using dash-cytoscape
This commit is contained in:
parent
b3cc012791
commit
b3e35e7dd1
15
pdm.lock
generated
15
pdm.lock
generated
@ -5,7 +5,7 @@
|
||||
groups = ["default", "notebooks", "trials"]
|
||||
strategy = ["cross_platform", "inherit_metadata"]
|
||||
lock_version = "4.4.1"
|
||||
content_hash = "sha256:7574154c6728ede3eaf76a8b1a3b5d4339fcc8f2dc8c41042401004b6583e151"
|
||||
content_hash = "sha256:8781981bde2786c60273cd73599f4ab6a388d0b435484d5ba0afa0656723dd98"
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
@ -432,6 +432,19 @@ files = [
|
||||
{file = "dash_core_components-2.0.0.tar.gz", hash = "sha256:c6733874af975e552f95a1398a16c2ee7df14ce43fa60bb3718a3c6e0b63ffee"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "dash-cytoscape"
|
||||
version = "1.0.1"
|
||||
requires_python = ">=3.8"
|
||||
summary = "A Component Library for Dash aimed at facilitating network visualization in Python, wrapped around Cytoscape.js"
|
||||
groups = ["trials"]
|
||||
dependencies = [
|
||||
"dash",
|
||||
]
|
||||
files = [
|
||||
{file = "dash_cytoscape-1.0.1.tar.gz", hash = "sha256:1bcd1587b2d8b432945585e2295e76393d3eb829f606c198693cd2b45bea6adc"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "dash-html-components"
|
||||
version = "2.0.0"
|
||||
|
||||
@ -33,6 +33,7 @@ notebooks = [
|
||||
trials = [
|
||||
"plotly>=5.22.0",
|
||||
"dash>=2.17.0",
|
||||
"dash-cytoscape>=1.0.1",
|
||||
]
|
||||
|
||||
[tool.ruff]
|
||||
|
||||
@ -28,6 +28,8 @@ from lang_main.pipelines.predefined import (
|
||||
)
|
||||
from lang_main.types import (
|
||||
ObjectID,
|
||||
PandasIndex,
|
||||
SpacyDoc,
|
||||
TimelineCandidates,
|
||||
)
|
||||
from pandas import DataFrame, Series
|
||||
@ -37,7 +39,7 @@ from pandas import DataFrame, Series
|
||||
def run_preprocessing() -> DataFrame:
|
||||
create_saving_folder(
|
||||
saving_path_folder=SAVE_PATH_FOLDER,
|
||||
overwrite_existing=True,
|
||||
overwrite_existing=False,
|
||||
)
|
||||
# run pipelines
|
||||
ret = typing.cast(
|
||||
@ -56,15 +58,16 @@ def run_preprocessing() -> DataFrame:
|
||||
|
||||
def run_token_analysis(
|
||||
preprocessed_data: DataFrame,
|
||||
) -> TokenGraph:
|
||||
) -> tuple[TokenGraph, dict[PandasIndex, SpacyDoc]]:
|
||||
# build token graph
|
||||
(tk_graph,) = typing.cast(
|
||||
tuple[TokenGraph], pipe_token_analysis.run(starting_values=(preprocessed_data,))
|
||||
(tk_graph, docs_mapping) = typing.cast(
|
||||
tuple[TokenGraph, dict[PandasIndex, SpacyDoc]],
|
||||
pipe_token_analysis.run(starting_values=(preprocessed_data,)),
|
||||
)
|
||||
tk_graph.save_graph(SAVE_PATH_FOLDER, directed=False)
|
||||
tk_graph.to_pickle(SAVE_PATH_FOLDER, filename=f'{pipe_token_analysis.name}-TokenGraph')
|
||||
|
||||
return tk_graph
|
||||
return tk_graph, docs_mapping
|
||||
|
||||
|
||||
def run_graph_postprocessing(
|
||||
@ -127,9 +130,9 @@ def main() -> None:
|
||||
'Preprocessing step skipped. Token analysis cannot be performed.'
|
||||
)
|
||||
preprocessed_data_trunc = typing.cast(
|
||||
DataFrame, preprocessed_data[['entry', 'num_occur']].copy()
|
||||
DataFrame, preprocessed_data[['batched_idxs', 'entry', 'num_occur']].copy()
|
||||
) # type: ignore
|
||||
tk_graph = run_token_analysis(preprocessed_data_trunc)
|
||||
tk_graph, docs_mapping = run_token_analysis(preprocessed_data_trunc)
|
||||
elif not SKIP_TOKEN_ANALYSIS:
|
||||
# !! hardcoded result filenames
|
||||
# whole graph
|
||||
|
||||
@ -16,7 +16,6 @@ from dash import (
|
||||
dcc,
|
||||
html,
|
||||
)
|
||||
from lang_main import CALLER_PATH
|
||||
from lang_main.io import load_pickle
|
||||
from lang_main.types import ObjectID, TimelineCandidates
|
||||
from pandas import DataFrame
|
||||
@ -24,12 +23,8 @@ from pandas import DataFrame
|
||||
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
|
||||
|
||||
# ** data
|
||||
# p_df = Path(r'.\test-notebooks\dashboard\Pipe-TargetFeature_Step-3_remove_NA.pkl')
|
||||
p_df = CALLER_PATH.joinpath('./Pipe-TargetFeature_Step-3_remove_NA.pkl')
|
||||
# p_tl = Path(
|
||||
# r'.\test-notebooks\dashboard\Pipe-Timeline_Analysis_Step-4_get_timeline_candidates.pkl'
|
||||
# )
|
||||
p_tl = CALLER_PATH.joinpath('./Pipe-Timeline_Analysis_Step-4_get_timeline_candidates.pkl')
|
||||
p_df = Path(r'./Pipe-TargetFeature_Step-3_remove_NA.pkl').resolve()
|
||||
p_tl = Path(r'/Pipe-Timeline_Analysis_Step-4_get_timeline_candidates.pkl').resolve()
|
||||
ret = cast(DataFrame, load_pickle(p_df))
|
||||
data = ret[0]
|
||||
ret = cast(tuple[TimelineCandidates, dict[ObjectID, str]], load_pickle(p_tl))
|
||||
@ -133,7 +128,7 @@ def update_timeline(index, obj_id):
|
||||
cands_obj_id = cands[obj_id]
|
||||
cands_choice = cands_obj_id[int(index) - 1]
|
||||
# data
|
||||
df = data.loc[list(cands_choice)].sort_index()
|
||||
df = data.loc[list(cands_choice)].sort_index() # type: ignore
|
||||
# figure
|
||||
fig = px.line(
|
||||
data_frame=df,
|
||||
@ -164,7 +159,7 @@ def update_table_candidates(index, obj_id):
|
||||
cands_obj_id = cands[obj_id]
|
||||
cands_choice = cands_obj_id[int(index) - 1]
|
||||
# data
|
||||
df = data.loc[list(cands_choice)].sort_index()
|
||||
df = data.loc[list(cands_choice)].sort_index() # type: ignore
|
||||
df = df.filter(items=table_feats, axis=1).sort_values(
|
||||
by='ErstellungsDatum', ascending=True
|
||||
)
|
||||
203
scripts/dashboard/cyto.py
Normal file
203
scripts/dashboard/cyto.py
Normal file
@ -0,0 +1,203 @@
|
||||
import time
|
||||
import webbrowser
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
from typing import cast
|
||||
|
||||
import dash_cytoscape as cyto
|
||||
import lang_main.io
|
||||
from dash import Dash, Input, Output, State, dcc, html
|
||||
from lang_main.analysis import graphs
|
||||
|
||||
target = '../results/test_20240529/Pipe-Token_Analysis_Step-1_build_token_graph.pkl'
|
||||
p = Path(target).resolve()
|
||||
ret = lang_main.io.load_pickle(p)
|
||||
tk_graph = cast(graphs.TokenGraph, ret[0])
|
||||
tk_graph_filtered = tk_graph.filter_by_edge_weight(150)
|
||||
tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1)
|
||||
cyto_data, weight_data = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
|
||||
|
||||
MIN_WEIGHT = weight_data['min']
|
||||
MAX_WEIGHT = weight_data['max']
|
||||
|
||||
|
||||
cyto.load_extra_layouts()
|
||||
app = Dash(__name__)
|
||||
|
||||
my_stylesheet = [
|
||||
# Group selectors
|
||||
{
|
||||
'selector': 'node',
|
||||
'style': {
|
||||
'shape': 'circle',
|
||||
'content': 'data(label)',
|
||||
'background-color': '#B10DC9',
|
||||
'border-width': 2,
|
||||
'border-color': 'black',
|
||||
'border-opacity': 1,
|
||||
'opacity': 1,
|
||||
'color': 'black',
|
||||
'text-opacity': 1,
|
||||
'font-size': 12,
|
||||
'z-index': 9999,
|
||||
},
|
||||
},
|
||||
{
|
||||
'selector': 'edge',
|
||||
'style': {
|
||||
'width': 2,
|
||||
'curve-style': 'bezier',
|
||||
'line-color': 'grey',
|
||||
'line-style': 'solid',
|
||||
'line-opacity': 1,
|
||||
},
|
||||
},
|
||||
# Class selectors
|
||||
# {'selector': '.red', 'style': {'background-color': 'red', 'line-color': 'red'}},
|
||||
# {'selector': '.triangle', 'style': {'shape': 'triangle'}},
|
||||
]
|
||||
|
||||
app.layout = html.Div(
|
||||
[
|
||||
html.Button('Reset', id='bt-reset'),
|
||||
dcc.Dropdown(
|
||||
id='layout_choice_internal',
|
||||
options=[
|
||||
'random',
|
||||
'grid',
|
||||
'circle',
|
||||
'concentric',
|
||||
'breadthfirst',
|
||||
'cose',
|
||||
],
|
||||
value='cose',
|
||||
clearable=False,
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id='layout_choice_external',
|
||||
options=[
|
||||
'cose-bilkent',
|
||||
'cola',
|
||||
'euler',
|
||||
'spread',
|
||||
'dagre',
|
||||
'klay',
|
||||
],
|
||||
clearable=False,
|
||||
),
|
||||
dcc.RangeSlider(
|
||||
id='weight_slider',
|
||||
min=MIN_WEIGHT,
|
||||
max=MAX_WEIGHT,
|
||||
step=1000,
|
||||
),
|
||||
cyto.Cytoscape(
|
||||
id='cytoscape-graph',
|
||||
layout={'name': 'cose'},
|
||||
style={'width': '100%', 'height': '600px'},
|
||||
stylesheet=my_stylesheet,
|
||||
elements=cyto_data,
|
||||
zoom=1,
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'layout', allow_duplicate=True),
|
||||
Input('layout_choice_internal', 'value'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def update_layout_internal(layout_choice):
|
||||
return {'name': layout_choice}
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'layout', allow_duplicate=True),
|
||||
Input('layout_choice_external', 'value'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def update_layout_external(layout_choice):
|
||||
return {'name': layout_choice}
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'zoom'),
|
||||
Output('cytoscape-graph', 'elements'),
|
||||
Input('bt-reset', 'n_clicks'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def reset_layout(n_clicks):
|
||||
return (1, cyto_data)
|
||||
|
||||
|
||||
# @app.callback(
|
||||
# Output('cytoscape-graph', 'stylesheet'),
|
||||
# Input('weight_slider', 'value'),
|
||||
# State('cytoscape-graph', 'stylesheet'),
|
||||
# prevent_initial_call=True,
|
||||
# )
|
||||
# def select_weight(range_chosen, stylesheet):
|
||||
# min_weight, max_weight = range_chosen
|
||||
# new_stylesheet = stylesheet.copy()
|
||||
# new_stylesheet.append(
|
||||
# {
|
||||
# 'selector': f'[weight >= {min_weight}]',
|
||||
# 'style': {'line-color': 'blue', 'line-style': 'dashed'},
|
||||
# }
|
||||
# )
|
||||
# new_stylesheet.append(
|
||||
# {
|
||||
# 'selector': f'[weight <= {max_weight}]',
|
||||
# 'style': {'line-color': 'blue', 'line-style': 'dashed'},
|
||||
# }
|
||||
# )
|
||||
# return new_stylesheet
|
||||
|
||||
|
||||
# app.layout = html.Div(
|
||||
# [
|
||||
# cyto.Cytoscape(
|
||||
# id='cytoscape-two-nodes',
|
||||
# layout={'name': 'preset'},
|
||||
# style={'width': '100%', 'height': '400px'},
|
||||
# stylesheet=my_stylesheet,
|
||||
# elements=[
|
||||
# {
|
||||
# 'data': {
|
||||
# 'id': 'one',
|
||||
# 'label': 'Titel 1',
|
||||
# },
|
||||
# 'position': {'x': 75, 'y': 75},
|
||||
# 'grabbable': False,
|
||||
# #'locked': True,
|
||||
# 'classes': 'red',
|
||||
# },
|
||||
# {
|
||||
# 'data': {'id': 'two', 'label': 'Title 2'},
|
||||
# 'position': {'x': 200, 'y': 200},
|
||||
# 'classes': 'triangle',
|
||||
# },
|
||||
# {'data': {'source': 'one', 'target': 'two', 'weight': 2000}},
|
||||
# ],
|
||||
# )
|
||||
# ]
|
||||
# )
|
||||
|
||||
|
||||
def _start_webbrowser():
|
||||
host = '127.0.0.1'
|
||||
port = '8050'
|
||||
adress = f'http://{host}:{port}/'
|
||||
time.sleep(2)
|
||||
webbrowser.open_new(adress)
|
||||
|
||||
|
||||
def main():
|
||||
webbrowser_thread = Thread(target=_start_webbrowser, daemon=True)
|
||||
webbrowser_thread.start()
|
||||
app.run(debug=True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
368
scripts/dashboard/cyto_2.py
Normal file
368
scripts/dashboard/cyto_2.py
Normal file
@ -0,0 +1,368 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
import dash
|
||||
import dash_cytoscape as cyto
|
||||
from dash import Input, Output, State, callback, dcc, html
|
||||
|
||||
# Load extra layouts
|
||||
cyto.load_extra_layouts()
|
||||
|
||||
|
||||
# Display utility functions
|
||||
def _merge(a, b):
|
||||
return dict(a, **b)
|
||||
|
||||
|
||||
def _omit(omitted_keys, d):
|
||||
return {k: v for k, v in d.items() if k not in omitted_keys}
|
||||
|
||||
|
||||
# Custom Display Components
|
||||
def Card(children, **kwargs):
|
||||
return html.Section(
|
||||
children,
|
||||
style=_merge(
|
||||
{
|
||||
'padding': 20,
|
||||
'margin': 5,
|
||||
'borderRadius': 5,
|
||||
'border': 'thin lightgrey solid',
|
||||
'background-color': 'white',
|
||||
# Remove possibility to select the text for better UX
|
||||
'user-select': 'none',
|
||||
'-moz-user-select': 'none',
|
||||
'-webkit-user-select': 'none',
|
||||
'-ms-user-select': 'none',
|
||||
},
|
||||
kwargs.get('style', {}),
|
||||
),
|
||||
**_omit(['style'], kwargs),
|
||||
)
|
||||
|
||||
|
||||
def SectionTitle(title, size, align='center', color='#222'):
|
||||
return html.Div(
|
||||
