started adding comprehensive unit tests

This commit is contained in:
Florian Förster 2024-11-13 17:54:47 +01:00
parent a0ca71ea87
commit 6781b4a132
32 changed files with 4042 additions and 1430 deletions

View File

@ -2,28 +2,27 @@
[paths]
inputs = './inputs/'
results = './results/test_new2/'
dataset = './01_2_Rohdaten_neu/Export4.csv'
#results = './results/Export7/'
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
#results = './results/Export7_trunc/'
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
# results = './results/dummy_N_1000/'
# dataset = '../data/Dummy_Dataset_N_1000.csv'
results = './results/test_20240807/'
dataset = '../data/02_202307/Export4.csv'
[logging]
enabled = true
stderr = true
file = true
# only debugging features, production-ready pipelines should always
# be fully executed
[control]
preprocessing = true
preprocessing_skip = false
token_analysis = false
preprocessing_skip = true
token_analysis_skip = false
graph_postprocessing = false
graph_postprocessing_skip = false
time_analysis = false
time_analysis_skip = false
#[export_filenames]
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
graph_rescaling_skip = false
graph_static_rendering_skip = false
time_analysis_skip = true
[preprocess]
filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
date_cols = [
"VorgangsDatum",
"ErledigungsDatum",
@ -34,17 +33,25 @@ threshold_amount_characters = 5
threshold_similarity = 0.8
[graph_postprocessing]
threshold_edge_weight = 150
threshold_edge_number = 330
# threshold_edge_weight = 150
[time_analysis.uniqueness]
threshold_unique_texts = 4
criterion_feature = 'HObjektText'
feature_name_obj_id = 'ObjektID'
[time_analysis.preparation]
name_delta_feat_to_repair = 'Zeitspanne bis zur Behebung [Tage]'
name_delta_feat_to_next_failure = 'Zeitspanne bis zum nächsten Ereignis [Tage]'
[time_analysis.model_input]
# input_features = [
# 'VorgangsTypName',
# 'VorgangsArtText',
# 'VorgangsBeschreibung',
# ]
input_features = [
'VorgangsTypName',
'VorgangsArtText',
'VorgangsBeschreibung',
]
activity_feature = 'VorgangsTypName'

View File

@ -1,58 +0,0 @@
# lang_main: Config file
[paths]
inputs = './inputs/'
# results = './results/dummy_N_1000/'
# dataset = '../data/Dummy_Dataset_N_1000.csv'
results = './results/'
dataset = '../data/02_202307/Export4.csv'
# only debugging features, production-ready pipelines should always
# be fully executed
[control]
preprocessing_skip = true
token_analysis_skip = false
graph_postprocessing_skip = false
graph_rescaling_skip = false
graph_static_rendering_skip = false
time_analysis_skip = true
[preprocess]
date_cols = [
"VorgangsDatum",
"ErledigungsDatum",
"Arbeitsbeginn",
"ErstellungsDatum",
]
threshold_amount_characters = 5
threshold_similarity = 0.8
[graph_postprocessing]
threshold_edge_number = 300
threshold_edge_weight = 150
[time_analysis.uniqueness]
threshold_unique_texts = 4
criterion_feature = 'HObjektText'
feature_name_obj_id = 'ObjektID'
[time_analysis.preparation]
name_delta_feat_to_repair = 'Zeitspanne bis zur Behebung [Tage]'
name_delta_feat_to_next_failure = 'Zeitspanne bis zum nächsten Ereignis [Tage]'
[time_analysis.model_input]
# input_features = [
# 'VorgangsTypName',
# 'VorgangsArtText',
# 'VorgangsBeschreibung',
# ]
input_features = [
'VorgangsBeschreibung',
]
activity_feature = 'VorgangsTypName'
activity_types = [
'Reparaturauftrag (Portal)',
'Störungsmeldung',
]
threshold_num_acitivities = 1
threshold_similarity = 0.8

View File

@ -19,6 +19,900 @@
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"id": "c0dab307-2c2c-41d2-9867-ec9ba82a8099",
"metadata": {},
"outputs": [],
"source": [
"import networkx as nx"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "629f2051-7ef0-4ce0-a5ad-86b292cc20af",
"metadata": {},
"outputs": [],
"source": [
"edge_weighst = [\n",
" {'weight': 1},\n",
" {'weight': 2},\n",
" {'weight': 3},\n",
" {'weight': 4},\n",
" {'weight': 5},\n",
" {'weight': 6},\n",
"]\n",
"edges = [\n",
" (1, 2),\n",
" (1, 3),\n",
" (2, 4),\n",
" (3, 4),\n",
" (1, 4),\n",
" (2, 1),\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c4fd9997-1e41-49f1-b879-4b3a6571931d",
"metadata": {},
"outputs": [],
"source": [
"edges_to_add = []\n",
"for i, edge in enumerate(edges):\n",
" edge = list(edge)\n",
" edge.append(edge_weighst[i])\n",
" edges_to_add.append(tuple(edge))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "bdf1c8d2-1093-420e-91fa-e2edd0cd72f1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(1, 2, {'weight': 1}),\n",
" (1, 3, {'weight': 2}),\n",
" (2, 4, {'weight': 3}),\n",
" (3, 4, {'weight': 4}),\n",
" (1, 4, {'weight': 5}),\n",
" (2, 1, {'weight': 6})]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"edges_to_add"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "d017b2bc-9cd3-4124-afed-c6eabc07a540",
"metadata": {},
"outputs": [],
"source": [
"G = nx.DiGraph()\n",
"G.add_edges_from(edges_to_add)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "91d4094b-f886-4056-a697-5223f157f1d3",
"metadata": {},
"outputs": [],
"source": [
"tk = graphs.TokenGraph()\n",
"tk.add_edges_from(edges_to_add)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "518cada9-561a-4b96-b750-3d500d1d28b9",
"metadata": {},
"outputs": [],
"source": [
"from lang_main.analysis import graphs"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "3235f188-6e99-4855-aa3d-b0e04e3db319",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'num_nodes': 4,\n",
" 'num_edges': 6,\n",
" 'min_edge_weight': 1,\n",
" 'max_edge_weight': 6,\n",
" 'node_memory': 112,\n",
" 'edge_memory': 336,\n",
" 'total_memory': 448}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graphs.get_graph_metadata(G)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ca2ce8e8-d72a-4edf-ae42-0f79bd9d19a2",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 38,
"id": "223dc592-fa56-4536-a5c2-a166001a6aca",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>6.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 1 2 3 4\n",
"1 0.0 1.0 2.0 5.0\n",
"2 6.0 0.0 0.0 3.0\n",
"3 0.0 0.0 0.0 4.0\n",
"4 0.0 0.0 0.0 0.0"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nx.to_pandas_adjacency(G)"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "1f677da0-7416-413c-adb1-ae1384e09349",
"metadata": {},
"outputs": [],
"source": [
"G_undir = graphs.convert_graph_to_undirected(G, cast_int=False)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "356862fb-2383-43d9-80ba-4fe83646c9d9",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>1</th>\n",
" <th>2</th>\n",
" <th>3</th>\n",
" <th>4</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.0</td>\n",
" <td>7.0</td>\n",
" <td>2.0</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>7.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" 1 2 3 4\n",
"1 0.0 7.0 2.0 5.0\n",
"2 7.0 0.0 0.0 3.0\n",
"3 2.0 0.0 0.0 4.0\n",
"4 5.0 3.0 4.0 0.0"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nx.to_pandas_adjacency(G_undir)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "b8a3db1a-0d2a-4635-ab88-7802e2cf59e4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"G_undir.is_directed()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "46001528-75b0-4fe8-a3ec-353bbd3eeeff",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'weight': 7.0}"
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"G_undir[1][2]"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "cf2dcdff-f0b7-416e-9db3-c7a21ea96b96",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"([{'data': {'id': 1, 'label': 1}},\n",
" {'data': {'id': 2, 'label': 2}},\n",
" {'data': {'id': 3, 'label': 3}},\n",
" {'data': {'id': 4, 'label': 4}},\n",
" {'data': {'source': 1, 'target': 2, 'weight': 1}},\n",
" {'data': {'source': 1, 'target': 3, 'weight': 2}},\n",
" {'data': {'source': 1, 'target': 4, 'weight': 5}},\n",
" {'data': {'source': 2, 'target': 4, 'weight': 3}},\n",
" {'data': {'source': 2, 'target': 1, 'weight': 6}},\n",
" {'data': {'source': 3, 'target': 4, 'weight': 4}}],\n",
" {'min': 1, 'max': 6})"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graphs.convert_graph_to_cytoscape(G)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f82481e9-873f-4657-80d3-ba75af74fa27",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"TokenGraph(name: TokenGraph, number of nodes: 4, number of edges: 6)"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tk.update_metadata()\n",
"tk"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "4b806620-b469-45ef-823b-db46f8590509",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(1, 4), (2, 3), (3, 2), (4, 3)]"
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(G.degree)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "2a41d019-1b6b-46f7-b13e-ac22da737940",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"G.degree[1]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e99f2fb4-4c8d-4564-810d-a4b2ed9d6009",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[(1, 4), (2, 3), (3, 2), (4, 3)]"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(tk.degree)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "1368ebf6-e008-492d-8d15-fe3ed12b78a3",
"metadata": {},
"outputs": [],
"source": [
"g_filt = graphs.filter_graph_by_node_degree(\n",
" tk,\n",
" bound_lower=3,\n",
" bound_upper=3,\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "de69f73e-da1d-4479-81da-006f2ce61844",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"TokenGraph(name: TokenGraph, number of nodes: 2, number of edges: 1)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"g_filt"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "b12fd64d-737e-4c68-94ea-72a817647a04",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[2, 4]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(g_filt.nodes)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "21434c7c-887c-4f9f-884a-48514e2279e0",
"metadata": {},
"outputs": [],
"source": [
"G = nx.DiGraph()\n",
"G.add_edges_from(edges_to_add)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "2defef69-f09a-4869-984a-27b6373b17b9",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'weight': 1}"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"G[1][2]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "0308a2ac-f554-4e24-9ddb-578dd588f3c8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"5"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(G.edges)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "15d9ce65-f9a5-40de-a737-098579f6a8ee",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "7acf4be7-45f3-45e6-87f5-14343f23d610",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9139812b-74ba-45ce-adfc-e57667259692",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loaded TOML config file successfully.\n"
]
}
],
"source": [
"from lang_main import search_iterative, search_base_path\n",
"from pathlib import Path"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "35118922-3a17-4698-93bc-5292a276a4b4",
"metadata": {},
"outputs": [],
"source": [
"from lang_main import constants"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "341299bf-e926-4e55-8545-8805a186f49c",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"WindowsPath('A:/Arbeitsaufgaben/lang-models')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"constants.MODEL_BASE_FOLDER"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "11ce4062-b229-4d88-967d-6eeb6d0135b7",
"metadata": {},
"outputs": [],
"source": [
"from sentence_transformers import SentenceTransformer"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "40dac543-1e53-4fd8-a192-88f3527872b2",
"metadata": {},
"outputs": [],
"source": [
"model_kwargs = {\n",
" 'file_name': 'onnx/model_quint8_avx2.onnx',\n",
" 'provider': 'CPUExecutionProvider',\n",
" 'export': False,\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8a0eaa9f-e2d2-4106-b80b-80916e9d8bfe",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The ONNX file model_quint8_avx2.onnx is not a regular name used in optimum.onnxruntime, the ORTModel might not behave as expected.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "215b46e3607e4530b2d8f8227367ef23",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model_quint8_avx2.onnx: 0%| | 0.00/23.0M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"A:\\Arbeitsaufgaben\\lang-main\\.venv\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in A:\\Arbeitsaufgaben\\lang-models\\models--sentence-transformers--all-MiniLM-L6-v2. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n"
]
}
],
"source": [
"stfr = SentenceTransformer('all-MiniLM-L6-v2', similarity_fn_name='cosine', backend='onnx', model_kwargs=model_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "cd921aca-0673-41ec-98a3-18e360a39a41",
"metadata": {},
"outputs": [],
"source": [
"from lang_main.constants import SPACY_MODEL_NAME"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "88173a68-7d8e-4f4c-a4ad-bbf78efaf781",
"metadata": {},
"outputs": [],
"source": [
"import importlib"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e5293976-22ab-406a-ba32-066fd7254394",
"metadata": {},
"outputs": [],
"source": [
"mod = importlib.import_module(SPACY_MODEL_NAME)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6023a339-02da-429c-acf5-f14a56989357",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<module 'de_dep_news_trf' from 'A:\\\\Arbeitsaufgaben\\\\lang-main\\\\.venv\\\\Lib\\\\site-packages\\\\de_dep_news_trf\\\\__init__.py'>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mod"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5f4fa066-fa0f-4818-9cf9-ec28923150ba",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loaded TOML config file successfully.\n"
]
}
],
"source": [
"from lang_main.analysis.shared import clean_string_slim"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "71286836-7eb2-4095-ab82-42d7ac7ed476",
"metadata": {},
"outputs": [],
"source": [
"string = 'Ölleckage durch\\nundichten \\t Ölsumpf,, aber Dichtung intakt??!!!'"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "e8284e76-e750-458e-bb63-d59d6d57a396",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ölleckage durch\n",
"undichten \t Ölsumpf,, aber Dichtung intakt??!!!\n"
]
}
],
"source": [
"print(string)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "82e98d8f-2e24-42f9-a3ed-3b3454ae64f4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Ölleckage durch undichten Ölsumpf, aber Dichtung intakt!'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clean_string_slim(string)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b527b145-15d2-4961-b441-1843fe9f5c29",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 7,
"id": "49c2e2f0-1e6d-4969-b583-8fc15b8930f9",
"metadata": {},
"outputs": [],
"source": [
"import re"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "16ae5d5c-a0a7-400b-8e38-231c72ad27b5",
"metadata": {},
"outputs": [],
"source": [
"pattern_dates = re.compile(r'(\\d{1,2}\\.)?(\\d{1,2}\\.)?([\\d]{2,4})?')"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "3b9fe636-f895-404a-819d-61198d34262d",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Am war ich essen. Am hingegen nicht. Und war ich allein.'"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"string = 'Am 11.02.2024 war ich essen. Am 11.12. hingegen nicht. Und 2024 war ich allein.'\n",
"string = pattern_dates.sub('', string)\n",
"string"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7c49ab3c-e860-42af-ac0c-2f44f075e846",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 10,

