integrate database writing procedures for logging purposes
This commit is contained in:
parent
447a70486b
commit
302ccc16db
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "delta-barth"
|
||||
version = "0.5.0dev0"
|
||||
version = "0.5.0"
|
||||
description = "workflows and pipelines for the Python-based Plugin of Delta Barth's ERP system"
|
||||
authors = [
|
||||
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
|
||||
@ -73,7 +73,7 @@ directory = "reports/coverage"
|
||||
|
||||
|
||||
[tool.bumpversion]
|
||||
current_version = "0.5.0dev0"
|
||||
current_version = "0.5.0"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@ -3,16 +3,19 @@ from __future__ import annotations
|
||||
import datetime
|
||||
import math
|
||||
from collections.abc import Mapping, Set
|
||||
from dataclasses import asdict
|
||||
from datetime import datetime as Datetime
|
||||
from typing import TYPE_CHECKING, Final, TypeAlias, cast
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import scipy.stats
|
||||
import sqlalchemy as sql
|
||||
from sklearn.metrics import mean_absolute_error, r2_score
|
||||
from sklearn.model_selection import KFold, RandomizedSearchCV
|
||||
from xgboost import XGBRegressor
|
||||
|
||||
from delta_barth import databases
|
||||
from delta_barth.analysis import parse
|
||||
from delta_barth.api.requests import (
|
||||
SalesPrognosisResponse,
|
||||
@ -29,7 +32,8 @@ from delta_barth.constants import (
|
||||
SALES_MIN_NUM_DATAPOINTS,
|
||||
)
|
||||
from delta_barth.errors import STATUS_HANDLER, wrap_result
|
||||
from delta_barth.logging import logger_pipelines as logger
|
||||
from delta_barth.logging import logger_db, logger_pipelines
|
||||
from delta_barth.management import SESSION
|
||||
from delta_barth.types import (
|
||||
BestParametersXGBRegressor,
|
||||
DualDict,
|
||||
@ -77,6 +81,21 @@ def _parse_df_to_results(
|
||||
return SalesPrognosisResults(daten=tuple(df_formatted)) # type: ignore
|
||||
|
||||
|
||||
def _write_sales_forecast_stats(
|
||||
stats: SalesForecastStatistics,
|
||||
) -> None:
|
||||
stats_db = asdict(stats)
|
||||
_ = stats_db.pop("xgb_params")
|
||||
xgb_params = stats.xgb_params
|
||||
|
||||
with SESSION.db_engine.begin() as conn:
|
||||
res = conn.execute(sql.insert(databases.sf_stats).values(stats_db))
|
||||
sf_id = cast(int, res.inserted_primary_key[0]) # type: ignore
|
||||
if xgb_params is not None:
|
||||
xgb_params["forecast_id"] = sf_id
|
||||
conn.execute(sql.insert(databases.sf_XGB).values(xgb_params))
|
||||
|
||||
|
||||
@wrap_result()
|
||||
def _parse_api_resp_to_df_wrapped(
|
||||
resp: SalesPrognosisResponse,
|
||||
@ -91,23 +110,11 @@ def _parse_df_to_results_wrapped(
|
||||
return _parse_df_to_results(data)
|
||||
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# Input:
|
||||
# DataFrame df mit Columns f_umsatz_fakt, firmen, art, v_warengrp
|
||||
# kunde (muss enthalten sein in df['firmen']['firma_refid'])
|
||||
|
||||
# Output:
|
||||
# Integer umsetzung (Prognose möglich): 0 ja, 1 nein (zu wenig Daten verfügbar),
|
||||
# 2 nein (Daten nicht für Prognose geeignet)
|
||||
# DataFrame test: Jahr, Monat, Vorhersage
|
||||
# -------------------------------------------------------------------------------
|
||||
|
||||
|
||||
# Prognose Umsatz je Firma
|
||||
|
||||
|
||||
# TODO: check usage of separate exception and handle it in API function
|
||||
# TODO set min number of data points as constant, not parameter
|
||||
@wrap_result()
|
||||
def _write_sales_forecast_stats_wrapped(
