major overhaul of forecast pipeline (#21)
includes several aspects: - harden forecast logic with additional error checks - fix wrong behaviour - ensure minimum data viability - extrapolate for multiple data points into the future fix #19 Co-authored-by: frasu Reviewed-on: #21 Co-authored-by: foefl <f.foerster@d-opt.com> Co-committed-by: foefl <f.foerster@d-opt.com>
This commit is contained in:
parent
6caa087efd
commit
063531a08e
@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "delta-barth"
|
name = "delta-barth"
|
||||||
version = "0.5.7dev1"
|
version = "0.5.7dev2"
|
||||||
description = "workflows and pipelines for the Python-based Plugin of Delta Barth's ERP system"
|
description = "workflows and pipelines for the Python-based Plugin of Delta Barth's ERP system"
|
||||||
authors = [
|
authors = [
|
||||||
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
|
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
|
||||||
@ -44,7 +44,8 @@ filterwarnings = [
|
|||||||
]
|
]
|
||||||
markers = [
|
markers = [
|
||||||
"api_con_required: tests require an API connection (deselect with '-m \"not api_con_required\"')",
|
"api_con_required: tests require an API connection (deselect with '-m \"not api_con_required\"')",
|
||||||
"new: to test only new tests, usually removed afterwards (deselect with '-m \"not quick\"')",
|
"new: to test only new tests, usually removed afterwards (deselect with '-m \"not new\"')",
|
||||||
|
"forecast: main components of forecast pipeline (deselect with '-m \"not forecast\"')"
|
||||||
]
|
]
|
||||||
log_cli = true
|
log_cli = true
|
||||||
|
|
||||||
@ -73,7 +74,7 @@ directory = "reports/coverage"
|
|||||||
|
|
||||||
|
|
||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.5.7dev1"
|
current_version = "0.5.7dev2"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import copy
|
||||||
import datetime
|
import datetime
|
||||||
import math
|
import math
|
||||||
from collections.abc import Mapping, Set
|
from collections.abc import Mapping, Set
|
||||||
@ -11,6 +12,9 @@ import numpy as np
|
|||||||
import pandas as pd
|
import pandas as pd
|
||||||
import scipy.stats
|
import scipy.stats
|
||||||
import sqlalchemy as sql
|
import sqlalchemy as sql
|
||||||
|
|
||||||
|
# --- new: for calculating timedelta
|
||||||
|
from dateutil.relativedelta import relativedelta
|
||||||
from sklearn.metrics import mean_absolute_error, r2_score
|
from sklearn.metrics import mean_absolute_error, r2_score
|
||||||
from sklearn.model_selection import KFold, RandomizedSearchCV
|
from sklearn.model_selection import KFold, RandomizedSearchCV
|
||||||
from xgboost import XGBRegressor
|
from xgboost import XGBRegressor
|
||||||
@ -183,16 +187,14 @@ def _process_sales(
|
|||||||
PipeResult
|
PipeResult
|
||||||
_description_
|
_description_
|
||||||
"""
|
"""
|
||||||
# cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
|
|
||||||
|
|
||||||
# filter data
|
# filter data
|
||||||
data = pipe.data
|
data = pipe.data
|
||||||
assert data is not None, "processing not existing pipe result"
|
assert data is not None, "processing not existing pipe result"
|
||||||
|
|
||||||
DATE_FEAT: Final[str] = "buchungs_datum"
|
DATE_FEAT: Final[str] = "buchungs_datum"
|
||||||
SALES_FEAT: Final[str] = "betrag"
|
SALES_FEAT: Final[str] = "betrag"
|
||||||
df_firma = data[(data["betrag"] > 0)]
|
df_filter = data[(data["betrag"] > 0)]
|
||||||
df_cust = df_firma.copy()
|
df_cust = df_filter.copy()
|
||||||
df_cust = df_cust.sort_values(by=DATE_FEAT).reset_index()
|
df_cust = df_cust.sort_values(by=DATE_FEAT).reset_index()
|
||||||
len_ds = len(df_cust)
|
