delta-barth-py/tests/test_databases.py

120 lines
3.9 KiB
Python

from dataclasses import asdict
import pytest
import sqlalchemy as sql
from delta_barth import databases as db
from delta_barth.types import BestParametersXGBRegressor, SalesForecastStatistics
def test_get_engine(tmp_path):
db_path = tmp_path / "test_db.db"
engine = db.get_engine(db_path)
assert isinstance(engine, sql.Engine)
assert "sqlite" in str(engine.url)
assert db_path.parent.name in str(engine.url)
def test_write_sales_forecast_statistics_small(session):
eng = session.db_engine
code = 0
descr = "Test case to write stats"
length = 32
stats = SalesForecastStatistics(code, descr, length)
_ = stats.xgb_params
stats_to_write = asdict(stats)
_ = stats_to_write.pop("xgb_params")
with eng.begin() as conn:
res = conn.execute(sql.insert(db.sf_stats).values(stats_to_write))
_ = res.inserted_primary_key[0]
with eng.begin() as conn:
res = conn.execute(sql.select(db.sf_stats))
inserted = tuple(res.mappings())[0]
data = dict(**inserted)
del data["id"]
result = SalesForecastStatistics(**data)
assert result.status_code == code
assert result.status_dscr == descr
assert result.length_dataset == length
assert result.score_mae is None
assert result.score_r2 is None
assert result.best_start_year is None
assert result.xgb_params is None
def test_write_sales_forecast_statistics_large(session):
eng = session.db_engine
code = 0
descr = "Test case to write stats"
length = 32
score_mae = 3.54
score_r2 = 0.56
best_start_year = 2020
xgb_params = BestParametersXGBRegressor(
n_estimators=2,
learning_rate=0.3,
max_depth=2,
min_child_weight=5,
gamma=0.5,
subsample=0.8,
colsample_bytree=5.25,
early_stopping_rounds=5,
)
stats = SalesForecastStatistics(
code,
descr,
length,
score_mae,
score_r2,
best_start_year,
xgb_params,
)
xgb_params = stats.xgb_params
assert xgb_params is not None
stats_to_write = asdict(stats)
_ = stats_to_write.pop("xgb_params")
with eng.begin() as conn:
res = conn.execute(sql.insert(db.sf_stats).values(stats_to_write))
sf_id = res.inserted_primary_key[0]
xgb_params["forecast_id"] = sf_id
res = conn.execute(sql.insert(db.sf_XGB).values(xgb_params))
with eng.begin() as conn:
res_stats = conn.execute(sql.select(db.sf_stats))
res_xgb = conn.execute(sql.select(db.sf_XGB))
# reconstruct best XGB parameters
inserted_xgb = tuple(res_xgb.mappings())[0]
data_xgb = dict(**inserted_xgb)
del data_xgb["id"]
xgb_stats = BestParametersXGBRegressor(**data_xgb)
# reconstruct other statistics
inserted = tuple(res_stats.mappings())[0]
data_inserted = dict(**inserted)
stats_id_fk = data_inserted["id"] # foreign key in XGB parameters
del data_inserted["id"]
stats = SalesForecastStatistics(**data_inserted, xgb_params=xgb_stats)
assert stats.status_code == code
assert stats.status_dscr == descr
assert stats.length_dataset == length
assert stats.score_mae == pytest.approx(score_mae)
assert stats.score_r2 == pytest.approx(score_r2)
assert stats.best_start_year == best_start_year
assert stats.xgb_params is not None
# compare xgb_stats
assert stats.xgb_params["forecast_id"] == stats_id_fk # type: ignore
assert stats.xgb_params["n_estimators"] == 2
assert stats.xgb_params["learning_rate"] == pytest.approx(0.3)
assert stats.xgb_params["max_depth"] == 2
assert stats.xgb_params["min_child_weight"] == 5
assert stats.xgb_params["gamma"] == pytest.approx(0.5)
assert stats.xgb_params["subsample"] == pytest.approx(0.8)
assert stats.xgb_params["colsample_bytree"] == pytest.approx(5.25)
assert stats.xgb_params["early_stopping_rounds"] == 5