2081
pdm.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -15,6 +15,7 @@ dependencies = [
"typing-extensions>=4.12.2",
"tqdm>=4.67.0",
"python-dateutil>=2.9.0.post0",
"onnx==1.16.1",
]
requires-python = ">=3.11"
readme = "README.md"
@ -33,6 +34,18 @@ plot = [
cytoscape = [
"py4cytoscape>=1.11.0",
]
spacy-trf = [
"de-dep-news-trf @ https://github.com/explosion/spacy-models/releases/download/de_dep_news_trf-3.8.0/de_dep_news_trf-3.8.0-py3-none-any.whl",
]
spacy-sm = [
"de-core-news-sm @ https://github.com/explosion/spacy-models/releases/download/de_core_news_sm-3.8.0/de_core_news_sm-3.8.0-py3-none-any.whl",
]
spacy-md = [
"de-core-news-md @ https://github.com/explosion/spacy-models/releases/download/de_core_news_md-3.8.0/de_core_news_md-3.8.0-py3-none-any.whl",
]
spacy-lg = [
"de-core-news-lg @ https://github.com/explosion/spacy-models/releases/download/de_core_news_lg-3.8.0/de_core_news_lg-3.8.0-py3-none-any.whl",
]
[build-system]
requires = ["pdm-backend"]
build-backend = "pdm.backend"
@ -57,6 +70,8 @@ dev = [
"cython>=3.0.10",
"openpyxl>=3.1.5",
"seaborn>=0.13.2",
"pytest>=8.3.3",
"pytest-cov>=6.0.0",
]
[tool.ruff]
@ -74,3 +89,36 @@ select = ["E", "F", "I"]
[tool.ruff.lint.isort]
extra-standard-library = ["typing_extensions"]
[tool.pytest.ini_options]
addopts = [
"-vvl",
"--import-mode=importlib",
]
testpaths = [
"tests",
]
filterwarnings = [
'ignore:pkg_resources is deprecated as an API.:DeprecationWarning'
]
markers = [
"mload: marks tests with loading of language models (deselect with '-m \"not mload\"')",
]
log_cli = true
[tool.coverage.run]
relative_files = true
source = [
"lang_main",
"tests/",
]
[tool.coverage.report]
exclude_also = [
"def __repr__",
"def __str__",
"@overload",
]
[tool.coverage.html]
directory = "reports/coverage"

1
python/README.txt Normal file
View File

@ -0,0 +1 @@
only used to simulate directory tree in final solution

View File

@ -1,51 +0,0 @@
import inspect
import logging
import shutil
import sys
from pathlib import Path
from time import gmtime
from typing import Any, Final
import warnings
from lang_main.io import load_toml_config
__all__ = [
'CALLER_PATH',
]
logging.Formatter.converter = gmtime
LOG_FMT: Final[str] = '%(asctime)s | %(module)s:%(levelname)s | %(message)s'
LOG_DATE_FMT: Final[str] = '%Y-%m-%d %H:%M:%S +0000'
logging.basicConfig(
stream=sys.stdout,
format=LOG_FMT,
datefmt=LOG_DATE_FMT,
)
CONFIG_FILENAME: Final[str] = 'lang_main_config.toml'
USE_INTERNAL_CONFIG: Final[bool] = True
pkg_dir = Path(__file__).parent
cfg_path_internal = pkg_dir / CONFIG_FILENAME
caller_file = Path(inspect.stack()[-1].filename)
CALLER_PATH: Final[Path] = caller_file.parent.resolve()
# load config data: internal/external
if USE_INTERNAL_CONFIG:
loaded_cfg = load_toml_config(path_to_toml=cfg_path_internal)
else:
cfg_path_external = CALLER_PATH / CONFIG_FILENAME
if not caller_file.exists():
warnings.warn('Caller file could not be correctly retrieved.')
if not cfg_path_external.exists():
shutil.copy(cfg_path_internal, cfg_path_external)
sys.exit(
(
'No config file was found. A new one with default values was created '
'in the execution path. Please fill in the necessary values and '
'restart the programm.'
)
)
# raise NotImplementedError("External config data not implemented yet.")
loaded_cfg = load_toml_config(path_to_toml=cfg_path_external)
CONFIG: Final[dict[str, Any]] = loaded_cfg.copy()