len_ds = len(df_cust)
|
||||||
|
|
||||||
@ -206,7 +208,26 @@ def _process_sales(
|
|||||||
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
|
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
|
||||||
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
|
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
|
||||||
|
|
||||||
monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
monthly_sum_data_only = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
||||||
|
|
||||||
|
current_year = datetime.datetime.now().year
|
||||||
|
current_month = datetime.datetime.now().month
|
||||||
|
years = range(df_cust["jahr"].min(), current_year + 1)
|
||||||
|
|
||||||
|
all_month_year_combinations = pd.DataFrame(
|
||||||
|
[
|
||||||
|
(year, month)
|
||||||
|
for year in years
|
||||||
|
for month in range(1, 13)
|
||||||
|
if (year < current_year or (year == current_year and month <= current_month))
|
||||||
|
],
|
||||||
|
columns=["jahr", "monat"],
|
||||||
|
)
|
||||||
|
|
||||||
|
monthly_sum = pd.merge(
|
||||||
|
all_month_year_combinations, monthly_sum_data_only, on=["jahr", "monat"], how="left"
|
||||||
|
)
|
||||||
|
monthly_sum[SALES_FEAT] = monthly_sum[SALES_FEAT].fillna(0)
|
||||||
monthly_sum[DATE_FEAT] = (
|
monthly_sum[DATE_FEAT] = (
|
||||||
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
|
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
|
||||||
)
|
)
|
||||||
@ -215,13 +236,17 @@ def _process_sales(
|
|||||||
|
|
||||||
features = ["jahr", "monat"]
|
features = ["jahr", "monat"]
|
||||||
target = SALES_FEAT
|
target = SALES_FEAT
|
||||||
current_year = datetime.datetime.now().year
|
|
||||||
first_year = cast(int, df_cust["jahr"].min())
|
last_date = pd.to_datetime(datetime.datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||||
|
future_dates = pd.date_range(
|
||||||
|
start=last_date + pd.DateOffset(months=1), periods=6, freq="MS"
|
||||||
|
)
|
||||||
|
forecast = pd.DataFrame({"datum": future_dates}).set_index("datum")
|
||||||
|
|
||||||
# Randomized Search
|
# Randomized Search
|
||||||
kfold = KFold(n_splits=5, shuffle=True)
|
kfold = KFold(n_splits=5, shuffle=True)
|
||||||
params: ParamSearchXGBRegressor = {
|
params: ParamSearchXGBRegressor = {
|
||||||
"n_estimators": scipy.stats.poisson(mu=1000),
|
"n_estimators": scipy.stats.poisson(mu=100),
|
||||||
"learning_rate": [0.03, 0.04, 0.05],
|
"learning_rate": [0.03, 0.04, 0.05],
|
||||||
"max_depth": range(2, 9),
|
"max_depth": range(2, 9),
|
||||||
"min_child_weight": range(1, 5),
|
"min_child_weight": range(1, 5),
|
||||||
@ -231,26 +256,40 @@ def _process_sales(
|
|||||||
"early_stopping_rounds": [20, 50],
|
"early_stopping_rounds": [20, 50],
|
||||||
}
|
}
|
||||||
|
|
||||||
|
best_estimator = None
|
||||||
best_params: BestParametersXGBRegressor | None = None
|
best_params: BestParametersXGBRegressor | None = None
|
||||||
best_score_mae: float | None = float("inf")
|
best_score_mae: float | None = float("inf")
|
||||||
best_score_r2: float | None = None
|
best_score_r2: float | None = None
|
||||||
best_start_year: int | None = None
|
best_start_year: int | None = None
|
||||||
too_few_month_points: bool = True
|
too_few_month_points: bool = True
|
||||||
forecast: pd.DataFrame | None = None
|
|
||||||
|
|
||||||
for start_year in range(current_year - 4, first_year - 1, -1):
|
dates = cast(pd.DatetimeIndex, monthly_sum.index)
|
||||||
|
# baseline: 3 years - 36 months
|
||||||
|
starting_date = datetime.datetime.now() - relativedelta(months=36)
|
||||||
|
|
||||||
|
target_index, _ = next(
|
||||||
|
((i, True) for i, date in enumerate(dates) if date >= starting_date),