|
||||
stats: SalesForecastStatistics,
|
||||
) -> None:
|
||||
return _write_sales_forecast_stats(stats)
|
||||
|
||||
|
||||
def _preprocess_sales(
|
||||
@ -341,7 +348,7 @@ def _export_on_fail(
|
||||
return SalesPrognosisResultsExport(response=response, status=status)
|
||||
|
||||
|
||||
def pipeline_sales(
|
||||
def pipeline_sales_forecast(
|
||||
session: Session,
|
||||
company_id: int | None = None,
|
||||
start_date: Datetime | None = None,
|
||||
@ -352,8 +359,8 @@ def pipeline_sales(
|
||||
start_date=start_date,
|
||||
)
|
||||
if status != STATUS_HANDLER.SUCCESS:
|
||||
logger.error(
|
||||
"Error during sales prognosis data retrieval, Status: %s",
|
||||
logger_pipelines.error(
|
||||
"Error during sales forecast data retrieval, Status: %s",
|
||||
status,
|
||||
stack_info=True,
|
||||
)
|
||||
@ -365,8 +372,8 @@ def pipeline_sales(
|
||||
target_features=FEATURES_SALES_PROGNOSIS,
|
||||
)
|
||||
if pipe.status != STATUS_HANDLER.SUCCESS:
|
||||
logger.error(
|
||||
"Error during sales prognosis preprocessing, Status: %s",
|
||||
logger_pipelines.error(
|
||||
"Error during sales forecast preprocessing, Status: %s",
|
||||
pipe.status,
|
||||
stack_info=True,
|
||||
)
|
||||
@ -377,9 +384,16 @@ def pipeline_sales(
|
||||
min_num_data_points=SALES_MIN_NUM_DATAPOINTS,
|
||||
base_num_data_points_months=SALES_BASE_NUM_DATAPOINTS_MONTHS,
|
||||
)
|
||||
if pipe.statistics is not None:
|
||||
res = _write_sales_forecast_stats_wrapped(pipe.statistics)
|
||||
if res.status != STATUS_HANDLER.SUCCESS:
|
||||
logger_db.error(
|
||||
"[DB] Error during write process of sales forecast statistics: %s",
|
||||
res.status,
|
||||
)
|
||||
if pipe.status != STATUS_HANDLER.SUCCESS:
|
||||
logger.error(
|
||||
"Error during sales prognosis main processing, Status: %s",
|
||||
logger_pipelines.error(
|
||||
"Error during sales forecast main processing, Status: %s",
|
||||
pipe.status,
|
||||
stack_info=True,
|
||||
)
|
||||
@ -390,8 +404,8 @@ def pipeline_sales(
|
||||
feature_map=DualDict(),
|
||||
)
|
||||
if pipe.status != STATUS_HANDLER.SUCCESS:
|
||||
logger.error(
|
||||
"Error during sales prognosis postprocessing, Status: %s",
|
||||
logger_pipelines.error(
|
||||
"Error during sales forecast postprocessing, Status: %s",
|
||||
pipe.status,
|
||||
stack_info=True,
|
||||
)
|
||||
|
||||
@ -34,8 +34,10 @@ logger_session = logging.getLogger("delta_barth.session")
|
||||
logger_session.setLevel(logging.DEBUG)
|
||||
logger_wrapped_results = logging.getLogger("delta_barth.wrapped_results")
|
||||
logger_wrapped_results.setLevel(logging.DEBUG)
|
||||
logger_pipelines = logging.getLogger("delta_barth.logger_pipelines")
|
||||
logger_pipelines = logging.getLogger("delta_barth.pipelines")
|
||||
logger_pipelines.setLevel(logging.DEBUG)
|
||||
logger_db = logging.getLogger("delta_barth.databases")
|
||||
logger_db.setLevel(logging.DEBUG)
|
||||
|
||||
|
||||
def setup_logging(
|
||||
|
||||
@ -11,7 +11,9 @@ def pipeline_sales_forecast(
|
||||
company_id: int | None,
|
||||
start_date: Datetime | None,
|
||||
) -> JsonExportResponse:
|
||||
result = forecast.pipeline_sales(SESSION, company_id=company_id, start_date=start_date)
|
||||
result = forecast.pipeline_sales_forecast(
|
||||
SESSION, company_id=company_id, start_date=start_date
|
||||
)
|
||||
export = JsonExportResponse(result.model_dump_json())
|
||||
|
||||
return export
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import enum
|
||||
import pprint
|
||||
import typing as t
|
||||