style={'text-align': align, 'color': color},
|
||||
children=dcc.Markdown('#' * size + ' ' + title),
|
||||
)
|
||||
|
||||
|
||||
def NamedCard(title, size, children, **kwargs):
|
||||
size = min(size, 6)
|
||||
size = max(size, 1)
|
||||
|
||||
return html.Div([Card([SectionTitle(title, size, align='left')] + children, **kwargs)])
|
||||
|
||||
|
||||
def NamedSlider(name, **kwargs):
|
||||
return html.Div(
|
||||
style={'padding': '20px 10px 25px 4px'},
|
||||
children=[
|
||||
html.P(f'{name}:'),
|
||||
html.Div(style={'margin-left': '6px'}, children=dcc.Slider(**kwargs)),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def NamedDropdown(name, **kwargs):
|
||||
return html.Div(
|
||||
style={'margin': '10px 0px'},
|
||||
children=[
|
||||
html.P(children=f'{name}:', style={'margin-left': '3px'}),
|
||||
dcc.Dropdown(**kwargs),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def NamedRadioItems(name, **kwargs):
|
||||
return html.Div(
|
||||
style={'padding': '20px 10px 25px 4px'},
|
||||
children=[html.P(children=f'{name}:'), dcc.RadioItems(**kwargs)],
|
||||
)
|
||||
|
||||
|
||||
def NamedInput(name, **kwargs):
|
||||
return html.Div(children=[html.P(children=f'{name}:'), dcc.Input(**kwargs)])
|
||||
|
||||
|
||||
# Utils
|
||||
def DropdownOptionsList(*args):
|
||||
return [{'label': val.capitalize(), 'value': val} for val in args]
|
||||
|
||||
|
||||
asset_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'assets')
|
||||
|
||||
app = dash.Dash(__name__, assets_folder=asset_path)
|
||||
server = app.server
|
||||
|
||||
|
||||
# ###################### DATA PREPROCESSING ######################
|
||||
# Load data
|
||||
with open('sample_network.txt', 'r', encoding='utf-8') as f:
|
||||
network_data = f.read().split('\n')
|
||||
|
||||
# We select the first 750 edges and associated nodes for an easier visualization
|
||||
edges = network_data[:750]
|
||||
nodes = set()
|
||||
|
||||
following_node_di = {} # user id -> list of users they are following
|
||||
following_edges_di = {} # user id -> list of cy edges starting from user id
|
||||
|
||||
followers_node_di = {} # user id -> list of followers (cy_node format)
|
||||
followers_edges_di = {} # user id -> list of cy edges ending at user id
|
||||
|
||||
cy_edges = []
|
||||
cy_nodes = []
|
||||
|
||||
for edge in edges:
|
||||
if ' ' not in edge:
|
||||
continue
|
||||
|
||||
source, target = edge.split(' ')
|
||||
|
||||
cy_edge = {'data': {'id': source + target, 'source': source, 'target': target}}
|
||||
cy_target = {'data': {'id': target, 'label': 'User #' + str(target[-5:])}}
|
||||
cy_source = {'data': {'id': source, 'label': 'User #' + str(source[-5:])}}
|
||||
|
||||
if source not in nodes:
|
||||
nodes.add(source)
|
||||
cy_nodes.append(cy_source)
|
||||
if target not in nodes:
|
||||
nodes.add(target)
|
||||
cy_nodes.append(cy_target)
|
||||
|
||||
# Process dictionary of following
|
||||
if not following_node_di.get(source):
|
||||
following_node_di[source] = []
|
||||
if not following_edges_di.get(source):
|
||||
following_edges_di[source] = []
|
||||
|
||||
following_node_di[source].append(cy_target)
|
||||
following_edges_di[source].append(cy_edge)
|
||||
|
||||
# Process dictionary of followers
|
||||
if not followers_node_di.get(target):
|
||||
followers_node_di[target] = []
|
||||
if not followers_edges_di.get(target):
|
||||
followers_edges_di[target] = []
|
||||
|
||||
followers_node_di[target].append(cy_source)
|
||||
followers_edges_di[target].append(cy_edge)
|
||||
|
||||
genesis_node = cy_nodes[0]
|
||||
genesis_node['classes'] = 'genesis'
|
||||
default_elements = [genesis_node]
|
||||
|
||||
default_stylesheet = [
|
||||
{'selector': 'node', 'style': {'opacity': 0.65, 'z-index': 9999}},
|
||||
{
|
||||
'selector': 'edge',
|
||||
'style': {'curve-style': 'bezier', 'opacity': 0.45, 'z-index': 5000},
|
||||
},
|
||||
{'selector': '.followerNode', 'style': {'background-color': '#0074D9'}},
|
||||
{
|
||||
'selector': '.followerEdge',
|
||||
'style': {
|
||||
'mid-target-arrow-color': 'blue',
|
||||
'mid-target-arrow-shape': 'vee',
|
||||
'line-color': '#0074D9',
|
||||
},
|
||||
},
|
||||
{'selector': '.followingNode', 'style': {'background-color': '#FF4136'}},
|
||||
{
|
||||
'selector': '.followingEdge',
|
||||
'style': {
|
||||
'mid-target-arrow-color': 'red',
|
||||
'mid-target-arrow-shape': 'vee',
|
||||
'line-color': '#FF4136',
|
||||
},
|
||||
},
|
||||
{
|
||||
'selector': '.genesis',
|
||||
'style': {
|
||||
'background-color': '#B10DC9',
|
||||
'border-width': 2,
|
||||
'border-color': 'purple',
|
||||
'border-opacity': 1,
|
||||
'opacity': 1,
|
||||
'label': 'data(label)',
|
||||
'color': '#B10DC9',
|
||||
'text-opacity': 1,
|
||||
'font-size': 12,
|
||||
'z-index': 9999,
|
||||
},
|
||||
},
|
||||
{
|
||||
'selector': ':selected',
|
||||
'style': {
|
||||
'border-width': 2,
|
||||
'border-color': 'black',
|
||||
'border-opacity': 1,
|
||||
'opacity': 1,
|
||||
'label': 'data(label)',
|
||||
'color': 'black',
|
||||
'font-size': 12,
|
||||
'z-index': 9999,
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
# ################################# APP LAYOUT ################################
|
||||
styles = {
|
||||
'json-output': {
|
||||
'overflow-y': 'scroll',
|
||||
'height': 'calc(50% - 25px)',
|
||||
'border': 'thin lightgrey solid',
|
||||
},
|
||||
'tab': {'height': 'calc(98vh - 80px)'},
|
||||
}
|
||||
|
||||
app.layout = html.Div(
|
||||
[
|
||||
html.Div(
|
||||
className='eight columns',
|
||||
children=[
|
||||
cyto.Cytoscape(
|
||||
id='cytoscape',
|
||||
elements=default_elements,
|
||||
stylesheet=default_stylesheet,
|
||||
style={'height': '95vh', 'width': '100%'},
|
||||
)
|
||||
],
|
||||
),
|
||||
html.Div(
|
||||
className='four columns',
|
||||
children=[
|
||||
dcc.Tabs(
|
||||
id='tabs',
|
||||
children=[
|
||||
dcc.Tab(
|
||||
label='Control Panel',
|
||||
children=[
|
||||
NamedDropdown(
|
||||
name='Layout',
|
||||
id='dropdown-layout',
|
||||
options=DropdownOptionsList(
|
||||
'random',
|
||||