|
||||||
|
(len(dates) - 1, False),
|
||||||
|
)
|
||||||
|
|
||||||
|
for add_year, date_idx in enumerate(range(target_index, -1, -12)):
|
||||||
|
first_date = dates[date_idx]
|
||||||
|
split_date = dates[-6]
|
||||||
|
|
||||||
train = cast(
|
train = cast(
|
||||||
pd.DataFrame,
|
pd.DataFrame,
|
||||||
monthly_sum[monthly_sum.index.year >= start_year].iloc[:-5].copy(), # type: ignore
|
monthly_sum.loc[first_date:split_date].copy(), # type: ignore
|
||||||
)
|
)
|
||||||
test = cast(
|
test = cast(
|
||||||
pd.DataFrame,
|
pd.DataFrame,
|
||||||
monthly_sum[monthly_sum.index.year >= start_year].iloc[-5:].copy(), # type: ignore
|
monthly_sum.loc[split_date:].copy(), # type: ignore
|
||||||
)
|
)
|
||||||
X_train, X_test = train[features], test[features]
|
X_train, X_test = train[features], test[features]
|
||||||
y_train, y_test = train[target], test[target]
|
y_train, y_test = train[target], test[target]
|
||||||
|
|
||||||
if len(train) >= (base_num_data_points_months + 10 * (current_year - 4 - start_year)):
|
# test set size fixed at 6 --> first iteration: baseline - 6 entries
|
||||||
|
# for each new year 10 new data points (i.e., sales strictly positive) needed
|
||||||
|
if len(train[train[SALES_FEAT] > 0]) >= (base_num_data_points_months + 10 * add_year):
|
||||||
too_few_month_points = False
|
too_few_month_points = False
|
||||||
|
|
||||||
rand = RandomizedSearchCV(
|
rand = RandomizedSearchCV(
|
||||||
@ -273,13 +312,21 @@ def _process_sales(
|
|||||||
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
||||||
best_score_mae = error
|
best_score_mae = error
|
||||||
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
||||||
best_start_year = start_year
|
# --- new: use first_date for best_start_year
|
||||||
print("executed")
|
best_start_year = first_date.year
|
||||||
forecast = test.copy()
|
# --- new: store best_estimator
|
||||||
forecast.loc[:, "vorhersage"] = y_pred
|
best_estimator = copy.copy(rand.best_estimator_)
|
||||||
|
|
||||||
|
if best_estimator is not None:
|
||||||
|
X_future = pd.DataFrame(
|
||||||
|
{"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates
|
||||||
|
)
|
||||||
|
y_future = best_estimator.predict(X_future) # type: ignore
|
||||||
|
forecast["vorhersage"] = y_future
|
||||||
|
forecast["jahr"] = forecast.index.year # type: ignore
|
||||||
|
forecast["monat"] = forecast.index.month # type: ignore
|
||||||
|
forecast = forecast.reset_index(drop=True)
|
||||||
|
|
||||||
if forecast is not None:
|
|
||||||
forecast = forecast.drop(SALES_FEAT, axis=1).reset_index(drop=True)
|
|
||||||
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
|
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
|
||||||
|
|
||||||
if too_few_month_points:
|
if too_few_month_points:
|
||||||
@ -295,7 +342,9 @@ def _process_sales(
|
|||||||
pipe.stats(stats)
|
pipe.stats(stats)
|
||||||
return pipe
|
return pipe
|
||||||
|
|
||||||
assert forecast is not None, "forecast is None, but was attempted to be returned"
|
assert "vorhersage" in forecast.columns, (
|
||||||
|
"forecast does not contain prognosis values, but was attempted to be returned"
|
||||||
|
)
|
||||||
status = STATUS_HANDLER.SUCCESS
|
status = STATUS_HANDLER.SUCCESS
|
||||||
pipe.success(forecast, status)
|
pipe.success(forecast, status)
|
||||||
stats = SalesForecastStatistics(
|
stats = SalesForecastStatistics(
|
||||||
|
|||||||
@ -17,7 +17,7 @@ DUMMY_DATA_PATH: Final[Path] = dummy_data_pth
|
|||||||
# ** logging
|
# ** logging
|
||||||
ENABLE_LOGGING: Final[bool] = True
|
ENABLE_LOGGING: Final[bool] = True
|
||||||
