dynamic properties via JS in dash-cytoscape
This commit is contained in:
parent
b3e35e7dd1
commit
c2714b8060
56
lang_main_config.toml
Normal file
56
lang_main_config.toml
Normal file
@ -0,0 +1,56 @@
|
||||
# lang_main: Config file
|
||||
|
||||
[paths]
|
||||
inputs = './inputs/'
|
||||
results = './results/test_new2/'
|
||||
dataset = './01_2_Rohdaten_neu/Export4.csv'
|
||||
#results = './results/Export7/'
|
||||
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
|
||||
#results = './results/Export7_trunc/'
|
||||
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
|
||||
|
||||
[control]
|
||||
preprocessing = true
|
||||
preprocessing_skip = false
|
||||
token_analysis = false
|
||||
token_analysis_skip = false
|
||||
graph_postprocessing = false
|
||||
graph_postprocessing_skip = false
|
||||
time_analysis = false
|
||||
time_analysis_skip = false
|
||||
|
||||
#[export_filenames]
|
||||
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
|
||||
|
||||
[preprocess]
|
||||
filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
|
||||
date_cols = [
|
||||
"VorgangsDatum",
|
||||
"ErledigungsDatum",
|
||||
"Arbeitsbeginn",
|
||||
"ErstellungsDatum",
|
||||
]
|
||||
threshold_amount_characters = 5
|
||||
threshold_similarity = 0.8
|
||||
|
||||
[graph_postprocessing]
|
||||
threshold_edge_weight = 150
|
||||
|
||||
[time_analysis.uniqueness]
|
||||
threshold_unique_texts = 4
|
||||
criterion_feature = 'HObjektText'
|
||||
feature_name_obj_id = 'ObjektID'
|
||||
|
||||
[time_analysis.model_input]
|
||||
input_features = [
|
||||
'VorgangsTypName',
|
||||
'VorgangsArtText',
|
||||
'VorgangsBeschreibung',
|
||||
]
|
||||
activity_feature = 'VorgangsTypName'
|
||||
activity_types = [
|
||||
'Reparaturauftrag (Portal)',
|
||||
'Störungsmeldung',
|
||||
]
|
||||
threshold_num_acitivities = 1
|
||||
threshold_similarity = 0.8
|
||||
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "lang-main"
|
||||
version = "0.1.0"
|
||||
version = "0.1.0dev1"
|
||||
description = "Several tools to analyse maintenance data with strong focus on language processing"
|
||||
authors = [
|
||||
{name = "d-opt GmbH, resp. Florian Förster", email = "f.foerster@d-opt.com"},
|
||||
@ -40,6 +40,7 @@ trials = [
|
||||
line-length = 94
|
||||
indent-width = 4
|
||||
target-version = "py311"
|
||||
src = ["src"]
|
||||
|
||||
[tool.ruff.format]
|
||||
quote-style = "single"
|
||||
|
||||
@ -3,26 +3,74 @@ import webbrowser
|
||||
from pathlib import Path
|
||||
from threading import Thread
|
||||
from typing import cast
|
||||
import copy
|
||||
|
||||
import dash_cytoscape as cyto
|
||||
import lang_main.io
|
||||
from dash import Dash, Input, Output, State, dcc, html
|
||||
from dash.exceptions import PreventUpdate
|
||||
|
||||
import lang_main.io
|
||||
from lang_main.analysis import graphs
|
||||
|
||||
target = '../results/test_20240529/Pipe-Token_Analysis_Step-1_build_token_graph.pkl'
|
||||
p = Path(target).resolve()
|
||||
ret = lang_main.io.load_pickle(p)
|
||||
tk_graph = cast(graphs.TokenGraph, ret[0])
|
||||
tk_graph_filtered = tk_graph.filter_by_edge_weight(150)
|
||||
tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1)
|
||||
cyto_data, weight_data = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
|
||||
tk_graph_filtered = tk_graph.filter_by_edge_weight(150, None)
|
||||
tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
|
||||
cyto_data_base, weight_data = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
