basic structure and pipeline definition

This commit is contained in:
Florian Förster 2025-02-19 12:22:21 +01:00
parent 1c5802527a
commit c70bd1cdc6
6 changed files with 140 additions and 65 deletions

View File

View File

@ -0,0 +1,117 @@
from __future__ import annotations
import dataclasses as dc
from typing import TYPE_CHECKING
import pandas as pd
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from delta_barth.types import CustomerDataSalesForecast, FcErrorCodes
if TYPE_CHECKING:
from delta_barth.types import FcResult
# TODO check pandera for DataFrame validation
# ------------------------------------------------------------------------------
# Input:
# DataFrame df mit Columns f_umsatz_fakt, firmen, art, v_warengrp
# kunde (muss enthalten sein in df['firmen']['firma_refid'])
# Output:
# Integer umsetzung (Prognose möglich): 0 ja, 1 nein (zu wenig Daten verfügbar),
# 2 nein (Daten nicht für Prognose geeignet)
# DataFrame test: Jahr, Monat, Vorhersage
# -------------------------------------------------------------------------------
# Prognose Umsatz je Firma
# TODO: check usage of separate exception and handle it in API function
# TODO set min number of data points as constant, not parameter
def sales_per_customer(
df: pd.DataFrame,
kunde: int,
min_num_data_points: int = 100,
) -> FcResult:
"""_summary_
Parameters
----------
df : pd.DataFrame
Input DF: table "f_umsatz_fakt"
kunde : int
customer ID (FK "firma_ref_ID")
min_num_data_points : int, optional
minimum number of data points to obtain result, by default 100
Returns
-------
FcResult
_description_
"""
cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
# filter data
# TODO change away from nested DataFrames: just use "f_umsatz_fakt"
# TODO with strong type checks
df = df.copy()
df_firma = df[(df["firma_refid"] == kunde) & (df["beleg_typ"] == 1) & (df["betrag"] > 0)]
for transaction in df_firma["vorgang_refid"].unique():
cust_data.order.append(transaction)
cust_data.date.append(
df_firma[df_firma["vorgang_refid"] == transaction]["buchungs_datum"].iloc[0]
)
cust_data.sales.append(
df_firma[df_firma["vorgang_refid"] == transaction]["betrag"].sum()
)
df_cust = pd.DataFrame(dc.asdict(cust_data))
df_cust = df_cust.sort_values(by="date").reset_index()
# check data availability
if len(df_cust) < min_num_data_points:
return FcErrorCodes.DATA_TOO_FEW_POINTS, None
else:
# Entwicklung der Umsätze: definierte Zeiträume Monat
df_cust["year"] = df_cust["date"].dt.year
df_cust["month"] = df_cust["date"].dt.month
monthly_sum = df_cust.groupby(["year", "month"])["sales"].sum().reset_index()
monthly_sum["date"] = (
monthly_sum["month"].astype(str) + "." + monthly_sum["year"].astype(str)
)
monthly_sum["date"] = pd.to_datetime(monthly_sum["date"], format="%m.%Y")
monthly_sum = monthly_sum.set_index("date")
train = monthly_sum.iloc[:-5].copy()
test = monthly_sum.iloc[-5:].copy()
features = ["year", "month"]
target = "sales"
X_train, y_train = train[features], train[target]
X_test, y_test = test[features], test[target]
reg = XGBRegressor(
base_score=0.5,
booster="gbtree",
n_estimators=1000,
early_stopping_rounds=50,
objective="reg:squarederror",
max_depth=3,
learning_rate=0.01,
)
reg.fit(
X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=100
)
test.loc[:, "prediction"] = reg.predict(X_test)
test = test.reset_index(drop=True)
# umsetzung, prognose
return FcErrorCodes.SUCCESS, test

View File

@ -0,0 +1 @@

View File

@ -1,65 +0,0 @@
import pandas as pd
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error
# -----------------------------------------------------------------------------------------------------------------------------
# Input:
# DataFrame df mit Columns f_umsatz_fakt, firmen, art, v_warengrp
# kunde (muss enthalten sein in df['firmen']['firma_refid'])
# Output:
# Integer umsetzung (Prognose möglich): 0 ja, 1 nein (zu wenig Daten verfügbar), 2 nein (Daten nicht für Prognose geeignet)
# DataFrame test: Jahr, Monat, Vorhersage
# -----------------------------------------------------------------------------------------------------------------------------
# Prognose Umsatz je Firma
def prognose(df, kunde):
daten = {'Auftrag': [], 'Datum': [], 'Umsatz': []}
df_firma = df['f_umsatz_fakt'][(df['f_umsatz_fakt']['firma_refid'] == kunde) & (df['f_umsatz_fakt']['beleg_typ'] == 1) & (df['f_umsatz_fakt']['betrag'] > 0)]
for auftrag in df_firma['vorgang_refid'].unique():
daten['Auftrag'].append(auftrag)
daten['Datum'].append(df_firma[df_firma['vorgang_refid'] == auftrag]['buchungs_datum'].iloc[0])
daten['Umsatz'].append(df_firma[df_firma['vorgang_refid'] == auftrag]['betrag'].sum())
daten = pd.DataFrame(daten)
daten = daten.sort_values(by='Datum')
daten = daten.reset_index()
# Datenverfügbarkeit prüfen
if len(daten) >= 100:
# Entwicklung der Umsätze: definierte Zeiträume Monat
daten['Jahr'] = daten['Datum'].dt.year
daten['Monat'] = daten['Datum'].dt.month
monthly_sum = daten.groupby(['Jahr', 'Monat'])['Umsatz'].sum().reset_index()
monthly_sum['Datum'] = monthly_sum['Monat'].astype(str) + '.' + monthly_sum['Jahr'].astype(str)
monthly_sum['Datum'] = pd.to_datetime(monthly_sum['Datum'], format='%m.%Y')
monthly_sum = monthly_sum.set_index('Datum')
train = monthly_sum.iloc[:-5].copy()
test = monthly_sum.iloc[-5:].copy()
features = ['Jahr', 'Monat']
target = 'Umsatz'
X_train, y_train = train[features], train[target]
X_test, y_test = test[features], test[target]
reg = XGBRegressor(base_score=0.5, booster='gbtree', n_estimators=1000, early_stopping_rounds=50, objective='reg:squarederror', max_depth=3, learning_rate=0.01)
reg.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=100)
test.loc[:, 'Vorhersage'] = reg.predict(X_test)
test = test.reset_index(drop=True)
# umsetzung, prognose
return 0, test
# zu wenig Daten verfügbar
else:
# umsetzung, prognose
return 1, None

22
src/delta_barth/types.py Normal file
View File

@ -0,0 +1,22 @@
import enum
from dataclasses import dataclass, field
from typing import TypeAlias
import pandas as pd
# ** forecasts
@dataclass(slots=True)
class CustomerDataSalesForecast:
order: list[int] = field(default_factory=list)
date: list[pd.Timestamp] = field(default_factory=list)
sales: list[float] = field(default_factory=list)
class FcErrorCodes(enum.IntEnum):
SUCCESS = 0
DATA_TOO_FEW_POINTS = 1
DATA_BAD_QUALITY = 2
FcResult: TypeAlias = tuple[FcErrorCodes, pd.DataFrame | None]