LOGGING_TO_FILE: Final[bool] = True
|
LOGGING_TO_FILE: Final[bool] = True
|
||||||
LOGGING_TO_STDERR: Final[bool] = True
|
LOGGING_TO_STDERR: Final[bool] = False
|
||||||
LOG_FILENAME: Final[str] = "dopt-delbar.log"
|
LOG_FILENAME: Final[str] = "dopt-delbar.log"
|
||||||
|
|
||||||
# ** databases
|
# ** databases
|
||||||
@ -40,7 +40,7 @@ class KnownDelBarApiErrorCodes(enum.Enum):
|
|||||||
|
|
||||||
|
|
||||||
# ** API
|
# ** API
|
||||||
API_CON_TIMEOUT: Final[float] = 5.0 # secs to response
|
API_CON_TIMEOUT: Final[float] = 10.0 # secs to response
|
||||||
# ** API response parsing
|
# ** API response parsing
|
||||||
# ** column mapping [API-Response --> Target-Features]
|
# ** column mapping [API-Response --> Target-Features]
|
||||||
COL_MAP_SALES_PROGNOSIS: Final[DualDict[str, str]] = DualDict(
|
COL_MAP_SALES_PROGNOSIS: Final[DualDict[str, str]] = DualDict(
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
|
import datetime
|
||||||
from datetime import datetime as Datetime
|
from datetime import datetime as Datetime
|
||||||
|
from pathlib import Path
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -255,6 +257,7 @@ def test_preprocess_sales_FailOnTargetFeature(
|
|||||||
assert pipe.results is None
|
assert pipe.results is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.forecast
|
||||||
def test_process_sales_Success(sales_data_real_preproc):
|
def test_process_sales_Success(sales_data_real_preproc):
|
||||||
data = sales_data_real_preproc.copy()
|
data = sales_data_real_preproc.copy()
|
||||||
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
|
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
|
||||||
@ -277,6 +280,7 @@ def test_process_sales_Success(sales_data_real_preproc):
|
|||||||
assert pipe.statistics.xgb_params is not None
|
assert pipe.statistics.xgb_params is not None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.forecast
|
||||||
def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
|
def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
|
||||||
data = sales_data_real_preproc.copy()
|
data = sales_data_real_preproc.copy()
|
||||||
data = data.iloc[:20, :]
|
data = data.iloc[:20, :]
|
||||||
@ -303,6 +307,7 @@ def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
|
|||||||
assert pipe.statistics.xgb_params is None
|
assert pipe.statistics.xgb_params is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.forecast
|
||||||
def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
|
def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
|
||||||
data = sales_data_real_preproc.copy()
|
data = sales_data_real_preproc.copy()
|
||||||
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
|
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
|
||||||
@ -329,8 +334,19 @@ def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
|
|||||||
assert pipe.statistics.xgb_params is None
|
assert pipe.statistics.xgb_params is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.forecast
|
||||||
def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
||||||
data = sales_data_real_preproc.copy()
|
# prepare fake data
|
||||||
|
df = sales_data_real_preproc.copy()
|
||||||
|
f_dates = "buchungs_datum"
|
||||||
|
end = datetime.datetime.now()
|
||||||
|
start = df[f_dates].max()
|
||||||
|
fake_dates = pd.date_range(start, end, freq="MS")
|
||||||
|
fake_data = [(1234, 1014, 1024, 1000, 10, date) for date in fake_dates]
|
||||||
|
fake_df = pd.DataFrame(fake_data, columns=df.columns)
|
||||||
|
enhanced_df = pd.concat((df, fake_df), ignore_index=True)
|
||||||
|
|
||||||
|
data = enhanced_df.copy()
|
||||||
data["betrag"] = 10000
