major overhaul of forecast pipeline #21
@ -1,8 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
import datetime
|
||||
# --- new: for calculating timedelta
|
||||
from dateutil.relativedelta import relativedelta
|
||||
import math
|
||||
from collections.abc import Mapping, Set
|
||||
from dataclasses import asdict
|
||||
@ -13,6 +12,9 @@ import numpy as np
|
||||
import pandas as pd
|
||||
import scipy.stats
|
||||
import sqlalchemy as sql
|
||||
|
||||
# --- new: for calculating timedelta
|
||||
from dateutil.relativedelta import relativedelta
|
||||
from sklearn.metrics import mean_absolute_error, r2_score
|
||||
from sklearn.model_selection import KFold, RandomizedSearchCV
|
||||
from xgboost import XGBRegressor
|
||||
@ -185,16 +187,14 @@ def _process_sales(
|
||||
PipeResult
|
||||
_description_
|
||||
"""
|
||||
# cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
|
||||
|
||||
# filter data
|
||||
data = pipe.data
|
||||
assert data is not None, "processing not existing pipe result"
|
||||
|
||||
DATE_FEAT: Final[str] = "buchungs_datum"
|
||||
SALES_FEAT: Final[str] = "betrag"
|
||||
df_firma = data[(data["betrag"] > 0)]
|
||||
df_cust = df_firma.copy()
|
||||
df_filter = data[(data["betrag"] > 0)]
|
||||
df_cust = df_filter.copy()
|
||||
df_cust = df_cust.sort_values(by=DATE_FEAT).reset_index()
|
||||
len_ds = len(df_cust)
|
||||
|
||||
@ -218,9 +218,11 @@ def _process_sales(
|
||||
features = ["jahr", "monat"]
|
||||
target = SALES_FEAT
|
||||
|
||||
# --- new: dates and forecast
|
||||
last_date = pd.to_datetime(datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=6, freq="MS")
|
||||
# ?? --- new: dates and forecast
|
||||
last_date = pd.to_datetime(datetime.datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||
future_dates = pd.date_range(
|
||||
start=last_date + pd.DateOffset(months=1), periods=6, freq="MS"
|
||||
)
|
||||
forecast = pd.DataFrame({"datum": future_dates.strftime("%m.%Y")}).set_index("datum")
|
||||
|
||||
# Randomized Search
|
||||
@ -236,30 +238,42 @@ def _process_sales(
|
||||
"early_stopping_rounds": [20, 50],
|
||||
}
|
||||
|
||||
# --- new: best_estimator (internal usage only)
|
||||
# ?? --- new: best_estimator (internal usage only)
|
||||
best_estimator = None
|
||||
|
||||
best_params: BestParametersXGBRegressor | None = None
|
||||
best_score_mae: float | None = float("inf")
|
||||
best_score_r2: float | None = None
|
||||
best_start_year: int | None = None
|
||||
too_few_month_points: bool = True
|
||||
forecast: pd.DataFrame | None = None
|
||||
|
||||
# forecast: pd.DataFrame | None = None
|
||||
# TODO: write routine to pad missing values in datetime row
|
||||
# TODO problem: continuous timeline expected, but values can be empty for multiple months
|
||||
# TODO: therefore, stepping with fixed value n does not result in timedelta of n episodes
|
||||
# Option A: pad data frame with zero values --> could impede forecast algorithm
|
||||
# Option B: calculate next index based on timedelta
|
||||
dates = monthly_sum.index
|
||||
# --- new: use monthly basis for time windows
|
||||
starting_date = datetime.now() - relativedelta(months=36)
|
||||
# print("dates: ", dates)
|
||||
# ?? --- new: use monthly basis for time windows
|
||||
# baseline: 3 years - 36 months
|
||||
starting_date = datetime.datetime.now() - relativedelta(months=12)
|
||||
# starting_date = dates.max() - relativedelta(months=36)
|
||||
start_index = next((i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1)
|
||||
start_index = next(
|
||||
