adapt forecast pipeline to new output format

This commit is contained in:
Florian Förster 2025-03-05 15:06:24 +01:00
parent a1cb3ddbe9
commit 763d3c1aac
2 changed files with 5 additions and 7 deletions

View File

@ -8,7 +8,7 @@ import pandas as pd
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from delta_barth._management import ERROR_HANDLER
from delta_barth._management import STATE_HANDLER
from delta_barth.analysis import parse
from delta_barth.constants import COL_MAP_SALES_PROGNOSIS, FEATURES_SALES_PROGNOSIS
from delta_barth.types import CustomerDataSalesForecast, DataPipeStates, PipeResult
@ -105,7 +105,7 @@ def sales_per_customer(
# check data availability
if len(df_cust) < min_num_data_points:
return PipeResult(status=ERROR_HANDLER.pipe_states.TOO_FEW_POINTS, data=None)
return PipeResult(status=STATE_HANDLER.pipe_states.TOO_FEW_POINTS, data=None)
else:
# Entwicklung der Umsätze: definierte Zeiträume Monat
df_cust["year"] = df_cust["date"].dt.year
@ -144,4 +144,4 @@ def sales_per_customer(
test = test.reset_index(drop=True)
# umsetzung, prognose
return PipeResult(status=ERROR_HANDLER.pipe_states.SUCCESS, data=test)
return PipeResult(status=STATE_HANDLER.pipe_states.SUCCESS, data=test)

View File

@ -1,5 +1,3 @@
import pytest
from delta_barth.analysis import forecast as fc
@ -7,7 +5,7 @@ def test_sales_per_customer_success(sales_data):
customer_id = 1133
res = fc.sales_per_customer(sales_data, customer_id)
assert res.status.status_code == 0
assert res.status.code == 0
assert res.data is not None
@ -15,7 +13,7 @@ def test_sales_per_customer_too_few_data_points(sales_data):
customer_id = 1000
res = fc.sales_per_customer(sales_data, customer_id)
assert res.status.status_code == 1
assert res.status.code == 1
assert res.data is None