'grid',
|
||||
'circle',
|
||||
'concentric',
|
||||
'breadthfirst',
|
||||
'cose',
|
||||
'cose-bilkent',
|
||||
'dagre',
|
||||
'cola',
|
||||
'klay',
|
||||
'spread',
|
||||
'euler',
|
||||
),
|
||||
value='grid',
|
||||
clearable=False,
|
||||
),
|
||||
NamedRadioItems(
|
||||
name='Expand',
|
||||
id='radio-expand',
|
||||
options=DropdownOptionsList('followers', 'following'),
|
||||
value='followers',
|
||||
),
|
||||
],
|
||||
),
|
||||
dcc.Tab(
|
||||
label='JSON',
|
||||
children=[
|
||||
html.Div(
|
||||
style=styles['tab'],
|
||||
children=[
|
||||
html.P('Node Object JSON:'),
|
||||
html.Pre(
|
||||
id='tap-node-json-output',
|
||||
style=styles['json-output'],
|
||||
),
|
||||
html.P('Edge Object JSON:'),
|
||||
html.Pre(
|
||||
id='tap-edge-json-output',
|
||||
style=styles['json-output'],
|
||||
),
|
||||
],
|
||||
)
|
||||
],
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
# ############################## CALLBACKS ####################################
|
||||
@callback(Output('tap-node-json-output', 'children'), Input('cytoscape', 'tapNode'))
|
||||
def display_tap_node(data):
|
||||
return json.dumps(data, indent=2)
|
||||
|
||||
|
||||
@callback(Output('tap-edge-json-output', 'children'), Input('cytoscape', 'tapEdge'))
|
||||
def display_tap_edge(data):
|
||||
return json.dumps(data, indent=2)
|
||||
|
||||
|
||||
@callback(Output('cytoscape', 'layout'), Input('dropdown-layout', 'value'))
|
||||
def update_cytoscape_layout(layout):
|
||||
return {'name': layout}
|
||||
|
||||
|
||||
@callback(
|
||||
Output('cytoscape', 'elements'),
|
||||
Input('cytoscape', 'tapNodeData'),
|
||||
State('cytoscape', 'elements'),
|
||||
State('radio-expand', 'value'),
|
||||
)
|
||||
def generate_elements(nodeData, elements, expansion_mode):
|
||||
if not nodeData:
|
||||
return default_elements
|
||||
|
||||
# If the node has already been expanded, we don't expand it again
|
||||
if nodeData.get('expanded'):
|
||||
return elements
|
||||
|
||||
# This retrieves the currently selected element, and tag it as expanded
|
||||
for element in elements:
|
||||
if nodeData['id'] == element.get('data').get('id'):
|
||||
element['data']['expanded'] = True
|
||||
break
|
||||
|
||||
if expansion_mode == 'followers':
|
||||
followers_nodes = followers_node_di.get(nodeData['id'])
|
||||
followers_edges = followers_edges_di.get(nodeData['id'])
|
||||
|
||||
if followers_nodes:
|
||||
for node in followers_nodes:
|
||||
node['classes'] = 'followerNode'
|
||||
elements.extend(followers_nodes)
|
||||
|
||||
if followers_edges:
|
||||
for follower_edge in followers_edges:
|
||||
follower_edge['classes'] = 'followerEdge'
|
||||
elements.extend(followers_edges)
|
||||
|
||||
elif expansion_mode == 'following':
|
||||
following_nodes = following_node_di.get(nodeData['id'])
|
||||
following_edges = following_edges_di.get(nodeData['id'])
|
||||
|
||||
if following_nodes:
|
||||
for node in following_nodes:
|
||||
if node['data']['id'] != genesis_node['data']['id']:
|
||||
node['classes'] = 'followingNode'
|
||||
elements.append(node)
|
||||
|
||||
if following_edges:
|
||||
for follower_edge in following_edges:
|
||||
follower_edge['classes'] = 'followingEdge'
|
||||
elements.extend(following_edges)
|
||||
|
||||
return elements
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run_server(debug=True)
|
||||
10297
scripts/dashboard/sample_network.txt
Normal file
10297
scripts/dashboard/sample_network.txt
Normal file
File diff suppressed because it is too large
Load Diff
@ -10,14 +10,14 @@ dataset = '../data/02_202307/Export4.csv'
|
||||
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
|
||||
|
||||
[control]
|
||||
preprocessing = true
|
||||
preprocessing_skip = true
|
||||
token_analysis = false
|
||||
token_analysis_skip = true
|
||||
preprocessing = false
|
||||
preprocessing_skip = false
|
||||
token_analysis = true
|
||||
token_analysis_skip = false
|
||||
graph_postprocessing = false
|
||||
graph_postprocessing_skip = true
|
||||
time_analysis = true
|
||||
time_analysis_skip = false
|
||||
time_analysis = false
|
||||
time_analysis_skip = true
|
||||
|
||||
#[export_filenames]
|
||||
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
|
||||
|
||||
@ -1,9 +1,15 @@
|
||||
from pathlib import Path
|
||||
|
||||
from lang_main.constants import (
|
||||
INPUT_PATH_FOLDER,
|
||||
PATH_TO_DATASET,
|
||||
SAVE_PATH_FOLDER,
|
||||
input_path_conf,
|
||||
)
|
||||
|
||||
print(SAVE_PATH_FOLDER, '\n')
|
||||
print(INPUT_PATH_FOLDER, '\n')
|
||||
print(PATH_TO_DATASET, '\n')
|
||||
|
||||
print('------------------------')
|
||||
print(Path.cwd(), '\n', input_path_conf)
|
||||
51
src/lang_main/__init__ copy.py
Normal file
51
src/lang_main/__init__ copy.py
Normal file
@ -0,0 +1,51 @@
|
||||
import inspect
|
||||
import logging
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from time import gmtime
|
||||
from typing import Any, Final
|
||||
import warnings
|
||||
|
||||
from lang_main.io import load_toml_config
|
||||
|
||||
__all__ = [
|
||||
'CALLER_PATH',
|
||||
]
|
||||
|
||||
logging.Formatter.converter = gmtime
|
||||
LOG_FMT: Final[str] = '%(asctime)s | %(module)s:%(levelname)s | %(message)s'
|
||||
LOG_DATE_FMT: Final[str] = '%Y-%m-%d %H:%M:%S +0000'
|
||||
logging.basicConfig(
|
||||
stream=sys.stdout,
|
||||
format=LOG_FMT,
|
||||
datefmt=LOG_DATE_FMT,
|
||||
)
|
||||
|
||||
CONFIG_FILENAME: Final[str] = 'lang_main_config.toml'
|
||||
USE_INTERNAL_CONFIG: Final[bool] = True
|
||||
pkg_dir = Path(__file__).parent
|
||||
cfg_path_internal = pkg_dir / CONFIG_FILENAME
|
||||
caller_file = Path(inspect.stack()[-1].filename)
|
||||
CALLER_PATH: Final[Path] = caller_file.parent.resolve()
|
||||
|
||||
# load config data: internal/external
|
||||
if USE_INTERNAL_CONFIG:
|
||||
loaded_cfg = load_toml_config(path_to_toml=cfg_path_internal)
|
||||
else:
|
||||
cfg_path_external = CALLER_PATH / CONFIG_FILENAME
|
||||
if not caller_file.exists():
|
||||
warnings.warn('Caller file could not be correctly retrieved.')