(i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1
|
||||
)
|
||||
print("start idx: ", start_index, "length dates: ", len(dates))
|
||||
|
||||
for index, i in enumerate(range(start_index, -1, -12)):
|
||||
first_date = dates[i]
|
||||
for add_year, date_idx in enumerate(range(start_index, -1, -12)):
|
||||
print("date_idx: ", date_idx)
|
||||
first_date = dates[date_idx]
|
||||
print("first date: ", first_date)
|
||||
split_date = dates[-6]
|
||||
|
||||
train = cast(
|
||||
pd.DataFrame,
|
||||
monthly_sum.loc[first_date:split_date].copy(), # type: ignore
|
||||
)
|
||||
print(train)
|
||||
print("Length train: ", len(train))
|
||||
test = cast(
|
||||
pd.DataFrame,
|
||||
monthly_sum.loc[split_date:].copy(), # type: ignore
|
||||
@ -267,8 +281,10 @@ def _process_sales(
|
||||
X_train, X_test = train[features], test[features]
|
||||
y_train, y_test = train[target], test[target]
|
||||
|
||||
# --- new: adapted condition to fit new for-loop
|
||||
if len(train) >= 30 + 10 * index:
|
||||
# ?? --- new: adapted condition to fit new for-loop
|
||||
# test set size fixed at 6 --> first iteration: baseline - 6 entries
|
||||
# for each new year 10 new data points needed
|
||||
if len(train) >= 30 + 10 * add_year:
|
||||
too_few_month_points = False
|
||||
|
||||
rand = RandomizedSearchCV(
|
||||
@ -294,12 +310,14 @@ def _process_sales(
|
||||
# --- new: use first_date for best_start_year
|
||||
best_start_year = first_date.year
|
||||
# --- new: store best_estimator
|
||||
best_estimator = rand.best_estimator_
|
||||
best_estimator = copy.copy(rand.best_estimator_)
|
||||
|
||||
# --- new: use best_estimator to calculate future values and store them in forecast
|
||||
# ?? --- new: use best_estimator to calculate future values and store them in forecast
|
||||
if best_estimator is not None:
|
||||
X_future = pd.DataFrame({"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates)
|
||||
y_future = best_estimator.predict(X_future)
|
||||
X_future = pd.DataFrame(
|
||||
{"jahr": future_dates.year, "monat": future_dates.month}, index=future_dates
|
||||
)
|
||||
y_future = best_estimator.predict(X_future) # type: ignore
|
||||
forecast["vorhersage"] = y_future
|
||||
|
||||
best_score_mae = best_score_mae if not math.isinf(best_score_mae) else None
|
||||
@ -317,7 +335,9 @@ def _process_sales(
|
||||
pipe.stats(stats)
|
||||
return pipe
|
||||
|
||||
assert forecast is not None, "forecast is None, but was attempted to be returned"
|
||||
assert "vorhersage" in forecast.columns, (
|
||||
"forecast does not contain prognosis values, but was attempted to be returned"
|
||||
)
|
||||
status = STATUS_HANDLER.SUCCESS
|
||||
pipe.success(forecast, status)
|
||||
stats = SalesForecastStatistics(
|
||||
|
||||
@ -17,7 +17,7 @@ DUMMY_DATA_PATH: Final[Path] = dummy_data_pth
|
||||
# ** logging
|
||||
ENABLE_LOGGING: Final[bool] = True
|
||||
LOGGING_TO_FILE: Final[bool] = True
|
||||
LOGGING_TO_STDERR: Final[bool] = True
|
||||
LOGGING_TO_STDERR: Final[bool] = False
|
||||
LOG_FILENAME: Final[str] = "dopt-delbar.log"
|
||||
|
||||
# ** databases
|
||||
@ -40,7 +40,7 @@ class KnownDelBarApiErrorCodes(enum.Enum):
|
||||
|
||||
|
||||
# ** API
|
||||
API_CON_TIMEOUT: Final[float] = 5.0 # secs to response
|
||||
API_CON_TIMEOUT: Final[float] = 10.0 # secs to response
|
||||
# ** API response parsing
|
||||
# ** column mapping [API-Response --> Target-Features]
|
||||
COL_MAP_SALES_PROGNOSIS: Final[DualDict[str, str]] = DualDict(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user