|
data["betrag"] = 10000
|
||||||
print(data["betrag"])
|
print(data["betrag"])
|
||||||
data = data.iloc[:20000, :]
|
data = data.iloc[:20000, :]
|
||||||
@ -340,7 +356,7 @@ def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
|||||||
def __init__(self, *args, **kwargs) -> None:
|
def __init__(self, *args, **kwargs) -> None:
|
||||||
class Predictor:
|
class Predictor:
|
||||||
def predict(self, *args, **kwargs):
|
def predict(self, *args, **kwargs):
|
||||||
return np.array([1, 1, 1, 1])
|
return np.array([1, 1, 1, 1], dtype=np.float64)
|
||||||
|
|
||||||
self.best_estimator_ = Predictor()
|
self.best_estimator_ = Predictor()
|
||||||
|
|
||||||
@ -354,7 +370,7 @@ def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
|||||||
pipe = fc._process_sales(
|
pipe = fc._process_sales(
|
||||||
pipe,
|
pipe,
|
||||||
min_num_data_points=1,
|
min_num_data_points=1,
|
||||||
base_num_data_points_months=-100,
|
base_num_data_points_months=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
assert pipe.status != STATUS_HANDLER.SUCCESS
|
assert pipe.status != STATUS_HANDLER.SUCCESS
|
||||||
|
|||||||
@ -1,17 +1,15 @@
|
|||||||
import importlib
|
|
||||||
import json
|
import json
|
||||||
from unittest.mock import patch
|
from unittest.mock import patch
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
import sqlalchemy as sql
|
import sqlalchemy as sql
|
||||||
|
|
||||||
import delta_barth.pipelines
|
|
||||||
from delta_barth import databases as db
|
from delta_barth import databases as db
|
||||||
from delta_barth import pipelines as pl
|
from delta_barth import pipelines as pl
|
||||||
from delta_barth.errors import STATUS_HANDLER
|
from delta_barth.errors import STATUS_HANDLER
|
||||||
|
|
||||||
|
|
||||||
def test_write_performance_metrics(session):
|
def test_write_performance_metrics_Success(session):
|
||||||
pipe_name = "test_pipe"
|
pipe_name = "test_pipe"
|
||||||
t_start = 20_000_000_000
|
t_start = 20_000_000_000
|
||||||
t_end = 30_000_000_000
|
t_end = 30_000_000_000
|
||||||
@ -33,6 +31,20 @@ def test_write_performance_metrics(session):
|
|||||||
assert metrics.execution_duration == 10
|
assert metrics.execution_duration == 10
|
||||||
|
|
||||||
|
|
||||||
|
def test_write_performance_metrics_FailStartingTime(session):
|
||||||
|
pipe_name = "test_pipe"
|
||||||
|
t_start = 30_000_000_000
|
||||||
|
t_end = 20_000_000_000
|
||||||
|
|
||||||
|
with patch("delta_barth.pipelines.SESSION", session):
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
_ = pl._write_performance_metrics(
|
||||||
|
pipeline_name=pipe_name,
|
||||||
|
time_start=t_start,
|
||||||
|
time_end=t_end,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
|
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
|
||||||
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp, session):
|
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp, session):
|
||||||
with patch(
|
with patch(
|
||||||
|
|||||||
@ -64,6 +64,7 @@ def test_session_setup_db_management(tmp_path):
|
|||||||
|
|
||||||
@patch("delta_barth.logging.ENABLE_LOGGING", True)
|
@patch("delta_barth.logging.ENABLE_LOGGING", True)
|
||||||
@patch("delta_barth.logging.LOGGING_TO_FILE", True)
|
@patch("delta_barth.logging.LOGGING_TO_FILE", True)
|
||||||
|
@patch("delta_barth.logging.LOGGING_TO_STDERR", True)
|
||||||
def test_session_setup_logging(tmp_path):
|
def test_session_setup_logging(tmp_path):
|
||||||
str_path = str(tmp_path)
|
str_path = str(tmp_path)
|
||||||
foldername: str = "logging_test"
|
foldername: str = "logging_test"
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user