|
||||
if not cfg_path_external.exists():
|
||||
shutil.copy(cfg_path_internal, cfg_path_external)
|
||||
sys.exit(
|
||||
(
|
||||
'No config file was found. A new one with default values was created '
|
||||
'in the execution path. Please fill in the necessary values and '
|
||||
'restart the programm.'
|
||||
)
|
||||
)
|
||||
# raise NotImplementedError("External config data not implemented yet.")
|
||||
loaded_cfg = load_toml_config(path_to_toml=cfg_path_external)
|
||||
|
||||
CONFIG: Final[dict[str, Any]] = loaded_cfg.copy()
|
||||
@ -1,4 +1,3 @@
|
||||
import inspect
|
||||
import logging
|
||||
import shutil
|
||||
import sys
|
||||
@ -8,10 +7,6 @@ from typing import Any, Final
|
||||
|
||||
from lang_main.io import load_toml_config
|
||||
|
||||
__all__ = [
|
||||
'CALLER_PATH',
|
||||
]
|
||||
|
||||
logging.Formatter.converter = gmtime
|
||||
LOG_FMT: Final[str] = '%(asctime)s | %(module)s:%(levelname)s | %(message)s'
|
||||
LOG_DATE_FMT: Final[str] = '%Y-%m-%d %H:%M:%S +0000'
|
||||
@ -24,17 +19,15 @@ logging.basicConfig(
|
||||
CONFIG_FILENAME: Final[str] = 'lang_main_config.toml'
|
||||
USE_INTERNAL_CONFIG: Final[bool] = False
|
||||
pkg_dir = Path(__file__).parent
|
||||
cfg_path_internal = pkg_dir / CONFIG_FILENAME
|
||||
caller_file = Path(inspect.stack()[-1].filename)
|
||||
CALLER_PATH: Final[Path] = caller_file.parent.resolve()
|
||||
cfg_path_internal = (pkg_dir / CONFIG_FILENAME).resolve()
|
||||
# caller_file = Path(inspect.stack()[-1].filename)
|
||||
# CALLER_PATH: Final[Path] = caller_file.parent.resolve()
|
||||
|
||||
# load config data: internal/external
|
||||
if USE_INTERNAL_CONFIG:
|
||||
loaded_cfg = load_toml_config(path_to_toml=cfg_path_internal)
|
||||
else:
|
||||
cfg_path_external = CALLER_PATH / CONFIG_FILENAME
|
||||
if not caller_file.exists():
|
||||
raise FileNotFoundError('Caller file could not be correctly retrieved.')
|
||||
cfg_path_external = (Path.cwd() / CONFIG_FILENAME).resolve()
|
||||
if not cfg_path_external.exists():
|
||||
shutil.copy(cfg_path_internal, cfg_path_external)
|
||||
sys.exit(
|
||||
|
||||
@ -3,7 +3,7 @@ import sys
|
||||
import typing
|
||||
from collections.abc import Hashable, Iterable
|
||||
from pathlib import Path
|
||||
from typing import Any, Final, Literal, Self, overload
|
||||
from typing import Any, Final, Literal, Self, cast, overload
|
||||
|
||||
import networkx as nx
|
||||
import numpy as np
|
||||
@ -13,6 +13,12 @@ from pandas import DataFrame
|
||||
|
||||
from lang_main.io import load_pickle, save_pickle
|
||||
from lang_main.loggers import logger_graphs as logger
|
||||
from lang_main.types import (
|
||||
CytoscapeData,
|
||||
EdgeWeight,
|
||||
NodeTitle,
|
||||
WeightData,
|
||||
)
|
||||
|
||||
# TODO change logging behaviour, add logging to file
|
||||
LOGGING_DEFAULT: Final[bool] = False
|
||||
@ -67,7 +73,7 @@ def update_graph(
|
||||
batch: Iterable[tuple[Hashable, Hashable]] | None = None,
|
||||
parent: Hashable | None = None,
|
||||
child: Hashable | None = None,
|
||||
weight_connection: int = 1,
|
||||
weight_connection: int | None = None,
|
||||
) -> None:
|
||||
# !! not necessary to check for existence of nodes
|
||||
# !! feature already implemented in NetworkX ``add_edge``
|
||||
@ -78,6 +84,8 @@ def update_graph(
|
||||
if child not in graph:
|
||||
graph.add_node(child)
|
||||
"""
|
||||
if weight_connection is None:
|
||||
weight_connection = 1
|
||||
# check if edge not in Graph
|
||||
if batch is not None:
|
||||
graph.add_edges_from(batch, weight=weight_connection)
|
||||
@ -116,6 +124,51 @@ def convert_graph_to_undirected(
|
||||
return graph_undir
|
||||
|
||||
|
||||
def convert_graph_to_cytoscape(
|
||||
graph: Graph | DiGraph,
|
||||
) -> tuple[list[CytoscapeData], WeightData]:
|
||||
cyto_data: list[CytoscapeData] = []
|
||||
# iterate over nodes
|
||||
nodes = cast(Iterable[NodeTitle], graph.nodes)
|
||||
for i, node in enumerate(nodes):
|
||||
node_data: CytoscapeData = {
|
||||
'data': {
|
||||
'id': node,
|
||||
'label': node,
|
||||
}
|
||||
}
|
||||
cyto_data.append(node_data)
|
||||
# iterate over edges
|
||||
weights: set[int] = set()
|
||||
|
||||
edges = cast(
|
||||
Iterable[
|
||||
tuple[
|
||||
NodeTitle,
|
||||
NodeTitle,
|
||||
EdgeWeight,
|
||||
]
|
||||
],
|
||||
graph.edges.data('weight', default=1), # type: ignore
|
||||
)
|
||||
for i, (source, target, weight) in enumerate(edges):
|
||||
weights.add(weight)
|
||||
edge_data: CytoscapeData = {
|
||||
'data': {
|
||||
'source': source,
|
||||
'target': target,
|
||||
'weight': weight,
|
||||
}
|
||||
}
|
||||
cyto_data.append(edge_data)
|
||||
|
||||
min_weight = min(weights)
|
||||
max_weight = max(weights)
|
||||
weight_metadata: WeightData = {'min': min_weight, 'max': max_weight}
|
||||
|
||||
return cyto_data, weight_metadata
|
||||
|
||||
|
||||
class TokenGraph(DiGraph):
|
||||
def __init__(
|
||||
self,
|
||||
@ -200,7 +253,9 @@ class TokenGraph(DiGraph):
|
||||
|
||||
@overload
|
||||
def to_undirected(
|
||||
self, inplace: bool = ..., logging: bool | None = ...