View File

@ -1,14 +1,19 @@
import logging
import os
from pathlib import Path
from typing import Any, Final
from lang_main.config import load_toml_config
_has_py4cyto: bool = True
try:
import py4cytoscape as p4c
except ImportError:
_has_py4cyto = False
from lang_main.io import load_toml_config
# ** external packages config
# ** Huggingface Hub caching
os.environ['HF_HUB_DISABLE_SYMLINKS_WARNING'] = 'set'
# ** py4cytoscape config
if _has_py4cyto:
@ -20,6 +25,7 @@ if _has_py4cyto:
p4c.py4cytoscape_logger.detail_logger.addHandler(logging.NullHandler())
# ** lang-main config
BASE_FOLDERNAME: Final[str] = 'lang-main'
CONFIG_FILENAME: Final[str] = 'lang_main_config.toml'
CYTO_STYLESHEET_FILENAME: Final[str] = r'cytoscape_config/lang_main.xml'
PREFER_INTERNAL_CONFIG: Final[bool] = False
@ -75,27 +81,71 @@ def search_iterative(
pattern to look for, first match will be returned,
by default CONFIG_FILENAME
stop_folder_name : str, optional
name of the last folder in the directory tree to search, by default 'python'
name of the last folder in the directory tree to search, by default None
Returns
-------
Path | None
Path if corresponding object was found, None otherwise
"""
cfg_path: Path | None = None
file_path: Path | None = None
stop_folder_reached: bool = False
for it in range(len(starting_path.parents)):
search_path = starting_path.parents[it] # do not look in library folder
res = tuple(search_path.glob(glob_pattern))
if res:
cfg_path = res[0]
file_path = res[0]
break
elif stop_folder_reached:
break
if stop_folder_name is not None and search_path.name == stop_folder_name:
# library is placed inside a whole python installation for deployment
# if this folder is reached, only look up one parent above
stop_folder_reached = True
return file_path
def search_base_path(
starting_path: Path,
stop_folder_name: str | None = None,
) -> Path | None:
"""Iteratively searches the parent directories of the starting path
and look for folders matching the given name. If a match is encountered,
the parent path will be returned.
Example:
starting_path = path/to/start/folder
stop_folder_name = 'to'
returned path = 'path/'
Parameters
----------
starting_path : Path
non-inclusive starting path
stop_folder_name : str, optional
name of the last folder in the directory tree to search, by default None
Returns
-------
Path | None
Path if corresponding base path was found, None otherwise
"""
stop_folder_path: Path | None = None
base_path: Path | None = None
for it in range(len(starting_path.parents)):
search_path = starting_path.parents[it] # do not look in library folder
if stop_folder_name is not None and search_path.name == stop_folder_name:
# library is placed inside a whole python installation for deployment
# only look up to this folder
stop_folder_path = search_path
break
return cfg_path
if stop_folder_path is not None:
base_path = stop_folder_path.parent
return base_path
def load_cfg() -> dict[str, Any]:
@ -121,6 +171,10 @@ def load_cfg() -> dict[str, Any]:
CONFIG: Final[dict[str, Any]] = load_cfg()
base_parent_path = search_base_path(pkg_dir, stop_folder_name=BASE_FOLDERNAME)
if base_parent_path is None:
raise FileNotFoundError('Could not resolve base path of library')
BASE_PATH: Final[Path] = base_parent_path
# ** Cytoscape configuration

View File

@ -48,9 +48,9 @@ def save_to_GraphML(
def get_graph_metadata(
graph: Graph | DiGraph,
logging: bool = LOGGING_DEFAULT_GRAPHS,
) -> dict[str, int]:
) -> dict[str, float]:
# info about graph
graph_info: dict[str, int] = {}
graph_info: dict[str, float] = {}
# nodes and edges
num_nodes = len(graph.nodes)
num_edges = len(graph.edges)
@ -96,15 +96,6 @@ def update_graph(
child: Hashable | None = None,
weight_connection: int | None = None,
) -> None:
# !! not necessary to check for existence of nodes
# !! feature already implemented in NetworkX ``add_edge``
"""
# check if nodes already in Graph
if parent not in graph:
graph.add_node(parent)
if child not in graph:
graph.add_node(child)
"""
if weight_connection is None:
weight_connection = 1
# check if edge not in Graph
@ -115,9 +106,7 @@ def update_graph(
graph.add_edge(parent, child, weight=weight_connection)
else:
# update edge
weight = graph[parent][child]['weight']
weight += weight_connection
graph[parent][child]['weight'] = weight
graph[parent][child]['weight'] += weight_connection
# build undirected adjacency matrix
@ -249,7 +238,8 @@ def filter_graph_by_node_degree(
bound_lower: int | None,
bound_upper: int | None,
) -> TokenGraph:
"""filters all nodes which are within the provided bounds by their degree
"""filters all nodes which are within the provided bounds by their degree,
inclusive limits: bound_lower <= node_degree <= bound_upper are retained
Parameters
----------
@ -266,13 +256,14 @@ def filter_graph_by_node_degree(
# filter nodes by degree
original_graph_nodes = copy.deepcopy(graph.nodes)
filtered_graph = graph.copy()
filtered_graph_degree = copy.deepcopy(filtered_graph.degree)
if not any([bound_lower, bound_upper]):
logger.warning('No bounds provided, returning original graph.')
return filtered_graph
for node in original_graph_nodes:
degree = filtered_graph.degree[node] # type: ignore
degree = cast(int, filtered_graph_degree[node]) # type: ignore
if bound_lower is not None and degree < bound_lower:
filtered_graph.remove_node(node)
if bound_upper is not None and degree > bound_upper:
@ -540,9 +531,9 @@ class TokenGraph(DiGraph):
self._name = name
# directed and undirected graph data
self._directed = self
self._metadata_directed: dict[str, int] = {}
self._metadata_directed: dict[str, float] = {}
self._undirected: Graph | None = None
self._metadata_undirected: dict[str, int] = {}
self._metadata_undirected: dict[str, float] = {}
# indicate rescaled weights
self.rescaled_weights: bool = False
@ -568,12 +559,12 @@ class TokenGraph(DiGraph):
return hash(self.__key())
"""
def copy(self) -> Self:
def copy(self) -> TokenGraph:
"""returns a (deep) copy of the graph
Returns
-------
Self
TokenGraph
deep copy of the graph
"""
return copy.deepcopy(self)
@ -594,11 +585,11 @@ class TokenGraph(DiGraph):
return self._undirected
@property
def metadata_directed(self) -> dict[str, int]:
def metadata_directed(self) -> dict[str, float]:
return self._metadata_directed
@property
def metadata_undirected(self) -> dict[str, int]:
def metadata_undirected(self) -> dict[str, float]:
return self._metadata_undirected
@overload

