major overhaul of forecast pipeline
This commit is contained in:
parent
670e2e549f
commit
afa31e2a94
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "delta-barth"
|
||||
version = "0.5.7dev1"
|
||||
version = "0.5.7dev2"
|
||||
description = "workflows and pipelines for the Python-based Plugin of Delta Barth's ERP system"
|
||||
authors = [
|
||||
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
|
||||
@ -44,7 +44,8 @@ filterwarnings = [
|
||||
]
|
||||
markers = [
|
||||
"api_con_required: tests require an API connection (deselect with '-m \"not api_con_required\"')",
|
||||
"new: to test only new tests, usually removed afterwards (deselect with '-m \"not quick\"')",
|
||||
"new: to test only new tests, usually removed afterwards (deselect with '-m \"not new\"')",
|
||||
"forecast: main components of forecast pipeline (deselect with '-m \"not forecast\"')"
|
||||
]
|
||||
log_cli = true
|
||||
|
||||
@ -73,7 +74,7 @@ directory = "reports/coverage"
|
||||
|
||||
|
||||
[tool.bumpversion]
|
||||
current_version = "0.5.7dev1"
|
||||
current_version = "0.5.7dev2"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@ -208,17 +208,25 @@ def _process_sales(
|
||||
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
|
||||
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
|
||||
|
||||
current_year = datetime.now().year
|
||||
current_month = datetime.now().month
|
||||
monthly_sum_data_only = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
||||
|
||||
current_year = datetime.datetime.now().year
|
||||
current_month = datetime.datetime.now().month
|
||||
years = range(df_cust["jahr"].min(), current_year + 1)
|
||||
|
||||
old_monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
||||
|
||||
all_month_year_combinations = pd.DataFrame(
|
||||
[(year, month) for year in years for month in range(1, 13) if (year < current_year or (year == current_year and month <= current_month))], columns=["jahr", "monat"]
|
||||
[
|
||||
(year, month)
|
||||
for year in years
|
||||
for month in range(1, 13)
|
||||
if (year < current_year or (year == current_year and month <= current_month))
|
||||
],
|
||||
columns=["jahr", "monat"],
|
||||
)
|
||||
|
||||
monthly_sum = pd.merge(all_month_year_combinations, old_monthly_sum, on=["jahr", "monat"], how="left")
|
||||
monthly_sum = pd.merge(
|
||||
all_month_year_combinations, monthly_sum_data_only, on=["jahr", "monat"], how="left"
|
||||
)
|
||||
monthly_sum[SALES_FEAT] = monthly_sum[SALES_FEAT].fillna(0)
|
||||
monthly_sum[DATE_FEAT] = (
|
||||
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
|
||||
@ -256,27 +264,22 @@ def _process_sales(
|
||||
too_few_month_points: bool = True
|
||||
|
||||
dates = cast(pd.DatetimeIndex, monthly_sum.index)
|
||||
# print("dates: ", dates)
|
||||
# baseline: 3 years - 36 months
|
||||
starting_date = datetime.datetime.now() - relativedelta(months=36)
|
||||
|
||||
target_index, succ = next(
|
||||
((i, True) for i, date in enumerate(dates) if date >= starting_date), (len(dates) - 1, False)
|
||||
target_index, _ = next(
|
||||
((i, True) for i, date in enumerate(dates) if date >= starting_date),
|
||||
(len(dates) - 1, False),
|
||||
)
|
||||
# print("start idx: ", target_index, "length dates: ", len(dates))
|
||||
|
||||
for add_year, date_idx in enumerate(range(start_index, -1, -12)):
|
||||
# print("date_idx: ", date_idx)
|
||||
for add_year, date_idx in enumerate(range(target_index, -1, -12)):
|
||||
first_date = dates[date_idx]
|
||||
# print("first date: ", first_date)
|
||||
split_date = dates[-6]
|
||||
|
||||
train = cast(
|
||||
pd.DataFrame,
|
||||
monthly_sum.loc[first_date:split_date].copy(), # type: ignore
|
||||
)
|
||||
# print(train)
|
||||
# print("Length train: ", len(train))
|