|
||||
self,
|
||||
inplace: bool = ...,
|
||||
logging: bool | None = ...,
|
||||
) -> Graph | None: ...
|
||||
|
||||
def to_undirected(
|
||||
|
||||
@ -214,20 +214,23 @@ def analyse_feature(
|
||||
unique_feature_entries = feature_entries.unique()
|
||||
|
||||
# prepare result DataFrame
|
||||
cols = ['entry', 'len', 'num_occur', 'assoc_obj_ids', 'num_assoc_obj_ids']
|
||||
cols = ['batched_idxs', 'entry', 'len', 'num_occur', 'assoc_obj_ids', 'num_assoc_obj_ids']
|
||||
result_df = pd.DataFrame(columns=cols)
|
||||
|
||||
for entry in tqdm(unique_feature_entries, mininterval=1.0):
|
||||
len_entry = len(entry)
|
||||
filt = data[target_feature] == entry
|
||||
temp = data[filt]
|
||||
batched_idxs = temp.index.to_numpy()
|
||||
assoc_obj_ids = temp['ObjektID'].unique()
|
||||
assoc_obj_ids = np.sort(assoc_obj_ids, kind='stable')
|
||||
num_assoc_obj_ids = len(assoc_obj_ids)
|
||||
num_dupl = filt.sum()
|
||||
|
||||
conc_df = pd.DataFrame(
|
||||
data=[[entry, len_entry, num_dupl, assoc_obj_ids, num_assoc_obj_ids]],
|
||||
data=[
|
||||
[batched_idxs, entry, len_entry, num_dupl, assoc_obj_ids, num_assoc_obj_ids]
|
||||
],
|
||||
columns=cols,
|
||||
)
|
||||
|
||||
|
||||
@ -10,7 +10,6 @@ from networkx import Graph
|
||||
from pandas import Series
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from torch import Tensor
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from lang_main.analysis.graphs import get_graph_metadata, update_graph
|
||||
from lang_main.types import PandasIndex
|
||||
@ -40,9 +39,8 @@ def candidates_by_index(
|
||||
|
||||
Yields
|
||||
------
|
||||
Iterator[tuple[ObjectID, tuple[PandasIndex, PandasIndex]]]
|
||||
ObjectID and tuple of index pairs which meet the cosine
|
||||
similarity threshold
|
||||
Iterator[tuple[PandasIndex, PandasIndex]]
|
||||
tuple of index pairs which meet the cosine similarity threshold
|
||||
"""
|
||||
# embeddings
|
||||
batch = cast(list[str], data_model_input.to_list())
|
||||
|
||||
@ -1,11 +1,11 @@
|
||||
import re
|
||||
from collections.abc import Iterator
|
||||
from itertools import combinations
|
||||
from typing import cast
|
||||
from typing import Literal, cast, overload
|
||||
|
||||
from dateutil.parser import parse
|
||||
from pandas import DataFrame
|
||||
from spacy.lang.de import German as GermanSpacyModel
|
||||
from spacy.language import Language as GermanSpacyModel
|
||||
from spacy.tokens.doc import Doc as SpacyDoc
|
||||
from spacy.tokens.token import Token as SpacyToken
|
||||
from tqdm.auto import tqdm
|
||||
@ -15,6 +15,7 @@ from lang_main.analysis.graphs import (
|
||||
update_graph,
|
||||
)
|
||||
from lang_main.loggers import logger_token_analysis as logger
|
||||
from lang_main.types import PandasIndex
|
||||
|
||||
# ** POS
|
||||
# POS_OF_INTEREST: frozenset[str] = frozenset(['NOUN', 'PROPN', 'ADJ', 'VERB', 'AUX'])
|
||||
@ -104,7 +105,7 @@ def obtain_relevant_descendants(
|
||||
def add_doc_info_to_graph(
|
||||
graph: TokenGraph,
|
||||
doc: SpacyDoc,
|
||||
weight: int,
|
||||
weight: int | None,
|
||||
) -> None:
|
||||
# iterate over sentences
|
||||
for sent in doc.sents:
|
||||
@ -142,9 +143,121 @@ def add_doc_info_to_graph(
|
||||
)
|
||||
|
||||
|
||||
@overload
|
||||
def build_token_graph(
|
||||
data: DataFrame,
|
||||
model: GermanSpacyModel,
|
||||
*,
|
||||
target_feature: str = ...,
|
||||
weights_feature: str | None = ...,
|
||||
batch_idx_feature: str = ...,
|
||||
build_map: Literal[False],
|
||||
batch_size_model: int = ...,
|
||||
) -> tuple[TokenGraph, None]: ...
|
||||
|
||||
|
||||
@overload
|
||||
def build_token_graph(
|
||||
data: DataFrame,
|
||||
model: GermanSpacyModel,
|
||||
*,
|
||||
target_feature: str = ...,
|
||||
weights_feature: str | None = ...,
|
||||
batch_idx_feature: str = ...,
|
||||
build_map: Literal[True] = ...,
|
||||
batch_size_model: int = ...,
|
||||
) -> tuple[TokenGraph, dict[PandasIndex, SpacyDoc]]: ...