View File

@ -30,7 +30,7 @@ if TYPE_CHECKING:
# ** (1) dataset preparation: loading and simple preprocessing
# following functions used to load a given dataset and perform simple
# following functions are used to load a given dataset and perform simple
# duplicate cleansing based on all properties
def load_raw_data(
path: Path,
@ -277,41 +277,41 @@ def merge_similarity_dupl(
# ** #################################################################################
# TODO check removal
def build_embedding_map(
data: Series,
model: GermanSpacyModel | SentenceTransformer,
) -> tuple[dict[int, tuple[Embedding, str]], tuple[bool, bool]]:
# dictionary with embeddings
embeddings: dict[int, tuple[Embedding, str]] = {}
is_spacy = False
is_STRF = False
# def build_embedding_map(
# data: Series,
# model: GermanSpacyModel | SentenceTransformer,
# ) -> tuple[dict[int, tuple[Embedding, str]], tuple[bool, bool]]:
# # dictionary with embeddings
# embeddings: dict[int, tuple[Embedding, str]] = {}
# is_spacy = False
# is_STRF = False
if isinstance(model, GermanSpacyModel):
is_spacy = True
elif isinstance(model, SentenceTransformer):
is_STRF = True
# if isinstance(model, GermanSpacyModel):
# is_spacy = True
# elif isinstance(model, SentenceTransformer):
# is_STRF = True
if not any((is_spacy, is_STRF)):
raise NotImplementedError('Model type unknown')
# if not any((is_spacy, is_STRF)):
# raise NotImplementedError('Model type unknown')
for idx, text in tqdm(data.items(), total=len(data), mininterval=1.0):
# verbose code: Pyright not inferring types correctly
idx = cast(int, idx)
text = cast(str, text)
if is_spacy:
model = cast(GermanSpacyModel, model)
embd = cast(SpacyDoc, model(text))
embeddings[idx] = (embd, text)
# check for empty vectors
if not embd.vector_norm:
logger.debug('--- Unknown Words ---')
logger.debug('embd.text: %s has no vector', embd.text)
elif is_STRF:
model = cast(SentenceTransformer, model)
embd = cast(Tensor, model.encode(text, show_progress_bar=False))
embeddings[idx] = (embd, text)
# for idx, text in tqdm(data.items(), total=len(data), mininterval=1.0):
# # verbose code: Pyright not inferring types correctly
# idx = cast(int, idx)
# text = cast(str, text)
# if is_spacy:
# model = cast(GermanSpacyModel, model)
# embd = cast(SpacyDoc, model(text))
# embeddings[idx] = (embd, text)
# # check for empty vectors
# if not embd.vector_norm:
# logger.debug('--- Unknown Words ---')
# logger.debug('embd.text: %s has no vector', embd.text)
# elif is_STRF:
# model = cast(SentenceTransformer, model)
# embd = cast(Tensor, model.encode(text, show_progress_bar=False))
# embeddings[idx] = (embd, text)
return embeddings, (is_spacy, is_STRF)
# return embeddings, (is_spacy, is_STRF)
# adapt interface
@ -320,276 +320,275 @@ def build_embedding_map(
# build similarity matrix out of embeddings
def build_cosSim_matrix(
data: Series,
model: GermanSpacyModel | SentenceTransformer,
) -> tuple[DataFrame, dict[int, tuple[Embedding, str]]]:
# build empty matrix
df_index = data.index
cosineSim_idx_matrix = pd.DataFrame(
data=0.0, columns=df_index, index=df_index, dtype=np.float32
)
# def build_cosSim_matrix(
# data: Series,
# model: GermanSpacyModel | SentenceTransformer,
# ) -> tuple[DataFrame, dict[int, tuple[Embedding, str]]]:
# # build empty matrix
# df_index = data.index
# cosineSim_idx_matrix = pd.DataFrame(
# data=0.0, columns=df_index, index=df_index, dtype=np.float32
# )
logger.info('Start building embedding map...')
# logger.info('Start building embedding map...')
# obtain embeddings based on used model
embds, (is_spacy, is_STRF) = build_embedding_map(
data=data,
model=model,
)
# # obtain embeddings based on used model
# embds, (is_spacy, is_STRF) = build_embedding_map(
# data=data,
# model=model,
# )
logger.info('Embedding map built successfully.')
# logger.info('Embedding map built successfully.')
# apply index based mapping for efficient handling of large texts
combs = combinations(df_index, 2)
total_combs = factorial(len(df_index)) // factorial(2) // factorial(len(df_index) - 2)
# # apply index based mapping for efficient handling of large texts
# combs = combinations(df_index, 2)
# total_combs = factorial(len(df_index)) // factorial(2) // factorial(len(df_index) - 2)
logger.info('Start calculation of similarity scores...')
# logger.info('Start calculation of similarity scores...')
for idx1, idx2 in tqdm(combs, total=total_combs, mininterval=1.0):
# print(f"{idx1=}, {idx2=}")
embd1 = embds[idx1][0]
embd2 = embds[idx2][0]
# for idx1, idx2 in tqdm(combs, total=total_combs, mininterval=1.0):
# # print(f"{idx1=}, {idx2=}")
# embd1 = embds[idx1][0]
# embd2 = embds[idx2][0]
# calculate similarity based on model type
if is_spacy:
embd1 = cast(SpacyDoc, embds[idx1][0])
embd2 = cast(SpacyDoc, embds[idx2][0])
cosSim = embd1.similarity(embd2)
elif is_STRF:
embd1 = cast(Tensor, embds[idx1][0])
embd2 = cast(Tensor, embds[idx2][0])
cosSim = sentence_transformers.util.cos_sim(embd1, embd2)
cosSim = cast(float, cosSim.item())
# # calculate similarity based on model type
# if is_spacy:
# embd1 = cast(SpacyDoc, embds[idx1][0])
# embd2 = cast(SpacyDoc, embds[idx2][0])
# cosSim = embd1.similarity(embd2)
# elif is_STRF:
# embd1 = cast(Tensor, embds[idx1][0])
# embd2 = cast(Tensor, embds[idx2][0])
# cosSim = sentence_transformers.util.cos_sim(embd1, embd2)
# cosSim = cast(float, cosSim.item())
cosineSim_idx_matrix.at[idx1, idx2] = cosSim
# cosineSim_idx_matrix.at[idx1, idx2] = cosSim
logger.info('Similarity scores calculated successfully.')
# logger.info('Similarity scores calculated successfully.')
return cosineSim_idx_matrix, embds
# return cosineSim_idx_matrix, embds
# obtain index pairs with cosine similarity
# greater than or equal to given threshold value
def filt_thresh_cosSim_matrix(
cosineSim_idx_matrix: DataFrame,
embds: dict[int, tuple[Embedding, str]],
threshold: float,
) -> tuple[Series, dict[int, tuple[Embedding, str]]]:
"""filter similarity matrix by threshold value and return index pairs with
a similarity score greater than the provided threshold
# def filt_thresh_cosSim_matrix(
# cosineSim_idx_matrix: DataFrame,
# embds: dict[int, tuple[Embedding, str]],
# threshold: float,
# ) -> tuple[Series, dict[int, tuple[Embedding, str]]]:
# """filter similarity matrix by threshold value and return index pairs with
# a similarity score greater than the provided threshold
Parameters
----------
threshold : float
similarity threshold
cosineSim_idx_matrix : DataFrame
similarity matrix
# Parameters
# ----------
# threshold : float
# similarity threshold
# cosineSim_idx_matrix : DataFrame
# similarity matrix
Returns
-------
Series
series with multi index (index pairs) and corresponding similarity score
"""
cosineSim_filt = cast(
Series, cosineSim_idx_matrix.where(cosineSim_idx_matrix >= threshold).stack()
)
# Returns
# -------
# Series
# series with multi index (index pairs) and corresponding similarity score
# """
# cosineSim_filt = cast(
# Series, cosineSim_idx_matrix.where(cosineSim_idx_matrix >= threshold).stack()
# )
return cosineSim_filt, embds
# return cosineSim_filt, embds
def list_cosSim_dupl_candidates(
cosineSim_filt: Series,
embds: dict[int, tuple[Embedding, str]],
save_candidates: bool = False,
saving_path: Path | None = None,
filename: str = 'CosSim-FilterCandidates',
pipeline: Pipeline | None = None,
) -> tuple[list[tuple[PandasIndex, PandasIndex]], dict[int, tuple[Embedding, str]]]:
"""providing an overview of candidates with a similarity score greater than
given threshold; more suitable for debugging purposes
# def list_cosSim_dupl_candidates(
# cosineSim_filt: Series,
# embds: dict[int, tuple[Embedding, str]],
# save_candidates: bool = False,
# saving_path: Path | None = None,
# filename: str = 'CosSim-FilterCandidates',
# pipeline: Pipeline | None = None,
# ) -> tuple[list[tuple[PandasIndex, PandasIndex]], dict[int, tuple[Embedding, str]]]:
# """providing an overview of candidates with a similarity score greater than
# given threshold; more suitable for debugging purposes
Returns
-------
DataFrame
contains indices, corresponding texts and similarity score to evaluate results
list[tuple[Index, Index]]
list containing relevant index pairs for entries with similarity score greater than
given threshold
"""
logger.info('Start gathering of similarity candidates...')
# compare found duplicates
columns: list[str] = ['idx1', 'text1', 'idx2', 'text2', 'score']
df_candidates = pd.DataFrame(columns=columns)
# Returns
# -------
# DataFrame
# contains indices, corresponding texts and similarity score to evaluate results
# list[tuple[Index, Index]]
# list containing relevant index pairs for entries with similarity score greater than
# given threshold
# """
# logger.info('Start gathering of similarity candidates...')
# # compare found duplicates
# columns: list[str] = ['idx1', 'text1', 'idx2', 'text2', 'score']
# df_candidates = pd.DataFrame(columns=columns)
index_pairs: list[tuple[PandasIndex, PandasIndex]] = []
# index_pairs: list[tuple[PandasIndex, PandasIndex]] = []
for (idx1, idx2), score in tqdm(cosineSim_filt.items(), total=len(cosineSim_filt)): # type: ignore
# get text content from embedding as second tuple entry
content = [
[
idx1,
embds[idx1][1],
idx2,
embds[idx2][1],
score,
]
]
# add candidates to collection DataFrame
df_conc = pd.DataFrame(columns=columns, data=content)
if df_candidates.empty:
df_candidates = df_conc.copy()
else:
df_candidates = pd.concat([df_candidates, df_conc])
# save index pairs
index_pairs.append((idx1, idx2))
# for (idx1, idx2), score in tqdm(cosineSim_filt.items(), total=len(cosineSim_filt)): # type: ignore
# # get text content from embedding as second tuple entry
# content = [
# [
# idx1,
# embds[idx1][1],
# idx2,
# embds[idx2][1],
# score,
# ]
# ]
# # add candidates to collection DataFrame
# df_conc = pd.DataFrame(columns=columns, data=content)
# if df_candidates.empty:
# df_candidates = df_conc.copy()
# else:
# df_candidates = pd.concat([df_candidates, df_conc])
# # save index pairs
# index_pairs.append((idx1, idx2))
logger.info('Similarity candidates gathered successfully.')
# logger.info('Similarity candidates gathered successfully.')
if save_candidates:
if saving_path is None:
raise ValueError(
('Saving path must be provided if duplicate ' 'candidates should be saved.')
)
elif pipeline is not None:
target_filename = (
f'Pipe-{pipeline.name}_Step_{pipeline.curr_proc_idx}_' + filename + '.xlsx'
)
elif pipeline is None:
target_filename = f'{filename}.xlsx'
logger.info('Saving similarity candidates...')
target_path = saving_path.joinpath(target_filename)
df_candidates.to_excel(target_path)
logger.info('Similarity candidates saved successfully to >>%s<<.', target_path)
# if save_candidates:
# if saving_path is None:
# raise ValueError(
# ('Saving path must be provided if duplicate ' 'candidates should be saved.')
# )
# elif pipeline is not None:
# target_filename = (
# f'Pipe-{pipeline.name}_Step_{pipeline.curr_proc_idx}_' + filename + '.xlsx'
# )
# elif pipeline is None:
# target_filename = f'{filename}.xlsx'
# logger.info('Saving similarity candidates...')
# target_path = saving_path.joinpath(target_filename)
# df_candidates.to_excel(target_path)
# logger.info('Similarity candidates saved successfully to >>%s<<.', target_path)
return index_pairs, embds
# return index_pairs, embds
# TODO: change implementation fully to SentenceTransformer
# usage of batch processing for embeddings, use candidate idx function
# from time analysis --> moved to ``helpers.py``
"""
def similar_ids_connection_graph(
similar_idx_pairs: list[tuple[PandasIndex, PandasIndex]],
) -> tuple[Graph, dict[str, int]]:
# build index graph to obtain graph of connected (similar) indices
# use this graph to get connected components (indices which belong together)
# retain semantic connection on whole dataset
similar_id_graph = nx.Graph()
for (idx1, idx2) in similar_idx_pairs:
# inplace operation, parent/child do not really exist in undirected graph
update_graph(graph=similar_id_graph, parent=idx1, child=idx2)
graph_info = get_graph_metadata(graph=similar_id_graph, logging=True)
# def similar_ids_connection_graph(
# similar_idx_pairs: list[tuple[PandasIndex, PandasIndex]],
# ) -> tuple[Graph, dict[str, int]]:
# # build index graph to obtain graph of connected (similar) indices
# # use this graph to get connected components (indices which belong together)
# # retain semantic connection on whole dataset
# similar_id_graph = nx.Graph()
# for (idx1, idx2) in similar_idx_pairs:
# # inplace operation, parent/child do not really exist in undirected graph
# update_graph(graph=similar_id_graph, parent=idx1, child=idx2)
return similar_id_graph, graph_info
# graph_info = get_graph_metadata(graph=similar_id_graph, logging=True)
def similar_ids_groups(
dupl_id_graph: Graph,
) -> Iterator[list[PandasIndex]]:
# groups of connected indices
ids_groups = cast(Iterator[set[PandasIndex]],
nx.connected_components(G=dupl_id_graph))
# return similar_id_graph, graph_info
for id_group in ids_groups:
yield list(id_group)
"""
# def similar_ids_groups(
# dupl_id_graph: Graph,
# ) -> Iterator[list[PandasIndex]]:
# # groups of connected indices
# ids_groups = cast(Iterator[set[PandasIndex]],
# nx.connected_components(G=dupl_id_graph))
# for id_group in ids_groups:
# yield list(id_group)
# merge duplicates
def merge_similarity_dupl_old(
data: DataFrame,
dupl_idx_pairs: list[tuple[PandasIndex, PandasIndex]],
) -> tuple[DataFrame]:
# copy pre-cleaned data
temp = data.copy()
index = temp.index
# logger.info("Start merging of similarity candidates...")
# # merge duplicates
# def merge_similarity_dupl_old(
# data: DataFrame,
# dupl_idx_pairs: list[tuple[PandasIndex, PandasIndex]],
# ) -> tuple[DataFrame]:
# # copy pre-cleaned data
# temp = data.copy()
# index = temp.index
# # logger.info("Start merging of similarity candidates...")
# iterate over index pairs
for i1, i2 in tqdm(dupl_idx_pairs):
# if an entry does not exist any more, skip this pair
if i1 not in index or i2 not in index:
continue
# # iterate over index pairs
# for i1, i2 in tqdm(dupl_idx_pairs):
# # if an entry does not exist any more, skip this pair
# if i1 not in index or i2 not in index:
# continue
# merge num occur
num_occur1 = temp.at[i1, 'num_occur']
num_occur2 = temp.at[i2, 'num_occur']
new_num_occur = num_occur1 + num_occur2
# # merge num occur
# num_occur1 = temp.at[i1, 'num_occur']
# num_occur2 = temp.at[i2, 'num_occur']
# new_num_occur = num_occur1 + num_occur2
# merge associated object ids
assoc_ids1 = temp.at[i1, 'assoc_obj_ids']
assoc_ids2 = temp.at[i2, 'assoc_obj_ids']
new_assoc_ids = np.append(assoc_ids1, assoc_ids2)
new_assoc_ids = np.unique(new_assoc_ids.flatten())
# # merge associated object ids
# assoc_ids1 = temp.at[i1, 'assoc_obj_ids']
# assoc_ids2 = temp.at[i2, 'assoc_obj_ids']
# new_assoc_ids = np.append(assoc_ids1, assoc_ids2)
# new_assoc_ids = np.unique(new_assoc_ids.flatten())
# recalculate num associated obj ids
new_num_assoc_obj_ids = len(new_assoc_ids)
# # recalculate num associated obj ids
# new_num_assoc_obj_ids = len(new_assoc_ids)
# write properties to first entry
temp.at[i1, 'num_occur'] = new_num_occur
temp.at[i1, 'assoc_obj_ids'] = new_assoc_ids
temp.at[i1, 'num_assoc_obj_ids'] = new_num_assoc_obj_ids
# # write properties to first entry
# temp.at[i1, 'num_occur'] = new_num_occur
# temp.at[i1, 'assoc_obj_ids'] = new_assoc_ids
# temp.at[i1, 'num_assoc_obj_ids'] = new_num_assoc_obj_ids
# drop second entry
temp = temp.drop(index=i2)
index = temp.index
# # drop second entry
# temp = temp.drop(index=i2)
# index = temp.index
# logger.info("Similarity candidates merged successfully.")
# # logger.info("Similarity candidates merged successfully.")
return (temp,)
# return (temp,)
# ** debugging and evaluation
def choose_cosSim_dupl_candidates(
cosineSim_filt: Series,
embds: dict[int, tuple[Embedding, str]],
) -> tuple[DataFrame, list[tuple[PandasIndex, PandasIndex]]]:
"""providing an overview of candidates with a similarity score greater than
given threshold, but decision is made manually by iterating through the candidates
with user interaction; more suitable for debugging purposes
# def choose_cosSim_dupl_candidates(
# cosineSim_filt: Series,
# embds: dict[int, tuple[Embedding, str]],
# ) -> tuple[DataFrame, list[tuple[PandasIndex, PandasIndex]]]:
# """providing an overview of candidates with a similarity score greater than
# given threshold, but decision is made manually by iterating through the candidates
# with user interaction; more suitable for debugging purposes
Returns
-------
DataFrame
contains indices, corresponding texts and similarity score to evaluate results
list[tuple[Index, Index]]
list containing relevant index pairs for entries with similarity score greater than
given threshold
"""
# Returns
# -------
# DataFrame
# contains indices, corresponding texts and similarity score to evaluate results
# list[tuple[Index, Index]]
# list containing relevant index pairs for entries with similarity score greater than
# given threshold
# """
# compare found duplicates
columns = ['idx1', 'text1', 'idx2', 'text2', 'score']
df_candidates = pd.DataFrame(columns=columns)
# # compare found duplicates
# columns = ['idx1', 'text1', 'idx2', 'text2', 'score']
# df_candidates = pd.DataFrame(columns=columns)
index_pairs: list[tuple[PandasIndex, PandasIndex]] = []
# index_pairs: list[tuple[PandasIndex, PandasIndex]] = []
for (idx1, idx2), score in cosineSim_filt.items(): # type: ignore
# get texts for comparison
text1 = embds[idx1][1]
text2 = embds[idx2][1]
# get decision
print('---------- New Decision ----------')
print('text1:\n', text1, '\n', flush=True)
print('text2:\n', text2, '\n', flush=True)
decision = input('Please enter >>y<< if this is a duplicate, else hit enter:')
# for (idx1, idx2), score in cosineSim_filt.items(): # type: ignore
# # get texts for comparison
# text1 = embds[idx1][1]
# text2 = embds[idx2][1]
# # get decision
# print('---------- New Decision ----------')
# print('text1:\n', text1, '\n', flush=True)
# print('text2:\n', text2, '\n', flush=True)
# decision = input('Please enter >>y<< if this is a duplicate, else hit enter:')
if not decision == 'y':
continue
# if not decision == 'y':
# continue
# get text content from embedding as second tuple entry
content = [
[
idx1,
text1,
idx2,
text2,
score,
]
]
df_conc = pd.DataFrame(columns=columns, data=content)
# # get text content from embedding as second tuple entry
# content = [
# [
# idx1,
# text1,
# idx2,
# text2,
# score,
# ]
# ]
# df_conc = pd.DataFrame(columns=columns, data=content)
df_candidates = pd.concat([df_candidates, df_conc])
index_pairs.append((idx1, idx2))
# df_candidates = pd.concat([df_candidates, df_conc])
# index_pairs.append((idx1, idx2))
return df_candidates, index_pairs
# return df_candidates, index_pairs

