major overhaul of forecast pipeline #21
@ -1,6 +1,8 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import datetime
|
import datetime
|
||||||
|
# --- new: for calculating timedelta
|
||||||
|
from dateutil.relativedelta import relativedelta
|
||||||
import math
|
import math
|
||||||
from collections.abc import Mapping, Set
|
from collections.abc import Mapping, Set
|
||||||
from dataclasses import asdict
|
from dataclasses import asdict
|
||||||
@ -215,8 +217,16 @@ def _process_sales(
|
|||||||
|
|
||||||
features = ["jahr", "monat"]
|
features = ["jahr", "monat"]
|
||||||
target = SALES_FEAT
|
target = SALES_FEAT
|
||||||
current_year = datetime.datetime.now().year
|
|
||||||
first_year = cast(int, df_cust["jahr"].min())
|
# --- new: not necessary anymore
|
||||||
|
#current_year = datetime.datetime.now().year
|
||||||
|
#first_year = cast(int, df_cust["jahr"].min())
|
||||||
|
|
||||||
|
# --- new: dates und forecast
|
||||||
|
#last_date = pd.to_datetime(monthly_sum.index[-1], format="%m.%Y")
|
||||||
|
last_date = pd.to_datetime(datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||||
|
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=6, freq="MS")
|
||||||
|
forecast = pd.DataFrame({"datum": future_dates.strftime("%m.%Y")}).set_index("datum")
|
||||||
|
|
||||||
# Randomized Search
|
# Randomized Search
|
||||||
kfold = KFold(n_splits=5, shuffle=True)
|
kfold = KFold(n_splits=5, shuffle=True)
|
||||||
@ -231,8 +241,9 @@ def _process_sales(
|
|||||||
"early_stopping_rounds": [20, 50],
|
"early_stopping_rounds": [20, 50],
|
||||||
}
|
}
|
||||||
|
|
||||||
# --- new: best_estimator
|
# --- new: best_estimator (internal usage)
|
||||||
best_estimator: BestEstimatorXGBRegressor | None = None
|
best_estimator = None
|
||||||
|
|
||||||
best_params: BestParametersXGBRegressor | None = None
|
best_params: BestParametersXGBRegressor | None = None
|
||||||
best_score_mae: float | None = float("inf")
|
best_score_mae: float | None = float("inf")
|
||||||
best_score_r2: float | None = None
|
best_score_r2: float | None = None
|
||||||
@ -240,20 +251,19 @@ def _process_sales(
|
|||||||
too_few_month_points: bool = True
|
too_few_month_points: bool = True
|
||||||
forecast: pd.DataFrame | None = None
|
forecast: pd.DataFrame | None = None
|
||||||
|
|
||||||
# --- new: dates und forecast
|
|
||||||
#last_date = pd.to_datetime(monthly_sum.index[-1], format="%m.%Y")
|
|
||||||
last_date = pd.to_datetime(datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
|
||||||
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=anzahl, freq="MS")
|
|
||||||
forecast = pd.DataFrame({"Datum": future_dates.strftime("%m.%Y")}).set_index("Datum")
|
|
||||||
|
|
||||||
dates = monthly_sum.index
|
dates = monthly_sum.index
|
||||||
for index, i in enumerate(range(len(dates)-36, -1, -12)):
|
# --- new: use monthly basis for time windows
|
||||||
current_date = dates[i]
|
starting_date = datetime.now() - relativedelta(months=36)
|
||||||
split_date = dates[-anzahl]
|
#starting_date = dates.max() - relativedelta(months=36)
|
||||||
|
start_index = next((i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1)
|
||||||
|
|
||||||
|
for index, i in enumerate(range(start_index, -1, -12)):
|
||||||
|
start_date = dates[i]
|
||||||
|
split_date = dates[-6]
|
||||||
|
|
||||||
train = cast(
|
train = cast(
|
||||||
pd.DataFrame,
|
pd.DataFrame,
|
||||||
monthly_sum.loc[current_date:split_date].copy(), # type: ignore
|
monthly_sum.loc[start_date:split_date].copy(), # type: ignore
|
||||||
)
|
)
|
||||||
test = cast(
|
test = cast(
|
||||||
pd.DataFrame,
|
pd.DataFrame,
|
||||||
@ -287,12 +297,13 @@ def _process_sales(
|
|||||||
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
||||||
best_score_mae = error
|
best_score_mae = error
|
||||||
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
||||||
best_start_year = start_year
|
# --- new: use store start_date in best_start_year
|
||||||
|
best_start_year = start_date
|
||||||
|
|
||||||
# --- new: use best_estimator to calculate future values and store them in forecast
|
# --- new: use best_estimator to calculate future values and store them in forecast
|
||||||
if best_estimator is not None:
|
if best_estimator is not None:
|
||||||
X_future = pd.DataFrame({"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates)
|
X_future = pd.DataFrame({"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates)
|
||||||
y_future = rand.best_estimator_.predict(X_future)
|
y_future = best_estimator.predict(X_future)
|
||||||
forecast["vorhersage"] = y_future
|
forecast["vorhersage"] = y_future
|
||||||
|
|
||||||
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
|
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user