|
||||
|
||||
|
||||
def build_token_graph(
|
||||
data: DataFrame,
|
||||
model: GermanSpacyModel,
|
||||
*,
|
||||
target_feature: str = 'entry',
|
||||
weights_feature: str | None = None,
|
||||
batch_idx_feature: str = 'batched_idxs',
|
||||
build_map: bool = True,
|
||||
batch_size_model: int = 50,
|
||||
) -> tuple[TokenGraph, dict[PandasIndex, SpacyDoc] | None]:
|
||||
graph = TokenGraph()
|
||||
model_input = cast(tuple[str], tuple(data[target_feature].to_list()))
|
||||
if weights_feature is not None:
|
||||
weights = cast(tuple[int], tuple(data[weights_feature].to_list()))
|
||||
else:
|
||||
weights = None
|
||||
|
||||
docs_mapping: dict[PandasIndex, SpacyDoc] | None
|
||||
if build_map:
|
||||
indices = cast(tuple[list[PandasIndex]], tuple(data[batch_idx_feature].to_list()))
|
||||
docs_mapping = {}
|
||||
else:
|
||||
indices = None
|
||||
docs_mapping = None
|
||||
|
||||
index: int = 0
|
||||
|
||||
for doc in tqdm(
|
||||
model.pipe(model_input, batch_size=batch_size_model), total=len(model_input)
|
||||
):
|
||||
if weights is not None:
|
||||
weight = weights[index]
|
||||
else:
|
||||
weight = None
|
||||
add_doc_info_to_graph(
|
||||
graph=graph,
|
||||
doc=doc,
|
||||
weight=weight,
|
||||
)
|
||||
# build map if option chosen
|
||||
if indices is not None and docs_mapping is not None:
|
||||
corresponding_indices = indices[index]
|
||||
for idx in corresponding_indices:
|
||||
docs_mapping[idx] = doc
|
||||
|
||||
index += 1
|
||||
|
||||
# metadata
|
||||
graph.update_metadata()
|
||||
# convert to undirected
|
||||
graph.to_undirected()
|
||||
|
||||
return graph, docs_mapping
|
||||
|
||||
|
||||
def build_token_graph_simple(
|
||||
data: DataFrame,
|
||||
model: GermanSpacyModel,
|
||||
) -> tuple[TokenGraph, dict[PandasIndex, SpacyDoc]]:
|
||||
graph = TokenGraph()
|
||||
model_input = cast(tuple[str], tuple(data['entry'].to_list()))
|
||||
weights = cast(tuple[int], tuple(data['num_occur'].to_list()))
|
||||
indices = cast(tuple[list[PandasIndex]], tuple(data['batched_idxs'].to_list()))
|
||||
index: int = 0
|
||||
docs_mapping: dict[PandasIndex, SpacyDoc] = {}
|
||||
|
||||
for doc in tqdm(model.pipe(model_input, batch_size=50), total=len(model_input)):
|
||||
add_doc_info_to_graph(
|
||||
graph=graph,
|
||||
doc=doc,
|
||||
weight=weights[index],
|
||||
)
|
||||
corresponding_indices = indices[index]
|
||||
for idx in corresponding_indices:
|
||||
docs_mapping[idx] = doc
|
||||
|
||||
index += 1
|
||||
|
||||
# metadata
|
||||
graph.update_metadata()
|
||||
# convert to undirected
|
||||
graph.to_undirected()
|
||||
|
||||
return graph, docs_mapping
|
||||
|
||||
|
||||
def build_token_graph_old(
|
||||
data: DataFrame,
|
||||
model: GermanSpacyModel,
|
||||
) -> tuple[TokenGraph]:
|
||||
# empty NetworkX directed graph
|
||||
# graph = nx.DiGraph()
|
||||
|
||||
@ -1,15 +1,28 @@
|
||||
from pathlib import Path
|
||||
from typing import Final
|
||||
|
||||
from lang_main import CALLER_PATH, CONFIG
|
||||
import spacy
|
||||
from sentence_transformers import SentenceTransformer
|
||||
from spacy.language import Language as GermanSpacyModel
|
||||
|
||||
from lang_main import CONFIG
|
||||
from lang_main.types import STFRDeviceTypes
|
||||
|
||||
# ** paths
|
||||
input_path_conf = Path(CONFIG['paths']['inputs'])
|
||||
INPUT_PATH_FOLDER: Final[Path] = (CALLER_PATH / input_path_conf).resolve()
|
||||
save_path_conf = Path(CONFIG['paths']['results'])
|
||||
SAVE_PATH_FOLDER: Final[Path] = (CALLER_PATH / save_path_conf).resolve()
|
||||
path_dataset_conf = Path(CONFIG['paths']['dataset'])
|
||||
PATH_TO_DATASET: Final[Path] = (CALLER_PATH / path_dataset_conf).resolve()
|
||||
input_path_conf = Path.cwd() / Path(CONFIG['paths']['inputs'])
|
||||
INPUT_PATH_FOLDER: Final[Path] = input_path_conf.resolve()
|
||||
# INPUT_PATH_FOLDER: Final[Path] = (CALLER_PATH / input_path_conf).resolve()
|
||||
# TODO reactivate later
|
||||
# if not INPUT_PATH_FOLDER.exists():
|
||||
# raise FileNotFoundError(f'Input path >>{INPUT_PATH_FOLDER}<< does not exist.')
|
||||
save_path_conf = Path.cwd() / Path(CONFIG['paths']['results'])
|
||||
SAVE_PATH_FOLDER: Final[Path] = save_path_conf.resolve()
|
||||
# SAVE_PATH_FOLDER: Final[Path] = (CALLER_PATH / save_path_conf).resolve()
|
||||
path_dataset_conf = Path.cwd() / Path(CONFIG['paths']['dataset'])
|
||||
PATH_TO_DATASET: Final[Path] = path_dataset_conf.resolve()
|
||||
# PATH_TO_DATASET: Final[Path] = (CALLER_PATH / path_dataset_conf).resolve()
|
||||
# if not PATH_TO_DATASET.exists():
|
||||
# raise FileNotFoundError(f'Dataset path >>{PATH_TO_DATASET}<< does not exist.')
|
||||
# ** control
|
||||
DO_PREPROCESSING: Final[bool] = CONFIG['control']['preprocessing']
|
||||
SKIP_PREPROCESSING: Final[bool] = CONFIG['control']['preprocessing_skip']
|
||||
@ -19,8 +32,18 @@ DO_GRAPH_POSTPROCESSING: Final[bool] = CONFIG['control']['graph_postprocessing']
|
||||
SKIP_GRAPH_POSTPROCESSING: Final[bool] = CONFIG['control']['graph_postprocessing_skip']
|
||||
DO_TIME_ANALYSIS: Final[bool] = CONFIG['control']['time_analysis']
|
||||
SKIP_TIME_ANALYSIS: Final[bool] = CONFIG['control']['time_analysis_skip']
|
||||
# ** export
|
||||
|
||||
# ** models
|
||||
# ** sentence_transformers
|
||||
STFR_DEVICE: Final[STFRDeviceTypes] = STFRDeviceTypes.CPU
|
||||
STFR_MODEL: Final[SentenceTransformer] = SentenceTransformer(
|
||||
'sentence-transformers/all-mpnet-base-v2', device=STFR_DEVICE
|
||||
)
|
||||
|
||||
# ** spacy
|
||||
SPCY_MODEL: Final[GermanSpacyModel] = spacy.load('de_dep_news_trf')
|
||||
|
||||
# ** export
|
||||
# ** preprocessing
|
||||
FILENAME_COSSIM_FILTER_CANDIDATES: Final[str] = CONFIG['preprocess'][
|
||||
'filename_cossim_filter_candidates'
|
||||
|
||||
@ -1,6 +1,3 @@
|
||||
import spacy
|
||||
from sentence_transformers import SentenceTransformer
|
||||
|
||||
from lang_main.analysis.preprocessing import (
|
||||
analyse_feature,
|
||||
clean_string_slim,
|
||||
@ -24,6 +21,8 @@ from lang_main.constants import (
|
||||
FEATURE_NAME_OBJ_ID,
|
||||
MODEL_INPUT_FEATURES,
|
||||
SAVE_PATH_FOLDER,
|
||||
SPCY_MODEL,
|
||||
STFR_MODEL,
|
||||
THRESHOLD_NUM_ACTIVITIES,
|
||||
THRESHOLD_SIMILARITY,
|
||||
THRESHOLD_TIMELINE_SIMILARITY,
|
||||
@ -49,6 +48,7 @@ pipe_target_feat.add(
|
||||
'target_feature': 'VorgangsBeschreibung',
|
||||
'cleansing_func': clean_string_slim,
|
||||
},
|
||||
save_result=True,
|
||||
)
