major overhaul of forecast pipeline #21
@ -218,12 +218,7 @@ def _process_sales(
|
|||||||
features = ["jahr", "monat"]
|
features = ["jahr", "monat"]
|
||||||
target = SALES_FEAT
|
target = SALES_FEAT
|
||||||
|
|
||||||
# --- new: not necessary anymore
|
# --- new: dates and forecast
|
||||||
#current_year = datetime.datetime.now().year
|
|
||||||
#first_year = cast(int, df_cust["jahr"].min())
|
|
||||||
|
|
||||||
# --- new: dates und forecast
|
|
||||||
#last_date = pd.to_datetime(monthly_sum.index[-1], format="%m.%Y")
|
|
||||||
last_date = pd.to_datetime(datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
last_date = pd.to_datetime(datetime.now().strftime("%m.%Y"), format="%m.%Y")
|
||||||
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=6, freq="MS")
|
future_dates = pd.date_range(start=last_date + pd.DateOffset(months=1), periods=6, freq="MS")
|
||||||
forecast = pd.DataFrame({"datum": future_dates.strftime("%m.%Y")}).set_index("datum")
|
forecast = pd.DataFrame({"datum": future_dates.strftime("%m.%Y")}).set_index("datum")
|
||||||
@ -241,7 +236,7 @@ def _process_sales(
|
|||||||
"early_stopping_rounds": [20, 50],
|
"early_stopping_rounds": [20, 50],
|
||||||
}
|
}
|
||||||
|
|
||||||
# --- new: best_estimator (internal usage)
|
# --- new: best_estimator (internal usage only)
|
||||||
best_estimator = None
|
best_estimator = None
|
||||||
|
|
||||||
best_params: BestParametersXGBRegressor | None = None
|
best_params: BestParametersXGBRegressor | None = None
|
||||||
@ -258,12 +253,12 @@ def _process_sales(
|
|||||||
start_index = next((i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1)
|
start_index = next((i for i, date in enumerate(dates) if date >= starting_date), len(dates) - 1)
|
||||||
|
|
||||||
for index, i in enumerate(range(start_index, -1, -12)):
|
for index, i in enumerate(range(start_index, -1, -12)):
|
||||||
start_date = dates[i]
|
first_date = dates[i]
|
||||||
split_date = dates[-6]
|
split_date = dates[-6]
|
||||||
|
|
||||||
train = cast(
|
train = cast(
|
||||||
pd.DataFrame,
|
pd.DataFrame,
|
||||||
monthly_sum.loc[start_date:split_date].copy(), # type: ignore
|
monthly_sum.loc[first_date:split_date].copy(), # type: ignore
|
||||||
)
|
)
|
||||||
test = cast(
|
test = cast(
|
||||||
pd.DataFrame,
|
pd.DataFrame,
|
||||||
@ -272,6 +267,7 @@ def _process_sales(
|
|||||||
X_train, X_test = train[features], test[features]
|
X_train, X_test = train[features], test[features]
|
||||||
y_train, y_test = train[target], test[target]
|
y_train, y_test = train[target], test[target]
|
||||||
|
|
||||||
|
# --- new: adapted condition to fit new for-loop
|
||||||
if len(train) >= 30 + 10 * index:
|
if len(train) >= 30 + 10 * index:
|
||||||
too_few_month_points = False
|
too_few_month_points = False
|
||||||
|
|
||||||
@ -292,13 +288,13 @@ def _process_sales(
|
|||||||
if len(np.unique(y_pred)) != 1:
|
if len(np.unique(y_pred)) != 1:
|
||||||
error = cast(float, mean_absolute_error(y_test, y_pred))
|
error = cast(float, mean_absolute_error(y_test, y_pred))
|
||||||
if error < best_score_mae:
|
if error < best_score_mae:
|
||||||
# --- new: store best_estimator
|
|
||||||
best_estimator = cast(BestEstimatorXGBRegressor, rand.best_estimator_)
|
|
||||||
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
best_params = cast(BestParametersXGBRegressor, rand.best_params_)
|
||||||
best_score_mae = error
|
best_score_mae = error
|
||||||
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
best_score_r2 = cast(float, r2_score(y_test, y_pred))
|
||||||
# --- new: use store start_date in best_start_year
|
# --- new: use first_date for best_start_year
|
||||||
best_start_year = start_date
|
best_start_year = first_date.year
|
||||||
|
# --- new: store best_estimator
|
||||||
|
best_estimator = rand.best_estimator_
|
||||||
|
|
||||||
# --- new: use best_estimator to calculate future values and store them in forecast
|
# --- new: use best_estimator to calculate future values and store them in forecast
|
||||||
if best_estimator is not None:
|
if best_estimator is not None:
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user