Compare commits
12 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 0eb39deec5 | |||
| 8501f551b2 | |||
| da594fb5ba | |||
| e8f3a7aea8 | |||
| 8936f798ab | |||
| e1b375396a | |||
| 5d1f5199d3 | |||
| f49744ca45 | |||
| 2934326258 | |||
| 4ef8fc5e9d | |||
| 14c4efedf7 | |||
| 2055ee5c8b |
@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import datetime
|
||||
import math
|
||||
from collections.abc import Mapping, Set
|
||||
@ -7,10 +8,15 @@ from dataclasses import asdict
|
||||
from datetime import datetime as Datetime
|
||||
from typing import TYPE_CHECKING, Final, TypeAlias, cast
|
||||
|
||||
import dopt_basics.datetime
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import scipy.stats
|
||||
import sqlalchemy as sql
|
||||
|
||||
# --- new: for calculating timedelta
|
||||
from dateutil.relativedelta import relativedelta
|
||||
from dopt_basics.datetime import TimeUnitsTimedelta
|
||||
from sklearn.metrics import mean_absolute_error, r2_score
|
||||
from sklearn.model_selection import KFold, RandomizedSearchCV
|
||||
from xgboost import XGBRegressor
|
||||
@ -183,16 +189,14 @@ def _process_sales(
|
||||
PipeResult
|
||||
_description_
|
||||
"""
|
||||
# cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
|
||||
|
||||
# filter data
|
||||
data = pipe.data
|
||||
assert data is not None, "processing not existing pipe result"
|
||||
|
||||
DATE_FEAT: Final[str] = "buchungs_datum"
|
||||
SALES_FEAT: Final[str] = "betrag"
|
||||
df_firma = data[(data["betrag"] > 0)]
|
||||
df_cust = df_firma.copy()
|
||||
df_filter = data[(data["betrag"] > 0)]
|
||||
df_cust = df_filter.copy()
|
||||
df_cust = df_cust.sort_values(by=DATE_FEAT).reset_index()
|
||||
len_ds = len(df_cust)
|
||||
|
||||
@ -206,7 +210,18 @@ def _process_sales(
|
||||
df_cust["jahr"] = df_cust[DATE_FEAT].dt.year
|
||||
df_cust["monat"] = df_cust[DATE_FEAT].dt.month
|
||||
|
||||
monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
||||
current_year = datetime.now().year
|
||||
current_month = datetime.now().month
|
||||
years = range(df_cust["jahr"].min(), current_year + 1)
|
||||
|
||||
old_monthly_sum = df_cust.groupby(["jahr", "monat"])[SALES_FEAT].sum().reset_index()
|
||||
|
||||
all_month_year_combinations = pd.DataFrame(
|
||||
[(year, month) for year in years for month in range(1, 13) if (year < current_year or (year == current_year and month <= current_month))], columns=["jahr", "monat"]
|
||||
)
|
||||
|
||||
monthly_sum = pd.merge(all_month_year_combinations, old_monthly_sum, on=["jahr", "monat"], how="left")
|
||||
monthly_sum[SALES_FEAT] = monthly_sum[SALES_FEAT].fillna(0)
|
||||
monthly_sum[DATE_FEAT] = (
|
||||
monthly_sum["monat"].astype(str) + "." + monthly_sum["jahr"].astype(str)
|
||||
)
|
||||
@ -215,13 +230,17 @@ def _process_sales(
|
||||
|
||||
features = ["jahr", "monat"]
|
||||
target = SALES_FEAT
|
||||
current_year = datetime.datetime.now().year
|
||||
first_year = cast(int, df_cust["jahr"].min())
|
||||
|
||||
last_date = pd.to_datetime(datetime.datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||
future_dates = pd.date_range(
|
||||
start=last_date + pd.DateOffset(months=1), periods=6, freq="MS"
|
||||
)
|
||||
forecast = pd.DataFrame({"datum": future_dates}).set_index("datum")
|
||||
|
||||
# Randomized Search
|
||||
kfold = KFold(n_splits=5, shuffle=True)
|
||||
params: ParamSearchXGBRegressor = {
|
||||
"n_estimators": scipy.stats.poisson(mu=1000),
|
||||
"n_estimators": scipy.stats.poisson(mu=100),
|
||||
"learning_rate": [0.03, 0.04, 0.05],
|
||||
"max_depth": range(2, 9),
|
||||
"min_child_weight": range(1, 5),
|
||||
@ -231,26 +250,68 @@ def _process_sales(
|
||||
"early_stopping_rounds": [20, 50],
|
||||
}
|
||||
|
||||
best_estimator = None
|
||||
best_params: BestParametersXGBRegressor | None = None
|
||||
best_score_mae: float | None = float("inf")
|
||||
best_score_r2: float | None = None
|
||||
best_start_year: int | None = None
|
||||
too_few_month_points: bool = True
|
||||
forecast: pd.DataFrame | None = None
|
||||
|
||||
stride = dopt_basics.datetime.timedelta_from_val(365, TimeUnitsTimedelta.DAYS)
|
||||
dates = cast(pd.DatetimeIndex, monthly_sum.index)
|
||||
min_date = dates.min()
|
||||
|
||||
# baseline: 3 years - 36 months
|
||||
starting_date = datetime.datetime.now() - relativedelta(months=36)
|
||||
|
||||
def get_index_date(
|
||||
dates: pd.DatetimeIndex,
|
||||
starting_date: datetime.datetime | pd.Timestamp,
|
||||
) -> tuple[pd.Timestamp, bool]:
|
||||
target, succ = next(
|
||||
((date, True) for date in dates if date >= starting_date), (dates[-1], False)
|
||||
)
|
||||
return target, succ
|
||||
|
||||
first_date, succ = get_index_date(dates, starting_date)
|
||||
if not succ:
|
||||
# !! return early
|
||||
...
