pd.DataFrame(
{"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates
)
y_future = best_estimator.predict(X_future) # type: ignore
forecast["vorhersage"] = y_future
forecast["jahr"] = forecast.index.year # type: ignore
forecast["monat"] = forecast.index.month # type: ignore
forecast = forecast.reset_index(drop=True)
if forecast is not None:
forecast = forecast.drop(SALES_FEAT, axis=1).reset_index(drop=True)
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
if too_few_month_points:
@ -295,7 +342,9 @@ def _process_sales(
pipe.stats(stats)
return pipe
assert forecast is not None, "forecast is None, but was attempted to be returned"
assert "vorhersage" in forecast.columns, (
"forecast does not contain prognosis values, but was attempted to be returned"
)
status = STATUS_HANDLER.SUCCESS
pipe.success(forecast, status)
stats = SalesForecastStatistics(

View File

@ -17,7 +17,7 @@ DUMMY_DATA_PATH: Final[Path] = dummy_data_pth
# ** logging
ENABLE_LOGGING: Final[bool] = True
LOGGING_TO_FILE: Final[bool] = True
LOGGING_TO_STDERR: Final[bool] = True
LOGGING_TO_STDERR: Final[bool] = False
LOG_FILENAME: Final[str] = "dopt-delbar.log"
# ** databases
@ -40,7 +40,7 @@ class KnownDelBarApiErrorCodes(enum.Enum):
# ** API
API_CON_TIMEOUT: Final[float] = 5.0 # secs to response
API_CON_TIMEOUT: Final[float] = 10.0 # secs to response
# ** API response parsing
# ** column mapping [API-Response --> Target-Features]
COL_MAP_SALES_PROGNOSIS: Final[DualDict[str, str]] = DualDict(

View File

@ -1,4 +1,6 @@
import datetime
from datetime import datetime as Datetime
from pathlib import Path
from unittest.mock import patch
import numpy as np
@ -255,6 +257,7 @@ def test_preprocess_sales_FailOnTargetFeature(
assert pipe.results is None
@pytest.mark.forecast
def test_process_sales_Success(sales_data_real_preproc):
data = sales_data_real_preproc.copy()
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
@ -277,6 +280,7 @@ def test_process_sales_Success(sales_data_real_preproc):
assert pipe.statistics.xgb_params is not None
@pytest.mark.forecast
def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
data = sales_data_real_preproc.copy()
data = data.iloc[:20, :]
@ -303,6 +307,7 @@ def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
assert pipe.statistics.xgb_params is None
@pytest.mark.forecast
def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
data = sales_data_real_preproc.copy()
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
@ -329,8 +334,19 @@ def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
assert pipe.statistics.xgb_params is None
@pytest.mark.forecast
def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
data = sales_data_real_preproc.copy()
# prepare fake data
df = sales_data_real_preproc.copy()
f_dates = "buchungs_datum"
end = datetime.datetime.now()
start = df[f_dates].max()
fake_dates = pd.date_range(start, end, freq="MS")
fake_data = [(1234, 1014, 1024, 1000, 10, date) for date in fake_dates]
fake_df = pd.DataFrame(fake_data, columns=df.columns)
enhanced_df = pd.concat((df, fake_df), ignore_index=True)
data = enhanced_df.copy()
data["betrag"] = 10000
print(data["betrag"])
data = data.iloc[:20000, :]
@ -340,7 +356,7 @@ def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
def __init__(self, *args, **kwargs) -> None:
class Predictor:
def predict(self, *args, **kwargs):
return np.array([1, 1, 1, 1])
return np.array([1, 1, 1, 1], dtype=np.float64)
self.best_estimator_ = Predictor()
@ -354,7 +370,7 @@ def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
pipe = fc._process_sales(
pipe,
min_num_data_points=1,
base_num_data_points_months=-100,
base_num_data_points_months=1,
)
assert pipe.status != STATUS_HANDLER.SUCCESS

View File

@ -1,17 +1,15 @@
import importlib
import json
from unittest.mock import patch
import pytest
import sqlalchemy as sql
import delta_barth.pipelines
from delta_barth import databases as db
from delta_barth import pipelines as pl
from delta_barth.errors import STATUS_HANDLER
def test_write_performance_metrics(session):
def test_write_performance_metrics_Success(session):
pipe_name = "test_pipe"
t_start = 20_000_000_000
t_end = 30_000_000_000
@ -33,6 +31,20 @@ def test_write_performance_metrics(session):
assert metrics.execution_duration == 10
def test_write_performance_metrics_FailStartingTime(session):
pipe_name = "test_pipe"
t_start = 30_000_000_000
t_end = 20_000_000_000
with patch("delta_barth.pipelines.SESSION", session):
with pytest.raises(ValueError):
_ = pl._write_performance_metrics(
pipeline_name=pipe_name,
time_start=t_start,
time_end=t_end,
)
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp, session):
with patch(

View File

@ -64,6 +64,7 @@ def test_session_setup_db_management(tmp_path):
@patch("delta_barth.logging.ENABLE_LOGGING", True)
@patch("delta_barth.logging.LOGGING_TO_FILE", True)
@patch("delta_barth.logging.LOGGING_TO_STDERR", True)
def test_session_setup_logging(tmp_path):
str_path = str(tmp_path)
foldername: str = "logging_test"