View File

@ -22,7 +22,7 @@ pattern_escape_newline = re.compile(r'[\n]+')
pattern_escape_seq = re.compile(r'[\t\n\r\f\v]+')
pattern_escape_seq_sentences = re.compile(r' *[\t\n\r\f\v]+')
pattern_repeated_chars = re.compile(r'[,;.:!?\-_+]+(?=[,;.:!?\-_+])')
pattern_dates = re.compile(r'(\d{1,2}\.)?(\d{1,2}\.)([\d]{2,4})?')
pattern_dates = re.compile(r'(\d{1,2}\.)?(\d{1,2}\.)?([\d]{2,4})?')
pattern_whitespace = re.compile(r'[ ]{2,}')
@ -43,7 +43,7 @@ def clean_string_slim(string: str) -> str:
cleaned entry
"""
# remove special chars
string = pattern_escape_newline.sub('. ', string)
# string = pattern_escape_newline.sub(' ', string)
string = pattern_escape_seq.sub(' ', string)
string = pattern_repeated_chars.sub('', string)
# string = pattern_dates.sub('', string)
@ -127,7 +127,7 @@ def candidates_by_index(
def similar_index_connection_graph(
similar_idx_pairs: Iterable[tuple[PandasIndex, PandasIndex]],
) -> tuple[Graph, dict[str, int]]:
) -> tuple[Graph, dict[str, float]]:
# build index graph to obtain graph of connected (similar) indices
# use this graph to get connected components (indices which belong together)
# retain semantic connection on whole dataset