from collections.abc import Sequence
|
||||
from dataclasses import dataclass, field
|
||||
@ -29,6 +30,10 @@ class Status(BaseModel):
|
||||
message: SkipValidation[str] = ""
|
||||
api_server_error: SkipValidation[DelBarApiError | None] = None
|
||||
|
||||
def __str__(self) -> str:
|
||||
py_repr = self.model_dump()
|
||||
return pprint.pformat(py_repr, indent=4, sort_dicts=False)
|
||||
|
||||
|
||||
class ResponseType(BaseModel):
|
||||
pass
|
||||
|
||||
@ -4,12 +4,19 @@ from unittest.mock import patch
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pytest
|
||||
import sqlalchemy as sql
|
||||
from pydantic import ValidationError
|
||||
|
||||
from delta_barth import databases as db
|
||||
from delta_barth.analysis import forecast as fc
|
||||
from delta_barth.api.requests import SalesPrognosisResponse, SalesPrognosisResponseEntry
|
||||
from delta_barth.errors import STATUS_HANDLER
|
||||
from delta_barth.types import DualDict, PipeResult
|
||||
from delta_barth.types import (
|
||||
BestParametersXGBRegressor,
|
||||
DualDict,
|
||||
PipeResult,
|
||||
SalesForecastStatistics,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
@ -123,6 +130,96 @@ def test_parse_df_to_results_InvalidData(invalid_results):
|
||||
_ = fc._parse_df_to_results(invalid_results)
|
||||
|
||||
|
||||
def test_write_sales_forecast_stats_small(session):
|
||||
eng = session.db_engine
|
||||
code = 0
|
||||
descr = "Test case to write stats"
|
||||
length = 32
|
||||
stats = SalesForecastStatistics(code, descr, length)
|
||||
# execute
|
||||
with patch("delta_barth.analysis.forecast.SESSION", session):
|
||||
fc._write_sales_forecast_stats(stats)
|
||||
# read
|
||||
with eng.begin() as conn:
|
||||
res = conn.execute(sql.select(db.sf_stats))
|
||||
|
||||
inserted = tuple(res.mappings())[0]
|
||||
data = dict(**inserted)
|
||||
del data["id"]
|
||||
result = SalesForecastStatistics(**data)
|
||||
assert result.status_code == code
|
||||
assert result.status_dscr == descr
|
||||
assert result.length_dataset == length
|
||||
assert result.score_mae is None
|
||||
assert result.score_r2 is None
|
||||
assert result.best_start_year is None
|
||||
assert result.xgb_params is None
|
||||
|
||||
|
||||
def test_write_sales_forecast_stats_large(session):
|
||||
eng = session.db_engine
|
||||
code = 0
|
||||
descr = "Test case to write stats"
|
||||
length = 32
|
||||
score_mae = 3.54
|
||||
score_r2 = 0.56
|
||||
best_start_year = 2020
|
||||
xgb_params = BestParametersXGBRegressor(
|
||||
n_estimators=2,
|
||||
learning_rate=0.3,
|
||||
max_depth=2,
|
||||
min_child_weight=5,
|
||||
gamma=0.5,
|
||||
subsample=0.8,
|
||||
colsample_bytree=5.25,
|
||||
early_stopping_rounds=5,
|
||||
)
|
||||
stats = SalesForecastStatistics(
|
||||
code,
|
||||
descr,
|
||||
length,
|
||||
score_mae,
|
||||
score_r2,
|
||||
best_start_year,
|
||||
xgb_params,
|
||||
)
|
||||
# execute
|
||||
with patch("delta_barth.analysis.forecast.SESSION", session):
|
||||
fc._write_sales_forecast_stats(stats)
|
||||
# read
|
||||
with eng.begin() as conn:
|
||||
res_stats = conn.execute(sql.select(db.sf_stats))
|
||||
res_xgb = conn.execute(sql.select(db.sf_XGB))
|
||||
# reconstruct best XGB parameters
|
||||
inserted_xgb = tuple(res_xgb.mappings())[0]
|
||||
data_xgb = dict(**inserted_xgb)
|
||||
del data_xgb["id"]
|
||||
xgb_stats = BestParametersXGBRegressor(**data_xgb)
|
||||
# reconstruct other statistics
|
||||
inserted = tuple(res_stats.mappings())[0]
|
||||
data_inserted = dict(**inserted)
|
||||