|
||||
pipe_target_feat.add(
|
||||
analyse_feature,
|
||||
@ -64,8 +64,7 @@ pipe_target_feat.add(
|
||||
# ?? still needed?
|
||||
# using similarity between entries to catch duplicates with typo or similar content
|
||||
# pipe_embds = BasePipeline(name='Embedding1', working_dir=SAVE_PATH_FOLDER)
|
||||
model_spacy = spacy.load('de_dep_news_trf')
|
||||
model_stfr = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
||||
|
||||
|
||||
# pipe_embds.add(build_cosSim_matrix, {'model': model_stfr}, save_result=True)
|
||||
# pipe_embds.add(
|
||||
@ -88,7 +87,7 @@ pipe_merge = BasePipeline(name='Merge_Duplicates', working_dir=SAVE_PATH_FOLDER)
|
||||
pipe_merge.add(
|
||||
merge_similarity_dupl,
|
||||
{
|
||||
'model': model_stfr,
|
||||
'model': STFR_MODEL,
|
||||
'cos_sim_threshold': THRESHOLD_SIMILARITY,
|
||||
},
|
||||
save_result=True,
|
||||
@ -99,7 +98,12 @@ pipe_token_analysis = BasePipeline(name='Token_Analysis', working_dir=SAVE_PATH_
|
||||
pipe_token_analysis.add(
|
||||
build_token_graph,
|
||||
{
|
||||
'model': model_spacy,
|
||||
'model': SPCY_MODEL,
|
||||
'target_feature': 'entry',
|
||||
'weights_feature': 'num_occur',
|
||||
'batch_idx_feature': 'batched_idxs',
|
||||
'build_map': True,
|
||||
'batch_size_model': 50,
|
||||
},
|
||||
save_result=True,
|
||||
)
|
||||
@ -135,7 +139,7 @@ pipe_timeline.add(
|
||||
pipe_timeline.add(
|
||||
get_timeline_candidates,
|
||||
{
|
||||
'model': model_stfr,
|
||||
'model': STFR_MODEL,
|
||||
'cos_sim_threshold': THRESHOLD_TIMELINE_SIMILARITY,
|
||||
'feature_obj_id': FEATURE_NAME_OBJ_ID,
|
||||
'model_input_feature': 'nlp_model_input',
|
||||
|
||||
@ -1,11 +1,12 @@
|
||||
import enum
|
||||
from typing import TypeAlias
|
||||
from typing import Required, TypeAlias, TypedDict
|
||||
|
||||
import numpy as np
|
||||
from spacy.tokens.doc import Doc as SpacyDoc
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
# ** logging
|
||||
class LoggingLevels(enum.IntEnum):
|
||||
DEBUG = 10
|
||||
INFO = 20
|
||||
@ -14,8 +15,50 @@ class LoggingLevels(enum.IntEnum):
|
||||
CRITICAL = 50
|
||||
|
||||
|
||||
# ** devices
|
||||
class STFRDeviceTypes(enum.StrEnum):
|
||||
CPU = 'cpu'
|
||||
GPU = 'cuda'
|
||||
|
||||
|
||||
# ** datatsets
|
||||
PandasIndex: TypeAlias = int | np.int64
|
||||
ObjectID: TypeAlias = int
|
||||
Embedding: TypeAlias = SpacyDoc | Tensor
|
||||
|
||||
# ** graphs
|
||||
NodeTitle: TypeAlias = str
|
||||
EdgeWeight: TypeAlias = int
|
||||
|
||||
|
||||
class NodeData(TypedDict):
|
||||
id: NodeTitle
|
||||
label: NodeTitle
|
||||
|
||||
|
||||
class EdgeData(TypedDict):
|
||||
source: NodeTitle
|
||||
target: NodeTitle
|
||||
weight: EdgeWeight
|
||||
|
||||
|
||||
class WeightData(TypedDict):
|
||||
min: EdgeWeight
|
||||
max: EdgeWeight
|
||||
|
||||
|
||||
class CytoscapePosition(TypedDict):
|
||||
x: int
|
||||
y: int
|
||||
|
||||
|
||||
class CytoscapeData(TypedDict, total=False):
|
||||
data: Required[EdgeData | NodeData]
|
||||
position: CytoscapePosition
|
||||
grabbable: bool
|
||||
locked: bool
|
||||
classes: str
|
||||
|
||||
|
||||
# ** timeline
|
||||
TimelineCandidates: TypeAlias = dict[ObjectID, tuple[tuple[PandasIndex, ...], ...]]
|
||||
|
||||
@ -3087,7 +3087,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@ -1077,7 +1077,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@ -2267,7 +2267,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
56
test-notebooks/lang_main_config.toml
Normal file
56
test-notebooks/lang_main_config.toml
Normal file
@ -0,0 +1,56 @@
|
||||
# lang_main: Config file
|
||||
|
||||
[paths]
|
||||
inputs = './inputs/'
|
||||
results = './results/test_new2/'
|
||||
dataset = './01_2_Rohdaten_neu/Export4.csv'
|
||||
#results = './results/Export7/'
|
||||
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
|
||||
#results = './results/Export7_trunc/'
|
||||
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
|
||||
|
||||
[control]
|
||||
preprocessing = true
|
||||
preprocessing_skip = false
|
||||
token_analysis = false
|
||||
token_analysis_skip = false
|
||||
graph_postprocessing = false
|
||||
graph_postprocessing_skip = false
|
||||
time_analysis = false
|
||||
time_analysis_skip = false
|
||||
|
||||
#[export_filenames]
|
||||
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
|
||||
|
||||
[preprocess]
|
||||
filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
|
||||
date_cols = [
|
||||
"VorgangsDatum",
|
||||
"ErledigungsDatum",
|
||||
"Arbeitsbeginn",
|
||||
"ErstellungsDatum",
|
||||
]
|
||||
threshold_amount_characters = 5
|
||||
threshold_similarity = 0.8
|
||||
|
||||
[graph_postprocessing]
|
||||
threshold_edge_weight = 150
|
||||
|
||||
[time_analysis.uniqueness]
|
||||
threshold_unique_texts = 4
|
||||
criterion_feature = 'HObjektText'
|
||||
feature_name_obj_id = 'ObjektID'
|
||||
|
||||
[time_analysis.model_input]
|
||||
input_features = [
|
||||
'VorgangsTypName',
|
||||
'VorgangsArtText',
|
||||
'VorgangsBeschreibung',
|
||||
]
|
||||
activity_feature = 'VorgangsTypName'
|
||||
activity_types = [
|
||||
'Reparaturauftrag (Portal)',
|
||||
'Störungsmeldung',
|
||||
]
|
||||
threshold_num_acitivities = 1
|
||||
threshold_similarity = 0.8
|
||||
@ -2327,7 +2327,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.8"
|
||||
"version": "3.11.9"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
||||
@ -1,9 +1,9 @@
|
||||
# lang_main: Config file
|
||||
|
||||
[paths]
|
||||
inputs = '../inputs/'
|
||||
results = './results/test_new2/'
|
||||
dataset = './01_2_Rohdaten_neu/Export4.csv'
|
||||
inputs = '../scripts/inputs/'
|
||||
results = '../scripts/results/test_new2/'
|
||||
dataset = '../data/02_202307/Export4.csv'
|
||||
#results = './results/Export7/'
|
||||
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
|
||||
#results = './results/Export7_trunc/'
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user