17
src/lang_main/config.py Normal file
View File

@ -0,0 +1,17 @@
from __future__ import annotations
import sys
import tomllib
from typing import TYPE_CHECKING, Any
if TYPE_CHECKING:
from pathlib import Path
def load_toml_config(
path_to_toml: str | Path,
) -> dict[str, Any]:
with open(path_to_toml, 'rb') as f:
data = tomllib.load(f)
print('Loaded TOML config file successfully.', file=sys.stderr, flush=True)
return data

View File

@ -2,22 +2,21 @@ from enum import Enum # noqa: I001
from importlib.util import find_spec
from pathlib import Path
from typing import Final
import os
from sentence_transformers import SimilarityFunction
from lang_main import CONFIG, CYTO_PATH_STYLESHEET
from lang_main import model_loader as m_load
from lang_main import CONFIG, CYTO_PATH_STYLESHEET, BASE_PATH
from lang_main.types import (
CytoLayoutProperties,
CytoLayouts,
LanguageModels,
ModelLoaderMap,
ONNXExecutionProvider, # noqa: F401
STFRBackends,
STFRDeviceTypes,
STFRModelArgs,
STFRModels,
STFRModelTypes,
STFRQuantFilenames, # noqa: F401
SpacyModelTypes,
)
__all__ = [
@ -67,35 +66,29 @@ SKIP_TIME_ANALYSIS: Final[bool] = CONFIG['control']['time_analysis_skip']
# ** models
# ** loading
SPACY_MODEL_NAME: Final[str] = 'de_dep_news_trf'
STFR_MODEL_NAME: Final[STFRModels] = STFRModels.ALL_MPNET_BASE_V2
MODEL_BASE_FOLDER_NAME: Final[str] = 'lang-models'
MODEL_BASE_FOLDER: Final[Path] = BASE_PATH / MODEL_BASE_FOLDER_NAME
if not MODEL_BASE_FOLDER.exists():
raise FileNotFoundError('Language model folder not found.')
os.environ['SENTENCE_TRANSFORMERS_HOME'] = str(MODEL_BASE_FOLDER)
SPACY_MODEL_NAME: Final[SpacyModelTypes] = SpacyModelTypes.DE_DEP_NEWS_TRF
STFR_MODEL_NAME: Final[STFRModelTypes] = STFRModelTypes.ALL_MPNET_BASE_V2
STFR_DEVICE: Final[STFRDeviceTypes] = STFRDeviceTypes.CPU
STFR_SIMILARITY: Final[SimilarityFunction] = SimilarityFunction.COSINE
STFR_BACKEND: Final[STFRBackends] = STFRBackends.TORCH
STFR_MODEL_ARGS: Final[STFRModelArgs] = {}
# STFR_MODEL_ARGS: Final[STFRModelArgs] = {
# 'file_name': STFRQuantFilenames.ONNX_Q_UINT8,
# 'provider': ONNXExecutionProvider.CPU,
# 'export': False,
# }
MODEL_LOADER_MAP: Final[ModelLoaderMap] = {
LanguageModels.SENTENCE_TRANSFORMER: {
'func': m_load.load_sentence_transformer,
'kwargs': {
'model_name': STFR_MODEL_NAME,
'similarity_func': STFR_SIMILARITY,
'backend': STFR_BACKEND,
'device': STFR_DEVICE,
'model_kwargs': STFR_MODEL_ARGS,
},
},
LanguageModels.SPACY: {
'func': m_load.load_spacy,
'kwargs': {
'model_name': SPACY_MODEL_NAME,
},
},
STFR_MODEL_ARGS_DEFAULT: STFRModelArgs = {}
STFR_MODEL_ARGS_ONNX: STFRModelArgs = {
'file_name': STFRQuantFilenames.ONNX_Q_UINT8,
'provider': ONNXExecutionProvider.CPU,
'export': False,
}
stfr_model_args: STFRModelArgs
if STFR_BACKEND == STFRBackends.ONNX:
stfr_model_args = STFR_MODEL_ARGS_ONNX
else:
stfr_model_args = STFR_MODEL_ARGS_DEFAULT
STFR_MODEL_ARGS: Final[STFRModelArgs] = stfr_model_args
# ** language dependency analysis
# ** POS
# POS_OF_INTEREST: frozenset[str] = frozenset(['NOUN', 'PROPN', 'ADJ', 'VERB', 'AUX'])

View File

@ -1,3 +1,9 @@
# ** meta exceptions
class LanguageModelNotFoundError(Exception):
"""Error raised if a given language model could not be loaded successfully"""
# ** token graph exceptions
class EdgePropertyNotContainedError(Exception):
"""Error raised if a needed edge property is not contained in graph edges"""
@ -21,8 +27,6 @@ class DependencyMissingError(Exception):
# ** pipelines to perform given actions on dataset in a customisable manner
class NoPerformableActionError(Exception):
"""Error describing that no action is available in the current pipeline"""

View File

@ -1,7 +1,6 @@
import base64
import pickle
import shutil
import tomllib
from pathlib import Path
from typing import Any
@ -33,15 +32,6 @@ def create_saving_folder(
)
def load_toml_config(
path_to_toml: str | Path,
) -> dict[str, Any]:
with open(path_to_toml, 'rb') as f:
data = tomllib.load(f)
logger.info('Loaded TOML config file successfully.')
return data
# saving and loading using pickle
# careful: pickling from unknown sources can be dangerous
def save_pickle(

View File

@ -1,4 +1,6 @@
# lang_main: Config file
[info]
pkg = 'lang_main'
[paths]
inputs = './inputs/'

View File

@ -5,6 +5,7 @@ from time import gmtime
from typing import Final
from lang_main.constants import (
BASE_PATH,
ENABLE_LOGGING,
LOGGING_TO_FILE,
LOGGING_TO_STDERR,
@ -15,11 +16,11 @@ from lang_main.types import LoggingLevels
logging.Formatter.converter = gmtime
LOG_FMT: Final[str] = '%(asctime)s | lang_main:%(module)s:%(levelname)s | %(message)s'
LOG_DATE_FMT: Final[str] = '%Y-%m-%d %H:%M:%S +0000'
LOG_FILE_PATH: Final[Path] = Path.cwd() / 'lang-main.log'
# logging.basicConfig(
# format=LOG_FMT,
# datefmt=LOG_DATE_FMT,
# )
LOG_FILE_FOLDER: Final[Path] = BASE_PATH / 'logs'
if not LOG_FILE_FOLDER.exists():
LOG_FILE_FOLDER.mkdir(parents=True)
LOG_FILE_PATH: Final[Path] = LOG_FILE_FOLDER / 'lang-main.log'
# ** formatters
logger_all_formater = logging.Formatter(fmt=LOG_FMT, datefmt=LOG_DATE_FMT)

View File

@ -1,16 +1,25 @@
from __future__ import annotations
import importlib
from typing import (
TYPE_CHECKING,
Any,
Final,
Literal,
cast,
overload,
)
import spacy
from sentence_transformers import SentenceTransformer
from sentence_transformers import SentenceTransformer, SimilarityFunction
from lang_main.constants import STFR_SIMILARITY
from lang_main.constants import (
SPACY_MODEL_NAME,
STFR_BACKEND,
STFR_DEVICE,
STFR_MODEL_ARGS,
STFR_MODEL_NAME,
STFR_SIMILARITY,
)
from lang_main.errors import LanguageModelNotFoundError
from lang_main.types import (
LanguageModels,
Model,
@ -20,9 +29,6 @@ from lang_main.types import (
STFRDeviceTypes,
)
if TYPE_CHECKING:
from sentence_transformers import SimilarityFunction
@overload
def instantiate_model(
@ -53,14 +59,27 @@ def instantiate_model(
def load_spacy(
model_name: str,
) -> SpacyModel:
return spacy.load(model_name)
try:
spacy_model_obj = importlib.import_module(SPACY_MODEL_NAME)
except ModuleNotFoundError:
raise LanguageModelNotFoundError(
(
f'Could not find spaCy model >>{model_name}<<. '
f'Check if it is installed correctly.'
)
)
pretrained_model = cast(SpacyModel, spacy_model_obj.load())
return pretrained_model
def load_sentence_transformer(
model_name: str,
similarity_func: SimilarityFunction = STFR_SIMILARITY,
similarity_func: SimilarityFunction = SimilarityFunction.COSINE,
backend: STFRBackends = STFRBackends.TORCH,
device: STFRDeviceTypes = STFRDeviceTypes.CPU,
local_files_only: bool = False,
model_save_folder: str | None = None,
model_kwargs: dict[str, Any] | None = None,
) -> SentenceTransformer:
return SentenceTransformer(
@ -68,5 +87,28 @@ def load_sentence_transformer(
similarity_fn_name=similarity_func,
backend=backend, # type: ignore Literal matches Enum
device=device,
cache_folder=model_save_folder,
local_files_only=local_files_only,
model_kwargs=model_kwargs,
)
# ** configured model builder functions
MODEL_LOADER_MAP: Final[ModelLoaderMap] = {
LanguageModels.SENTENCE_TRANSFORMER: {
'func': load_sentence_transformer,
'kwargs': {
'model_name': STFR_MODEL_NAME,
'similarity_func': STFR_SIMILARITY,
'backend': STFR_BACKEND,
'device': STFR_DEVICE,
'model_kwargs': STFR_MODEL_ARGS,
},
},
LanguageModels.SPACY: {
'func': load_spacy,
'kwargs': {
'model_name': SPACY_MODEL_NAME,
},
},
}