stats_id_fk = data_inserted["id"] # foreign key in XGB parameters
|
||||
del data_inserted["id"]
|
||||
stats = SalesForecastStatistics(**data_inserted, xgb_params=xgb_stats)
|
||||
assert stats.status_code == code
|
||||
assert stats.status_dscr == descr
|
||||
assert stats.length_dataset == length
|
||||
assert stats.score_mae == pytest.approx(score_mae)
|
||||
assert stats.score_r2 == pytest.approx(score_r2)
|
||||
assert stats.best_start_year == best_start_year
|
||||
assert stats.xgb_params is not None
|
||||
# compare xgb_stats
|
||||
assert stats.xgb_params["forecast_id"] == stats_id_fk # type: ignore
|
||||
assert stats.xgb_params["n_estimators"] == 2
|
||||
assert stats.xgb_params["learning_rate"] == pytest.approx(0.3)
|
||||
assert stats.xgb_params["max_depth"] == 2
|
||||
assert stats.xgb_params["min_child_weight"] == 5
|
||||
assert stats.xgb_params["gamma"] == pytest.approx(0.5)
|
||||
assert stats.xgb_params["subsample"] == pytest.approx(0.8)
|
||||
assert stats.xgb_params["colsample_bytree"] == pytest.approx(5.25)
|
||||
assert stats.xgb_params["early_stopping_rounds"] == 5
|
||||
|
||||
|
||||
def test_preprocess_sales_Success(
|
||||
exmpl_api_sales_prognosis_resp,
|
||||
feature_map,
|
||||
@ -319,16 +416,25 @@ def test_export_on_fail():
|
||||
|
||||
|
||||
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
|
||||
def test_pipeline_sales_prognosis(exmpl_api_sales_prognosis_resp):
|
||||
def mock_request(*args, **kwargs): # pragma: no cover
|
||||
return exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS
|
||||
|
||||
def test_pipeline_sales_forecast_SuccessDbWrite(exmpl_api_sales_prognosis_resp, session):
|
||||
with patch(
|
||||
"delta_barth.analysis.forecast.get_sales_prognosis_data",
|
||||
# new=mock_request,
|
||||
) as mock:
|
||||
mock.return_value = exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS
|
||||
result = fc.pipeline_sales(None) # type: ignore
|
||||
with patch("delta_barth.analysis.forecast.SESSION", session):
|
||||
result = fc.pipeline_sales_forecast(None) # type: ignore
|
||||
print(result)
|
||||
assert result.status == STATUS_HANDLER.SUCCESS
|
||||
assert len(result.response.daten) > 0
|
||||
|
||||
|
||||
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
|
||||
def test_pipeline_sales_forecast_FailDbWrite(exmpl_api_sales_prognosis_resp):
|
||||
with patch(
|
||||
"delta_barth.analysis.forecast.get_sales_prognosis_data",
|
||||
) as mock:
|
||||
mock.return_value = exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS
|
||||
result = fc.pipeline_sales_forecast(None) # type: ignore
|
||||
print(result)
|
||||
assert result.status == STATUS_HANDLER.SUCCESS
|
||||
assert len(result.response.daten) > 0
|
||||
|
||||
@ -1,10 +1,6 @@
|
||||
from dataclasses import asdict
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sql
|
||||
|
||||
from delta_barth import databases as db
|
||||
from delta_barth.types import BestParametersXGBRegressor, SalesForecastStatistics
|
||||
|
||||
|
||||
def test_get_engine(tmp_path):
|
||||
@ -13,107 +9,3 @@ def test_get_engine(tmp_path):
|
||||
assert isinstance(engine, sql.Engine)
|
||||
assert "sqlite" in str(engine.url)
|
||||
assert db_path.parent.name in str(engine.url)
|
||||
|
||||
|
||||
def test_write_sales_forecast_statistics_small(session):
|
||||
eng = session.db_engine
|
||||
code = 0
|
||||
descr = "Test case to write stats"
|
||||
length = 32
|
||||
stats = SalesForecastStatistics(code, descr, length)
|
||||
_ = stats.xgb_params
|
||||
|
||||
stats_to_write = asdict(stats)
