delta-barth-py/tests/test_pipelines.py

49 lines
1.6 KiB
Python

import importlib
import json
from unittest.mock import patch
import pytest
import delta_barth.pipelines
from delta_barth import pipelines as pl
from delta_barth.errors import STATUS_HANDLER
def test_write_performance_metrics(session): ...
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp):
with patch(
"delta_barth.analysis.forecast.get_sales_prognosis_data",
) as mock:
mock.return_value = (exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS)
importlib.reload(delta_barth.pipelines)
json_export = pl.pipeline_sales_forecast(None, None)
assert isinstance(json_export, str)
parsed_resp = json.loads(json_export)
assert "response" in parsed_resp
assert "status" in parsed_resp
assert "daten" in parsed_resp["response"]
assert len(parsed_resp["response"]["daten"]) > 0
assert "code" in parsed_resp["status"]
assert parsed_resp["status"]["code"] == 0
def test_sales_prognosis_pipeline_dummy():
json_export = pl.pipeline_sales_forecast_dummy(None, None)
assert isinstance(json_export, str)
parsed_resp = json.loads(json_export)
assert "response" in parsed_resp
assert "status" in parsed_resp
assert "daten" in parsed_resp["response"]
assert len(parsed_resp["response"]["daten"]) > 0
entry = parsed_resp["response"]["daten"][0]
assert entry["jahr"] == 2022
assert entry["monat"] == 11
assert entry["vorhersage"] == pytest.approx(47261.058594)
assert "code" in parsed_resp["status"]
assert parsed_resp["status"]["code"] == 0