src/delta_barth/analysis/forecast.py aktualisiert
This commit is contained in:
parent
8501f551b2
commit
0eb39deec5
@ -210,7 +210,18 @@ def _process_sales(
|
|||||||
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
|
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
|
||||||
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
|
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
|
||||||
|
|
||||||
monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
current_year = datetime.now().year
|
||||||
|
current_month = datetime.now().month
|
||||||
|
years = range(df_cust["jahr"].min(), current_year + 1)
|
||||||
|
|
||||||
|
old_monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
||||||
|
|
||||||
|
all_month_year_combinations = pd.DataFrame(
|
||||||
|
[(year, month) for year in years for month in range(1, 13) if (year < current_year or (year == current_year and month <= current_month))], columns=["jahr", "monat"]
|
||||||
|
)
|
||||||
|
|
||||||
|
monthly_sum = pd.merge(all_month_year_combinations, old_monthly_sum, on=["jahr", "monat"], how="left")
|
||||||
|
monthly_sum[SALES_FEAT] = monthly_sum[SALES_FEAT].fillna(0)
|
||||||
monthly_sum[DATE_FEAT] = (
|
monthly_sum[DATE_FEAT] = (
|
||||||
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
|
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
|
||||||
)
|
)
|
||||||
@ -220,7 +231,6 @@ def _process_sales(
|
|||||||
features = ["jahr", "monat"]
|
features = ["jahr", "monat"]
|
||||||
target = SALES_FEAT
|
target = SALES_FEAT
|
||||||
|
|
||||||
# ?? --- new: dates and forecast
|
|
||||||
last_date = pd.to_datetime(datetime.datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
last_date = pd.to_datetime(datetime.datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||||
future_dates = pd.date_range(
|
future_dates = pd.date_range(
|
||||||
start=last_date + pd.DateOffset(months=1), periods=6, freq="MS"
|
start=last_date + pd.DateOffset(months=1), periods=6, freq="MS"
|
||||||
@ -230,7 +240,7 @@ def _process_sales(
|
|||||||
# Randomized Search
|
# Randomized Search
|
||||||
kfold = KFold(n_splits=5, shuffle=True)
|
kfold = KFold(n_splits=5, shuffle=True)
|
||||||
params: ParamSearchXGBRegressor = {
|
params: ParamSearchXGBRegressor = {
|
||||||
"n_estimators": scipy.stats.poisson(mu=1000),
|
"n_estimators": scipy.stats.poisson(mu=100),
|
||||||
"learning_rate": [0.03, 0.04, 0.05],
|
"learning_rate": [0.03, 0.04, 0.05],
|
||||||
"max_depth": range(2, 9),
|
"max_depth": range(2, 9),
|
||||||
"min_child_weight": range(1, 5),
|
"min_child_weight": range(1, 5),
|
||||||
@ -240,27 +250,19 @@ def _process_sales(
|
|||||||
"early_stopping_rounds": [20, 50],
|
"early_stopping_rounds": [20, 50],
|
||||||
}
|
}
|
||||||
|
|
||||||
# ?? --- new: best_estimator (internal usage only)
|
|
||||||
best_estimator = None
|
best_estimator = None
|
||||||
best_params: BestParametersXGBRegressor | None = None
|
best_params: BestParametersXGBRegressor | None = None
|
||||||
best_score_mae: float | None = float("inf")
|
best_score_mae: float | None = float("inf")
|
||||||
best_score_r2: float | None = None
|
best_score_r2: float | None = None
|
||||||
best_start_year: int | None = None
|
best_start_year: int | None = None
|
||||||
too_few_month_points: bool = True
|
too_few_month_points: bool = True
|
||||||
# forecast: pd.DataFrame | None = None
|
|
||||||
# TODO: write routine to pad missing values in datetime row
|
|
||||||
# TODO problem: continuous timeline expected, but values can be empty for multiple months
|
|
||||||
# TODO: therefore, stepping with fixed value n does not result in timedelta of n episodes
|
|
||||||
# Option A: pad data frame with zero values --> could impede forecast algorithm
|
|
||||||
# Option B: calculate next index based on timedelta
|
|
||||||
stride = dopt_basics.datetime.timedelta_from_val(365, TimeUnitsTimedelta.DAYS)
|
stride = dopt_basics.datetime.timedelta_from_val(365, TimeUnitsTimedelta.DAYS)
|
||||||
dates = cast(pd.DatetimeIndex, monthly_sum.index)
|
dates = cast(pd.DatetimeIndex, monthly_sum.index)
|
||||||
min_date = dates.min()
|
min_date = dates.min()
|
||||||
|
|
||||||
# ?? --- new: use monthly basis for time windows
|
|
||||||
# baseline: 3 years - 36 months
|
# baseline: 3 years - 36 months
|
||||||
starting_date = datetime.datetime.now() - relativedelta(months=36)
|
starting_date = datetime.datetime.now() - relativedelta(months=36)
|
||||||
# starting_date = dates.max() - relativedelta(months=36)
|
|
||||||
|
|
||||||
def get_index_date(
|
def get_index_date(
|
||||||
dates: pd.DatetimeIndex,
|
dates: pd.DatetimeIndex,
|
||||||
@ -307,10 +309,9 @@ def _process_sales(
|
|||||||
X_train, X_test = train[features], test[features]
|
X_train, X_test = train[features], test[features]
|
||||||
y_train, y_test = train[target], test[target]
|
y_train, y_test = train[target], test[target]
|
||||||
|
|
||||||
# ?? --- new: adapted condition to fit new for-loop
|
|
||||||
# test set size fixed at 6 --> first iteration: baseline - 6 entries
|
# test set size fixed at 6 --> first iteration: baseline - 6 entries
|
||||||
# for each new year 10 new data points needed
|
# for each new year 10 new data points (i.e., sales strictly positive) needed
|
||||||
if len(train) >= 30 + 10 * step:
|
if len(train[train[SALES_FEAT] > 0]) >= 30 + 10 * step:
|
||||||
too_few_month_points = False
|
too_few_month_points = False
|
||||||
|
|
||||||
rand = RandomizedSearchCV(
|
rand = RandomizedSearchCV(
|
||||||
@ -333,7 +334,7 @@ def _process_sales(
|
|||||||
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
||||||
best_score_mae = error
|
best_score_mae = error
|
||||||
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
||||||
# --- new: use first_date for best_start_year
|
# --- new: use target_date for best_start_year
|
||||||
best_start_year = target_date.year
|
best_start_year = target_date.year
|
||||||
# --- new: store best_estimator
|
# --- new: store best_estimator
|
||||||
best_estimator = copy.copy(rand.best_estimator_)
|
best_estimator = copy.copy(rand.best_estimator_)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user