View File

@ -30,7 +30,6 @@ from lang_main.constants import (
DATE_COLS,
FEATURE_NAME_OBJ_ID,
MODEL_INPUT_FEATURES,
MODEL_LOADER_MAP,
NAME_DELTA_FEAT_TO_REPAIR,
SAVE_PATH_FOLDER,
THRESHOLD_AMOUNT_CHARACTERS,
@ -41,6 +40,7 @@ from lang_main.constants import (
THRESHOLD_UNIQUE_TEXTS,
UNIQUE_CRITERION_FEATURE,
)
from lang_main.model_loader import MODEL_LOADER_MAP
from lang_main.pipelines.base import Pipeline
from lang_main.types import EntryPoints, LanguageModels

View File

@ -45,13 +45,20 @@ class ONNXExecutionProvider(enum.StrEnum):
CPU = 'CPUExecutionProvider'
class STFRModels(enum.StrEnum):
class STFRModelTypes(enum.StrEnum):
ALL_MPNET_BASE_V2 = 'all-mpnet-base-v2'
ALL_DISTILROBERTA_V1 = 'all-distilroberta-v1'
ALL_MINI_LM_L12_V2 = 'all-MiniLM-L12-v2'
ALL_MINI_LM_L6_V2 = 'all-MiniLM-L6-v2'
class SpacyModelTypes(enum.StrEnum):
DE_CORE_NEWS_SM = 'de_core_news_sm'
DE_CORE_NEWS_MD = 'de_core_news_md'
DE_CORE_NEWS_LG = 'de_core_news_lg'
DE_DEP_NEWS_TRF = 'de_dep_news_trf'
class STFRQuantFilenames(enum.StrEnum):
ONNX_Q_UINT8 = 'onnx/model_quint8_avx2.onnx'

File diff suppressed because it is too large Load Diff

BIN
tests/analyse_dataset.xlsx Normal file

Binary file not shown.

View File

View File

@ -0,0 +1,168 @@
import networkx as nx
import pytest
from lang_main.analysis import graphs
TK_GRAPH_NAME = 'TEST_TOKEN_GRAPH'
def build_init_graph(token_graph: bool):
edge_weights = [
{'weight': 1},
{'weight': 2},
{'weight': 3},
{'weight': 4},
{'weight': 5},
{'weight': 6},
]
edges = [
(1, 2),
(1, 3),
(2, 4),
(3, 4),
(1, 4),
(2, 1),
]
edges_to_add = []
for i, edge in enumerate(edges):
edge = list(edge)
edge.append(edge_weights[i]) # type: ignore
edges_to_add.append(tuple(edge))
if token_graph:
G = graphs.TokenGraph(name=TK_GRAPH_NAME, enable_logging=False)
else:
G = nx.DiGraph()
G.add_edges_from(edges_to_add)
return G
@pytest.fixture(scope='module')
def graph():
return build_init_graph(token_graph=False)
@pytest.fixture(scope='module')
def tk_graph():
return build_init_graph(token_graph=True)
def test_graph_size(graph):
assert len(graph.nodes) == 4
assert len(graph.edges) == 6
def test_save_to_GraphML(graph, tmp_path):
filename = 'test_graphML'
graphs.save_to_GraphML(graph, saving_path=tmp_path, filename=filename)
saved_file = (tmp_path / filename).with_suffix('.graphml')
assert saved_file.exists()
def test_metadata_retrieval(graph):
metadata = graphs.get_graph_metadata(graph)
assert metadata['num_nodes'] == 4
assert metadata['num_edges'] == 6
assert metadata['min_edge_weight'] == 1
assert metadata['max_edge_weight'] == 6
assert metadata['node_memory'] == 112
assert metadata['edge_memory'] == 336
assert metadata['total_memory'] == 448
def test_graph_update_batch():
graph_obj = build_init_graph(token_graph=False)
graphs.update_graph(graph_obj, batch=((4, 5), (5, 6)), weight_connection=8)
metadata = graphs.get_graph_metadata(graph_obj)
assert metadata['num_nodes'] == 6
assert metadata['num_edges'] == 8
assert metadata['min_edge_weight'] == 1
assert metadata['max_edge_weight'] == 8
def test_graph_update_single_new():
graph_obj = build_init_graph(token_graph=False)
graphs.update_graph(graph_obj, parent=4, child=5, weight_connection=7)
metadata = graphs.get_graph_metadata(graph_obj)
assert metadata['num_nodes'] == 5
assert metadata['num_edges'] == 7
assert metadata['min_edge_weight'] == 1
assert metadata['max_edge_weight'] == 7
def test_graph_update_single_existing():
graph_obj = build_init_graph(token_graph=False)
graphs.update_graph(graph_obj, parent=1, child=4, weight_connection=5)
metadata = graphs.get_graph_metadata(graph_obj)
assert metadata['num_nodes'] == 4
assert metadata['num_edges'] == 6
assert metadata['min_edge_weight'] == 1
assert metadata['max_edge_weight'] == 10
@pytest.mark.parametrize('cast_int', [True, False])
def test_graph_undirected_conversion(graph, cast_int):
graph_undir = graphs.convert_graph_to_undirected(graph, cast_int=cast_int)
# edges: (1, 2, w=1) und (2, 1, w=6) --> undirected: (1, 2, w=7)
assert graph_undir[1][2]['weight'] == pytest.approx(7.0)
def test_graph_cytoscape_conversion(graph):
cyto_graph, weight_data = graphs.convert_graph_to_cytoscape(graph)
node = cyto_graph[0]
edge = cyto_graph[-1]
assert node['data']['id'] == 1 # type: ignore
assert edge['data']['source'] == 3 # type: ignore
assert edge['data']['target'] == 4 # type: ignore
assert edge['data']['weight'] == 4 # type: ignore
assert weight_data['min'] == 1
assert weight_data['max'] == 6
def test_tk_graph_properties(tk_graph):
assert tk_graph.name == TK_GRAPH_NAME
assert isinstance(tk_graph.directed, graphs.TokenGraph)
assert isinstance(tk_graph.undirected, nx.Graph)
tk_graph.update_metadata()
metadata_directed = tk_graph.metadata_directed
assert metadata_directed['num_nodes'] == 4
assert metadata_directed['num_edges'] == 6
assert metadata_directed['min_edge_weight'] == 1
assert metadata_directed['max_edge_weight'] == 6
assert metadata_directed['node_memory'] == 112
assert metadata_directed['edge_memory'] == 336
assert metadata_directed['total_memory'] == 448
metadata_undirected = tk_graph.metadata_undirected
assert metadata_undirected['num_nodes'] == 4
assert metadata_undirected['num_edges'] == 5
assert metadata_undirected['min_edge_weight'] == 2
assert metadata_undirected['max_edge_weight'] == 7
assert metadata_undirected['node_memory'] == 112
assert metadata_undirected['edge_memory'] == 280
assert metadata_undirected['total_memory'] == 392
def test_graph_degree_filter(tk_graph):
filtered_graph = graphs.filter_graph_by_node_degree(
tk_graph,
bound_lower=3,
bound_upper=3,
)
assert len(filtered_graph.nodes) == 2
def test_graph_edge_number_filter(tk_graph):
number_edges_limit = 1
filtered_graph = graphs.filter_graph_by_number_edges(
tk_graph,
limit=number_edges_limit,
)
assert len(filtered_graph.edges) == number_edges_limit
filtered_graph = graphs.filter_graph_by_node_degree(
filtered_graph,
bound_lower=1,
bound_upper=None,
)
assert len(filtered_graph.nodes) == 2, 'one edge should result in only two nodes'

