add performance metrics logging to database #16
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "delta-barth"
|
||||
version = "0.5.5dev1"
|
||||
version = "0.5.5"
|
||||
description = "workflows and pipelines for the Python-based Plugin of Delta Barth's ERP system"
|
||||
authors = [
|
||||
{name = "Florian Förster", email = "f.foerster@d-opt.com"},
|
||||
@ -73,7 +73,7 @@ directory = "reports/coverage"
|
||||
|
||||
|
||||
[tool.bumpversion]
|
||||
current_version = "0.5.5dev1"
|
||||
current_version = "0.5.5"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
@ -22,7 +22,7 @@ def _write_performance_metrics(
|
||||
) -> PipelineMetrics:
|
||||
if time_end < time_start:
|
||||
raise ValueError("Ending time smaller than starting time")
|
||||
execution_duration = (time_end - time_start) / 10e9
|
||||
execution_duration = (time_end - time_start) / 1e9
|
||||
metrics = PipelineMetrics(
|
||||
pipeline_name=pipeline_name,
|
||||
execution_duration=execution_duration,
|
||||
|
||||
@ -3,22 +3,43 @@ import json
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
import sqlalchemy as sql
|
||||
|
||||
import delta_barth.pipelines
|
||||
from delta_barth import databases as db
|
||||
from delta_barth import pipelines as pl
|
||||
from delta_barth.errors import STATUS_HANDLER
|
||||
|
||||
|
||||
def test_write_performance_metrics(session): ...
|
||||
def test_write_performance_metrics(session):
|
||||
pipe_name = "test_pipe"
|
||||
t_start = 20_000_000_000
|
||||
t_end = 30_000_000_000
|
||||
|
||||
with patch("delta_barth.pipelines.SESSION", session):
|
||||
metrics = pl._write_performance_metrics(
|
||||
pipeline_name=pipe_name,
|
||||
time_start=t_start,
|
||||
time_end=t_end,
|
||||
)
|
||||
assert metrics["pipeline_name"] == pipe_name
|
||||
assert metrics["execution_duration"] == 10
|
||||
|
||||
with session.db_engine.begin() as con:
|
||||
ret = con.execute(sql.select(db.perf_meas))
|
||||
|
||||
metrics = ret.all()[-1]
|
||||
assert metrics.pipeline_name == pipe_name
|
||||
assert metrics.execution_duration == 10
|
||||
|
||||
|
||||
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
|
||||
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp):
|
||||
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp, session):
|
||||
with patch(
|
||||
"delta_barth.analysis.forecast.get_sales_prognosis_data",
|
||||
) as mock:
|
||||
mock.return_value = (exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS)
|
||||
importlib.reload(delta_barth.pipelines)
|
||||
with patch("delta_barth.pipelines.SESSION", session):
|
||||
json_export = pl.pipeline_sales_forecast(None, None)
|
||||
|
||||
assert isinstance(json_export, str)
|
||||
@ -30,8 +51,17 @@ def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp):
|
||||
assert "code" in parsed_resp["status"]
|
||||
assert parsed_resp["status"]["code"] == 0
|
||||
|
||||
with session.db_engine.begin() as con:
|
||||
ret = con.execute(sql.select(db.perf_meas))
|
||||
|
||||
def test_sales_prognosis_pipeline_dummy():
|
||||
metrics = ret.all()[-1]
|
||||
assert metrics.pipeline_name == "sales_forecast"
|
||||
assert metrics.execution_duration > 0
|
||||
|
||||
|
||||
@pytest.mark.new
|
||||
def test_sales_prognosis_pipeline_dummy(session):
|
||||
with patch("delta_barth.pipelines.SESSION", session):
|
||||
json_export = pl.pipeline_sales_forecast_dummy(None, None)
|
||||
|
||||
assert isinstance(json_export, str)
|
||||
@ -46,3 +76,10 @@ def test_sales_prognosis_pipeline_dummy():
|
||||
assert entry["vorhersage"] == pytest.approx(47261.058594)
|
||||
assert "code" in parsed_resp["status"]
|
||||
assert parsed_resp["status"]["code"] == 0
|
||||
|
||||
with session.db_engine.begin() as con:
|
||||
ret = con.execute(sql.select(db.perf_meas))
|
||||
|
||||
metrics = ret.all()[-1]
|
||||
assert metrics.pipeline_name == "sales_forecast_dummy"
|
||||
assert metrics.execution_duration > 0
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user