|
||||
_ = stats_to_write.pop("xgb_params")
|
||||
|
||||
with eng.begin() as conn:
|
||||
res = conn.execute(sql.insert(db.sf_stats).values(stats_to_write))
|
||||
_ = res.inserted_primary_key[0]
|
||||
|
||||
with eng.begin() as conn:
|
||||
res = conn.execute(sql.select(db.sf_stats))
|
||||
|
||||
inserted = tuple(res.mappings())[0]
|
||||
data = dict(**inserted)
|
||||
del data["id"]
|
||||
result = SalesForecastStatistics(**data)
|
||||
assert result.status_code == code
|
||||
assert result.status_dscr == descr
|
||||
assert result.length_dataset == length
|
||||
assert result.score_mae is None
|
||||
assert result.score_r2 is None
|
||||
assert result.best_start_year is None
|
||||
assert result.xgb_params is None
|
||||
|
||||
|
||||
def test_write_sales_forecast_statistics_large(session):
|
||||
eng = session.db_engine
|
||||
code = 0
|
||||
descr = "Test case to write stats"
|
||||
length = 32
|
||||
score_mae = 3.54
|
||||
score_r2 = 0.56
|
||||
best_start_year = 2020
|
||||
xgb_params = BestParametersXGBRegressor(
|
||||
n_estimators=2,
|
||||
learning_rate=0.3,
|
||||
max_depth=2,
|
||||
min_child_weight=5,
|
||||
gamma=0.5,
|
||||
subsample=0.8,
|
||||
colsample_bytree=5.25,
|
||||
early_stopping_rounds=5,
|
||||
)
|
||||
|
||||
stats = SalesForecastStatistics(
|
||||
code,
|
||||
descr,
|
||||
length,
|
||||
score_mae,
|
||||
score_r2,
|
||||
best_start_year,
|
||||
xgb_params,
|
||||
)
|
||||
xgb_params = stats.xgb_params
|
||||
assert xgb_params is not None
|
||||
|
||||
stats_to_write = asdict(stats)
|
||||
_ = stats_to_write.pop("xgb_params")
|
||||
|
||||
with eng.begin() as conn:
|
||||
res = conn.execute(sql.insert(db.sf_stats).values(stats_to_write))
|
||||
sf_id = res.inserted_primary_key[0]
|
||||
xgb_params["forecast_id"] = sf_id
|
||||
res = conn.execute(sql.insert(db.sf_XGB).values(xgb_params))
|
||||
|
||||
with eng.begin() as conn:
|
||||
res_stats = conn.execute(sql.select(db.sf_stats))
|
||||
res_xgb = conn.execute(sql.select(db.sf_XGB))
|
||||
# reconstruct best XGB parameters
|
||||
inserted_xgb = tuple(res_xgb.mappings())[0]
|
||||
data_xgb = dict(**inserted_xgb)
|
||||
del data_xgb["id"]
|
||||
xgb_stats = BestParametersXGBRegressor(**data_xgb)
|
||||
# reconstruct other statistics
|
||||
inserted = tuple(res_stats.mappings())[0]
|
||||
data_inserted = dict(**inserted)
|
||||
stats_id_fk = data_inserted["id"] # foreign key in XGB parameters
|
||||
del data_inserted["id"]
|
||||
stats = SalesForecastStatistics(**data_inserted, xgb_params=xgb_stats)
|
||||
assert stats.status_code == code
|
||||
assert stats.status_dscr == descr
|
||||
assert stats.length_dataset == length
|
||||
assert stats.score_mae == pytest.approx(score_mae)
|
||||
assert stats.score_r2 == pytest.approx(score_r2)
|
||||
assert stats.best_start_year == best_start_year
|
||||
assert stats.xgb_params is not None
|
||||
# compare xgb_stats
|
||||
assert stats.xgb_params["forecast_id"] == stats_id_fk # type: ignore
|
||||
assert stats.xgb_params["n_estimators"] == 2
|
||||
assert stats.xgb_params["learning_rate"] == pytest.approx(0.3)
|
||||
assert stats.xgb_params["max_depth"] == 2
|
||||
assert stats.xgb_params["min_child_weight"] == 5
|
||||
assert stats.xgb_params["gamma"] == pytest.approx(0.5)
|
||||
assert stats.xgb_params["subsample"] == pytest.approx(0.8)
|
||||
assert stats.xgb_params["colsample_bytree"] == pytest.approx(5.25)
|
||||
assert stats.xgb_params["early_stopping_rounds"] == 5
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user