delta-barth-py/tests/test_pipelines.py

97 lines
3.2 KiB
Python

import json
from unittest.mock import patch
import pytest
import sqlalchemy as sql
from delta_barth import databases as db
from delta_barth import pipelines as pl
from delta_barth.errors import STATUS_HANDLER
def test_write_performance_metrics_Success(session):
pipe_name = "test_pipe"
t_start = 20_000_000_000
t_end = 30_000_000_000
with patch("delta_barth.pipelines.SESSION", session):
metrics = pl._write_performance_metrics(
pipeline_name=pipe_name,
time_start=t_start,
time_end=t_end,
)
assert metrics["pipeline_name"] == pipe_name
assert metrics["execution_duration"] == 10
with session.db_engine.begin() as con:
ret = con.execute(sql.select(db.perf_meas))
metrics = ret.all()[-1]
assert metrics.pipeline_name == pipe_name
assert metrics.execution_duration == 10
def test_write_performance_metrics_FailStartingTime(session):
pipe_name = "test_pipe"
t_start = 30_000_000_000
t_end = 20_000_000_000
with patch("delta_barth.pipelines.SESSION", session):
with pytest.raises(ValueError):
_ = pl._write_performance_metrics(
pipeline_name=pipe_name,
time_start=t_start,
time_end=t_end,
)
@patch("delta_barth.analysis.forecast.SALES_BASE_NUM_DATAPOINTS_MONTHS", 1)
def test_sales_prognosis_pipeline(exmpl_api_sales_prognosis_resp, session):
with patch(
"delta_barth.analysis.forecast.get_sales_prognosis_data",
) as mock:
mock.return_value = (exmpl_api_sales_prognosis_resp, STATUS_HANDLER.SUCCESS)
with patch("delta_barth.pipelines.SESSION", session):
json_export = pl.pipeline_sales_forecast(None, None)
assert isinstance(json_export, str)
parsed_resp = json.loads(json_export)
assert "response" in parsed_resp
assert "status" in parsed_resp
assert "daten" in parsed_resp["response"]
assert len(parsed_resp["response"]["daten"]) > 0
assert "code" in parsed_resp["status"]
assert parsed_resp["status"]["code"] == 0
with session.db_engine.begin() as con:
ret = con.execute(sql.select(db.perf_meas))
metrics = ret.all()[-1]
assert metrics.pipeline_name == "sales_forecast"
assert metrics.execution_duration > 0
def test_sales_prognosis_pipeline_dummy(session):
with patch("delta_barth.pipelines.SESSION", session):
json_export = pl.pipeline_sales_forecast_dummy(None, None)
assert isinstance(json_export, str)
parsed_resp = json.loads(json_export)
assert "response" in parsed_resp
assert "status" in parsed_resp
assert "daten" in parsed_resp["response"]
assert len(parsed_resp["response"]["daten"]) > 0
entry = parsed_resp["response"]["daten"][0]
assert entry["jahr"] == 2022
assert entry["monat"] == 11
assert entry["vorhersage"] == pytest.approx(47261.058594)
assert "code" in parsed_resp["status"]
assert parsed_resp["status"]["code"] == 0
with session.db_engine.begin() as con:
ret = con.execute(sql.select(db.perf_meas))
metrics = ret.all()[-1]
assert metrics.pipeline_name == "sales_forecast_dummy"
assert metrics.execution_duration > 0