diff --git a/src/delta_barth/analysis/forecast.py b/src/delta_barth/analysis/forecast.py index 7b9d09e..0de4843 100644 --- a/src/delta_barth/analysis/forecast.py +++ b/src/delta_barth/analysis/forecast.py @@ -254,32 +254,13 @@ def _process_sales( # Option A: pad data frame with zero values --> could impede forecast algorithm # Option B: calculate next index based on timedelta stride = dopt_basics.datetime.timedelta_from_val(365, TimeUnitsTimedelta.DAYS) - dates = cast(pd.DatetimeIndex, monthly_sum.index) - min_date = dates.min() - stride = dopt_basics.datetime.timedelta_from_val(365, TimeUnitsTimedelta.DAYS) - - dates = cast(pd.DatetimeIndex, monthly_sum.index) - - min_date = dates.min() - - # print("dates: ", dates) # ?? --- new: use monthly basis for time windows # baseline: 3 years - 36 months - # starting_date = datetime.datetime.now() - relativedelta(months=36) - starting_date = dates.max() - relativedelta(months=36) - # start_index = next( - # (i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1 - # ) - # print("start idx: ", start_index, "length dates: ", len(dates)) - starting_date = datetime.datetime.now() - relativedelta(months=12) + starting_date = datetime.datetime.now() - relativedelta(months=36) # starting_date = dates.max() - relativedelta(months=36) - # start_index = next( - # (i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1 - # ) - # print("start idx: ", start_index, "length dates: ", len(dates)) def get_index_date( dates: pd.DatetimeIndex,