149 lines
4.6 KiB
Python

from __future__ import annotations
import dataclasses as dc
from collections.abc import Mapping, Set
from typing import TYPE_CHECKING
import pandas as pd
from sklearn.metrics import mean_squared_error
from xgboost import XGBRegressor
from delta_barth._management import ERROR_HANDLER
from delta_barth.analysis import parse
from delta_barth.constants import COL_MAP_SALES_PROGNOSIS, FEATURES_SALES_PROGNOSIS
from delta_barth.types import CustomerDataSalesForecast, DataPipelineErrors, doptResult
if TYPE_CHECKING:
from delta_barth.api.common import SalesPrognosisResponse
from delta_barth.types import FcResult
# TODO check pandera for DataFrame validation
def parse_api_resp_to_df(
resp: SalesPrognosisResponse,
) -> pd.DataFrame:
if resp.error is not None:
raise ValueError("Response contains error code. Parsing aborted.")
data = resp.model_dump()["daten"]
return pd.DataFrame(data)
# ------------------------------------------------------------------------------
# Input:
# DataFrame df mit Columns f_umsatz_fakt, firmen, art, v_warengrp
# kunde (muss enthalten sein in df['firmen']['firma_refid'])
# Output:
# Integer umsetzung (Prognose möglich): 0 ja, 1 nein (zu wenig Daten verfügbar),
# 2 nein (Daten nicht für Prognose geeignet)
# DataFrame test: Jahr, Monat, Vorhersage
# -------------------------------------------------------------------------------
# Prognose Umsatz je Firma
# TODO: check usage of separate exception and handle it in API function
# TODO set min number of data points as constant, not parameter
def preprocess_sales_per_customer(
resp: SalesPrognosisResponse,
feature_map: Mapping[str, str],
target_features: Set[str],
) -> pd.DataFrame:
df = parse_api_resp_to_df(resp)
df = parse.preprocess_features(
df,
feature_map=feature_map,
target_features=target_features,
)
return df
def sales_per_customer(
data: pd.DataFrame,
customer_id: int,
min_num_data_points: int = 100,
) -> doptResult:
"""_summary_
Parameters
----------
df : pd.DataFrame
Input DF: table "f_umsatz_fakt"
kunde : int
customer ID (FK "firma_ref_ID")
min_num_data_points : int, optional
minimum number of data points to obtain result, by default 100
Returns
-------
FcResult
_description_
"""
cust_data: CustomerDataSalesForecast = CustomerDataSalesForecast()
# filter data
# TODO change away from nested DataFrames: just use "f_umsatz_fakt"
# TODO with strong type checks
data = data.copy()
df_firma = data[
(data["firma_refid"] == customer_id) & (data["beleg_typ"] == 1) & (data["betrag"] > 0)
]
for transaction in df_firma["vorgang_refid"].unique():
cust_data.order.append(transaction)
cust_data.date.append(
df_firma[df_firma["vorgang_refid"] == transaction]["buchungs_datum"].iloc[0]
)
cust_data.sales.append(
df_firma[df_firma["vorgang_refid"] == transaction]["betrag"].sum()
)
df_cust = pd.DataFrame(dc.asdict(cust_data))
df_cust = df_cust.sort_values(by="date").reset_index()
# check data availability
if len(df_cust) < min_num_data_points:
return doptResult(resp=ERROR_HANDLER.data_pipelines.TOO_FEW_POINTS, res=None)
else:
# Entwicklung der Umsätze: definierte Zeiträume Monat
df_cust["year"] = df_cust["date"].dt.year
df_cust["month"] = df_cust["date"].dt.month
monthly_sum = df_cust.groupby(["year", "month"])["sales"].sum().reset_index()
monthly_sum["date"] = (
monthly_sum["month"].astype(str) + "." + monthly_sum["year"].astype(str)
)
monthly_sum["date"] = pd.to_datetime(monthly_sum["date"], format="%m.%Y")
monthly_sum = monthly_sum.set_index("date")
train = monthly_sum.iloc[:-5].copy()
test = monthly_sum.iloc[-5:].copy()
features = ["year", "month"]
target = "sales"
X_train, y_train = train[features], train[target]
X_test, y_test = test[features], test[target]
reg = XGBRegressor(
base_score=0.5,
booster="gbtree",
n_estimators=1000,
early_stopping_rounds=50,
objective="reg:squarederror",
max_depth=3,
learning_rate=0.01,
)
reg.fit(
X_train, y_train, eval_set=[(X_train, y_train), (X_test, y_test)], verbose=100
)
test.loc[:, "prediction"] = reg.predict(X_test)
test = test.reset_index(drop=True)
# umsetzung, prognose
return doptResult(resp=ERROR_HANDLER.data_pipelines.SUCCESS, res=test)