View File

@ -0,0 +1,73 @@
"""testing each function in a consecutive way like each one is
executed in in a pipeline
"""
from lang_main.analysis import preprocessing as ppc
from lang_main.analysis import shared
def test_load_data(raw_data_path, raw_data_date_cols):
(data,) = ppc.load_raw_data(raw_data_path, raw_data_date_cols)
assert len(data) == 1000
def test_remove_simple_duplicates(raw_data_path, raw_data_date_cols):
(data,) = ppc.load_raw_data(raw_data_path, raw_data_date_cols)
(data,) = ppc.remove_duplicates(data)
assert len(data) == 999
def test_remove_na(raw_data_path, raw_data_date_cols):
(data,) = ppc.load_raw_data(raw_data_path, raw_data_date_cols)
(data,) = ppc.remove_duplicates(data)
target_features: tuple[str] = ('VorgangsBeschreibung',)
(data,) = ppc.remove_NA(data, target_features)
assert len(data) == 998
# def test_string_cleansing():
# string = 'Ölleckage durch\nundichten \t Ölsumpf,, aber Dichtung intakt??!!!'
# cleaned_string = shared.clean_string_slim(string)
# target_string = 'Ölleckage durch undichten Ölsumpf, aber Dichtung intakt!'
# assert cleaned_string == target_string
def test_entry_wise_cleansing(raw_data_path, raw_data_date_cols):
(data,) = ppc.load_raw_data(raw_data_path, raw_data_date_cols)
(data,) = ppc.remove_duplicates(data)
target_features: tuple[str] = ('VorgangsBeschreibung',)
(data,) = ppc.remove_NA(data, target_features)
starting_string = 'Ölleckage durch\nundichten \t Ölsumpf,, aber Dichtung intakt??!!!'
cleaned_string = shared.clean_string_slim(starting_string)
target_string = 'Ölleckage durch undichten Ölsumpf, aber Dichtung intakt!'
assert cleaned_string == target_string
starting_string = 'Ölleckage durch\nundichten Ölsumpf,, aber Dichtung intakt??!!!'
assert data.at[0, 'VorgangsBeschreibung'] == starting_string
(data,) = shared.entry_wise_cleansing(
data,
target_features=target_features,
cleansing_func=shared.clean_string_slim,
)
assert data.at[0, 'VorgangsBeschreibung'] == target_string
def test_analyse_feature(raw_data_path, raw_data_date_cols):
(data,) = ppc.load_raw_data(raw_data_path, raw_data_date_cols)
(data,) = ppc.remove_duplicates(data)
target_features: tuple[str] = ('VorgangsBeschreibung',)
(data,) = ppc.remove_NA(data, target_features)
starting_string = 'Ölleckage durch\nundichten \t Ölsumpf,, aber Dichtung intakt??!!!'
cleaned_string = shared.clean_string_slim(starting_string)
target_string = 'Ölleckage durch undichten Ölsumpf, aber Dichtung intakt!'
assert cleaned_string == target_string
starting_string = 'Ölleckage durch\nundichten Ölsumpf,, aber Dichtung intakt??!!!'
assert data.at[0, 'VorgangsBeschreibung'] == starting_string
(data,) = shared.entry_wise_cleansing(
data,
target_features=target_features,
cleansing_func=shared.clean_string_slim,
)
assert data.at[0, 'VorgangsBeschreibung'] == target_string
(data,) = ppc.analyse_feature(data, target_feature=target_features[0])
assert len(data) == 139

23
tests/conftest.py Normal file
View File

@ -0,0 +1,23 @@
from pathlib import Path
import pytest
DATE_COLS: tuple[str, ...] = (
'VorgangsDatum',
'ErledigungsDatum',
'Arbeitsbeginn',
'ErstellungsDatum',
)
@pytest.fixture(scope='session')
def raw_data_path():
pth_data = Path('./tests/Dummy_Dataset_N_1000.csv')
assert pth_data.exists()
return pth_data
@pytest.fixture(scope='session')
def raw_data_date_cols():
return DATE_COLS

View File

@ -1,56 +0,0 @@
# lang_main: Config file
[paths]
inputs = '../scripts/inputs/'
results = '../scripts/results/test_new2/'
dataset = '../data/02_202307/Export4.csv'
#results = './results/Export7/'
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
#results = './results/Export7_trunc/'
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
[control]
preprocessing = true
preprocessing_skip = false
token_analysis = false
token_analysis_skip = false
graph_postprocessing = false
graph_postprocessing_skip = false
time_analysis = false
time_analysis_skip = false
#[export_filenames]
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
[preprocess]
filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
date_cols = [
"VorgangsDatum",
"ErledigungsDatum",
"Arbeitsbeginn",
"ErstellungsDatum",
]
threshold_amount_characters = 5
threshold_similarity = 0.8
[graph_postprocessing]
threshold_edge_weight = 150
[time_analysis.uniqueness]
threshold_unique_texts = 4
criterion_feature = 'HObjektText'
feature_name_obj_id = 'ObjektID'
[time_analysis.model_input]
input_features = [
'VorgangsTypName',
'VorgangsArtText',
'VorgangsBeschreibung',
]
activity_feature = 'VorgangsTypName'
activity_types = [
'Reparaturauftrag (Portal)',
'Störungsmeldung',
]
threshold_num_acitivities = 1
threshold_similarity = 0.8

View File

7
tests/test_config.py Normal file
View File

@ -0,0 +1,7 @@
from lang_main import config, pkg_dir
def test_load_config():
toml_path = pkg_dir / 'lang_main_config.toml'
loaded_cfg = config.load_toml_config(toml_path)
assert loaded_cfg['info']['pkg'] == 'lang_main'

57
tests/test_io.py Normal file
View File

@ -0,0 +1,57 @@
import pytest
from lang_main import io
CONTENT = 'test_lang_main'
@pytest.mark.parametrize(
'overwrite',
[True, False],
)
def test_create_saving_folder(tmp_path, overwrite):
target_dir = tmp_path / 'test'
assert not target_dir.exists()
io.create_saving_folder(target_dir, overwrite_existing=overwrite)
assert target_dir.exists()
assert target_dir.is_dir()
def test_save_load(tmp_path):
save_pth = tmp_path / 'test_lang_main.pkl'
io.save_pickle(CONTENT, save_pth)
loaded = io.load_pickle(save_pth)
assert loaded == CONTENT
b64_str = io.encode_to_base64_str(CONTENT)
b64_str_file = io.encode_file_to_base64_str(save_pth)
assert b64_str == b64_str_file
b64_decoded = io.decode_from_base64_str(b64_str)
assert b64_decoded == CONTENT
b64_decoded_file = io.decode_from_base64_str(b64_str_file)
assert b64_decoded_file == CONTENT
def test_get_entry_point(tmp_path):
save_pth = tmp_path / 'test_lang_main.pkl'
io.save_pickle(CONTENT, save_pth)
pth = io.get_entry_point(
tmp_path,
'test_lang_main',
'.pkl',
check_existence=True,
)
assert pth.exists()
with pytest.raises(FileNotFoundError):
_ = io.get_entry_point(
tmp_path,
'test_lang_main2',
'.pkl',
check_existence=True,
)
pth = io.get_entry_point(
tmp_path,
'test_lang_main2',
'.pkl',
check_existence=False,
)
assert not pth.exists()

View File

@ -0,0 +1,5 @@
from lang_main import BASE_PATH
def test_base_path():
assert BASE_PATH is not None

113
tests/test_model_loader.py Normal file
View File

@ -0,0 +1,113 @@
import pytest
from sentence_transformers import SentenceTransformer
from spacy.language import Language
from lang_main import model_loader
from lang_main.constants import (
STFR_MODEL_ARGS_ONNX,
SimilarityFunction,
SpacyModelTypes,
STFRBackends,
STFRDeviceTypes,
STFRModelTypes,
)
from lang_main.types import LanguageModels
@pytest.mark.parametrize(
'similarity_func',
[
SimilarityFunction.COSINE,
SimilarityFunction.DOT,
],
)
@pytest.mark.parametrize(
'model_name',
[
STFRModelTypes.ALL_DISTILROBERTA_V1,
STFRModelTypes.ALL_MINI_LM_L12_V2,
STFRModelTypes.ALL_MINI_LM_L6_V2,
STFRModelTypes.ALL_MPNET_BASE_V2,
],
)
@pytest.mark.mload
def test_load_sentence_transformer(
model_name,
similarity_func,
) -> None:
model = model_loader.load_sentence_transformer(
model_name=model_name,
similarity_func=similarity_func,
backend=STFRBackends.TORCH,
device=STFRDeviceTypes.CPU,
model_kwargs=None,
)
assert isinstance(model, SentenceTransformer)
@pytest.mark.parametrize(
'similarity_func',
[
SimilarityFunction.COSINE,
SimilarityFunction.DOT,
],
)
@pytest.mark.parametrize(
'model_name',
[
STFRModelTypes.ALL_DISTILROBERTA_V1,
STFRModelTypes.ALL_MINI_LM_L12_V2,
STFRModelTypes.ALL_MINI_LM_L6_V2,
STFRModelTypes.ALL_MPNET_BASE_V2,
],
)
@pytest.mark.mload
def test_load_sentence_transformer_onnx(
model_name,
similarity_func,
) -> None:
model = model_loader.load_sentence_transformer(
model_name=model_name,
similarity_func=similarity_func,
backend=STFRBackends.ONNX,
device=STFRDeviceTypes.CPU,
model_kwargs=STFR_MODEL_ARGS_ONNX, # type: ignore
)
assert isinstance(model, SentenceTransformer)
@pytest.mark.parametrize(
'model_name',
[
SpacyModelTypes.DE_CORE_NEWS_SM,
SpacyModelTypes.DE_CORE_NEWS_MD,
SpacyModelTypes.DE_CORE_NEWS_LG,
SpacyModelTypes.DE_DEP_NEWS_TRF,
],
)
@pytest.mark.mload
def test_load_spacy_model(
model_name,
):
model = model_loader.load_spacy(
model_name=model_name,
)
assert isinstance(model, Language)
@pytest.mark.mload
def test_instantiate_spacy_model():
model = model_loader.instantiate_model(
model_load_map=model_loader.MODEL_LOADER_MAP,
model=LanguageModels.SPACY,
)
assert isinstance(model, Language)
@pytest.mark.mload
def test_instantiate_stfr_model():
model = model_loader.instantiate_model(
model_load_map=model_loader.MODEL_LOADER_MAP,
model=LanguageModels.SENTENCE_TRANSFORMER,
)
assert isinstance(model, SentenceTransformer)