|
||||
|
||||
date_span = first_date - min_date
|
||||
steps = date_span.days // stride.days
|
||||
|
||||
for step in range(steps + 1):
|
||||
print("step: ", step)
|
||||
target_date = first_date - step * stride
|
||||
print("target date: ", target_date)
|
||||
split_date = dates[-6]
|
||||
|
||||
index_date, succ = get_index_date(dates, target_date)
|
||||
|
||||
if not succ:
|
||||
break
|
||||
|
||||
if index_date >= split_date:
|
||||
print("Skip because of date difference")
|
||||
continue
|
||||
|
||||
for start_year in range(current_year - 4, first_year - 1, -1):
|
||||
train = cast(
|
||||
pd.DataFrame,
|
||||
monthly_sum[monthly_sum.index.year >= start_year].iloc[:-5].copy(), # type: ignore
|
||||
monthly_sum.loc[index_date:split_date].copy(), # type: ignore
|
||||
)
|
||||
print(train)
|
||||
print("Length train: ", len(train))
|
||||
test = cast(
|
||||
pd.DataFrame,
|
||||
monthly_sum[monthly_sum.index.year >= start_year].iloc[-5:].copy(), # type: ignore
|
||||
monthly_sum.loc[split_date:].copy(), # type: ignore
|
||||
)
|
||||
X_train, X_test = train[features], test[features]
|
||||
y_train, y_test = train[target], test[target]
|
||||
|
||||
if len(train) >= (base_num_data_points_months + 10 * (current_year - 4 - start_year)):
|
||||
# test set size fixed at 6 --> first iteration: baseline - 6 entries
|
||||
# for each new year 10 new data points (i.e., sales strictly positive) needed
|
||||
if len(train[train[SALES_FEAT] > 0]) >= 30 + 10 * step:
|
||||
too_few_month_points = False
|
||||
|
||||
rand = RandomizedSearchCV(
|
||||
@ -273,13 +334,22 @@ def _process_sales(
|
||||
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
||||
best_score_mae = error
|
||||
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
||||
best_start_year = start_year
|
||||
print("executed")
|
||||
forecast = test.copy()
|
||||
forecast.loc[:, "vorhersage"] = y_pred
|
||||
# --- new: use target_date for best_start_year
|
||||
best_start_year = target_date.year
|
||||
# --- new: store best_estimator
|
||||
best_estimator = copy.copy(rand.best_estimator_)
|
||||
|
||||
# ?? --- new: use best_estimator to calculate future values and store them in forecast
|
||||
if best_estimator is not None:
|
||||
X_future = pd.DataFrame(
|
||||
{"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates
|
||||
)
|
||||
y_future = best_estimator.predict(X_future) # type: ignore
|
||||
forecast["vorhersage"] = y_future
|
||||
forecast["jahr"] = forecast.index.year # type: ignore
|
||||
forecast["monat"] = forecast.index.month # type: ignore
|
||||
forecast = forecast.reset_index(drop=True)
|
||||
|
||||
if forecast is not None:
|
||||
forecast = forecast.drop(SALES_FEAT, axis=1).reset_index(drop=True)
|
||||
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
|
||||
|
||||
if too_few_month_points:
|
||||
@ -295,7 +365,9 @@ def _process_sales(
|
||||
pipe.stats(stats)
|
||||
return pipe
|
||||
|
||||
assert forecast is not None, "forecast is None, but was attempted to be returned"
|
||||
assert "vorhersage" in forecast.columns, (
|
||||
"forecast does not contain prognosis values, but was attempted to be returned"
|
||||
)
|
||||
status = STATUS_HANDLER.SUCCESS
|
||||
pipe.success(forecast, status)
|
||||
stats = SalesForecastStatistics(
|
||||
|
||||
@ -17,7 +17,7 @@ DUMMY_DATA_PATH: Final[Path] = dummy_data_pth
|
||||
# ** logging
|
||||
ENABLE_LOGGING: Final[bool] = True
|
||||
LOGGING_TO_FILE: Final[bool] = True
|
||||
LOGGING_TO_STDERR: Final[bool] = True
|
||||
LOGGING_TO_STDERR: Final[bool] = False
|
||||
LOG_FILENAME: Final[str] = "dopt-delbar.log"
|
||||
|
||||
# ** databases
|
||||
@ -40,7 +40,7 @@ class KnownDelBarApiErrorCodes(enum.Enum):
|
||||
|
||||
|
||||
# ** API
|
||||
API_CON_TIMEOUT: Final[float] = 5.0 # secs to response
|
||||
API_CON_TIMEOUT: Final[float] = 10.0 # secs to response
|
||||
# ** API response parsing
|
||||
# ** column mapping [API-Response --> Target-Features]
|
||||
COL_MAP_SALES_PROGNOSIS: Final[DualDict[str, str]] = DualDict(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user