||||
test = cast(
|
||||
pd.DataFrame,
|
||||
monthly_sum.loc[split_date:].copy(), # type: ignore
|
||||
@ -286,7 +289,7 @@ def _process_sales(
|
||||
|
||||
# test set size fixed at 6 --> first iteration: baseline - 6 entries
|
||||
# for each new year 10 new data points (i.e., sales strictly positive) needed
|
||||
if len(train[train[SALES_FEAT] > 0]) >= 30 + 10 * add_year:
|
||||
if len(train[train[SALES_FEAT] > 0]) >= (base_num_data_points_months + 10 * add_year):
|
||||
too_few_month_points = False
|
||||
|
||||
rand = RandomizedSearchCV(
|
||||
@ -314,7 +317,6 @@ def _process_sales(
|
||||
# --- new: store best_estimator
|
||||
best_estimator = copy.copy(rand.best_estimator_)
|
||||
|
||||
# ?? --- new: use best_estimator to calculate future values and store them in forecast
|
||||
if best_estimator is not None:
|
||||
X_future = pd.DataFrame(
|
||||
{"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates
|
||||
|
||||
@ -1,4 +1,6 @@
|
||||
import datetime
|
||||
from datetime import datetime as Datetime
|
||||
from pathlib import Path
|
||||
from unittest.mock import patch
|
||||
|
||||
import numpy as np
|
||||
@ -255,6 +257,7 @@ def test_preprocess_sales_FailOnTargetFeature(
|
||||
assert pipe.results is None
|
||||
|
||||
|
||||
@pytest.mark.forecast
|
||||
def test_process_sales_Success(sales_data_real_preproc):
|
||||
data = sales_data_real_preproc.copy()
|
||||
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
|
||||
@ -277,6 +280,7 @@ def test_process_sales_Success(sales_data_real_preproc):
|
||||
assert pipe.statistics.xgb_params is not None
|
||||
|
||||
|
||||
@pytest.mark.forecast
|
||||
def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
|
||||
data = sales_data_real_preproc.copy()
|
||||
data = data.iloc[:20, :]
|
||||
@ -303,6 +307,7 @@ def test_process_sales_FailTooFewPoints(sales_data_real_preproc):
|
||||
assert pipe.statistics.xgb_params is None
|
||||
|
||||
|
||||
@pytest.mark.forecast
|
||||
def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
|
||||
data = sales_data_real_preproc.copy()
|
||||
pipe = PipeResult(data, STATUS_HANDLER.SUCCESS)
|
||||
@ -329,8 +334,19 @@ def test_process_sales_FailTooFewMonthPoints(sales_data_real_preproc):
|
||||
assert pipe.statistics.xgb_params is None
|
||||
|
||||
|
||||
@pytest.mark.forecast
|
||||
def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
||||
data = sales_data_real_preproc.copy()
|
||||
# prepare fake data
|
||||
df = sales_data_real_preproc.copy()
|
||||
f_dates = "buchungs_datum"
|
||||
end = datetime.datetime.now()
|
||||
start = df[f_dates].max()
|
||||
fake_dates = pd.date_range(start, end, freq="MS")
|
||||
fake_data = [(1234, 1014, 1024, 1000, 10, date) for date in fake_dates]
|
||||
fake_df = pd.DataFrame(fake_data, columns=df.columns)
|
||||
enhanced_df = pd.concat((df, fake_df), ignore_index=True)
|
||||
|
||||
data = enhanced_df.copy()
|
||||
data["betrag"] = 10000
|
||||
print(data["betrag"])
|
||||
data = data.iloc[:20000, :]
|
||||
@ -340,7 +356,7 @@ def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
||||
def __init__(self, *args, **kwargs) -> None:
|
||||
class Predictor:
|
||||
def predict(self, *args, **kwargs):
|
||||
return np.array([1, 1, 1, 1])
|
||||
return np.array([1, 1, 1, 1], dtype=np.float64)
|
||||
|
||||
self.best_estimator_ = Predictor()
|
||||
|
||||
@ -354,7 +370,7 @@ def test_process_sales_FailNoReliableForecast(sales_data_real_preproc):
|
||||
pipe = fc._process_sales(
|
||||
pipe,
|
||||
min_num_data_points=1,
|
||||
base_num_data_points_months=-100,
|
||||
base_num_data_points_months=1,
|
||||
)
|
||||
|
||||
assert pipe.status != STATUS_HANDLER.SUCCESS
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user