|
||||
|
||||
MIN_WEIGHT = weight_data['min']
|
||||
MAX_WEIGHT = weight_data['max']
|
||||
|
||||
|
||||
cyto.load_extra_layouts()
|
||||
app = Dash(__name__)
|
||||
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
|
||||
app = Dash(__name__, external_stylesheets=external_stylesheets)
|
||||
|
||||
cose_layout = {
|
||||
'name': 'cose',
|
||||
'nodeOverlap': 20,
|
||||
'refresh': 20,
|
||||
'fit': True,
|
||||
'padding': 30,
|
||||
'randomize': True,
|
||||
'componentSpacing': 40,
|
||||
'nodeRepulsion': 2000,
|
||||
'edgeElasticity': 1000,
|
||||
'idealEdgeLength': 100,
|
||||
'nestingFactor': 1.2,
|
||||
'gravity': 50,
|
||||
'numIter': 2000,
|
||||
'initialTemp': 1000,
|
||||
'coolingFactor': 0.95,
|
||||
'minTemp': 1.0,
|
||||
'nodeDimensionsIncludeLabels': True,
|
||||
}
|
||||
|
||||
cose_bilkent_layout = {
|
||||
'name': 'cose-bilkent',
|
||||
'nodeDimensionsIncludeLabels': True,
|
||||
'idealEdgeLength': 100,
|
||||
'edgeElasticity': 0.45,
|
||||
'nodeRepulsion': 10000,
|
||||
'nestingFactor': 0.1,
|
||||
'gravity': 0.25,
|
||||
'numIter': 2500,
|
||||
'initialTemp': 1000,
|
||||
'coolingFactor': 0.95,
|
||||
'minTemp': 1.0,
|
||||
}
|
||||
|
||||
cola_layout = {
|
||||
'name': 'cola',
|
||||
'nodeDimensionsIncludeLabels': True,
|
||||
'nodeSpacing': 30,
|
||||
'edgeLength': 45,
|
||||
'animate': True,
|
||||
'centerGraph': True,
|
||||
'randomize': False,
|
||||
}
|
||||
|
||||
my_stylesheet = [
|
||||
# Group selectors
|
||||
@ -45,7 +93,10 @@ my_stylesheet = [
|
||||
{
|
||||
'selector': 'edge',
|
||||
'style': {
|
||||
'width': 2,
|
||||
#'width': f'mapData(weight, {MIN_WEIGHT}, {MAX_WEIGHT}, 1, 10)',
|
||||
# 'width': """function(ele) {
|
||||
# return ele.data('weight');
|
||||
# """,
|
||||
'curve-style': 'bezier',
|
||||
'line-color': 'grey',
|
||||
'line-style': 'solid',
|
||||
@ -59,130 +110,201 @@ my_stylesheet = [
|
||||
|
||||
app.layout = html.Div(
|
||||
[
|
||||
html.Button('Reset', id='bt-reset'),
|
||||
html.Button('Trigger JS Layout', id='test_js'),
|
||||
html.Button('Trigger JS Weight', id='test_js_weight'),
|
||||
html.Div(id='output'),
|
||||
html.Div(
|
||||
[
|
||||
html.H2('Token Graph', style={'margin': 0}),
|
||||
html.Button(
|
||||
'Reset Default',
|
||||
id='bt-reset',
|
||||
style={
|
||||
'marginLeft': 'auto',
|
||||
'width': '300px',
|
||||
},
|
||||
),
|
||||
],
|
||||
style={
|
||||
'display': 'flex',
|
||||
'marginBottom': '1em',
|
||||
},
|
||||
),
|
||||
html.H3('Layout'),
|
||||
dcc.Dropdown(
|
||||
id='layout_choice_internal',
|
||||
id='layout_choice',
|
||||
options=[
|
||||
'random',
|
||||
'grid',
|
||||
'circle',
|
||||
'concentric',
|
||||
'breadthfirst',
|
||||
'cose',
|
||||
'cola',
|
||||
'euler',
|
||||
'random',
|
||||
],
|
||||
value='cose',
|
||||
clearable=False,
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id='layout_choice_external',
|
||||
options=[
|
||||
'cose-bilkent',
|
||||
'cola',
|
||||
'euler',
|
||||
'spread',
|
||||
'dagre',
|
||||
'klay',
|
||||
],
|
||||
clearable=False,
|
||||
),
|
||||
dcc.RangeSlider(
|
||||
id='weight_slider',
|
||||
html.Div(
|
||||
[
|
||||
html.H3('Graph Filter'),
|
||||
dcc.Input(
|
||||
id='weight_min',
|
||||
type='number',
|
||||
min=MIN_WEIGHT,
|
||||
max=MAX_WEIGHT,
|
||||
step=1000,
|
||||
step=1,
|
||||
placeholder=f'Minimum edge weight: {MIN_WEIGHT} - {MAX_WEIGHT}',
|
||||
debounce=True,
|
||||
style={'width': '40%'},
|
||||
),
|
||||
dcc.Input(
|
||||
id='weight_max',
|
||||
type='number',
|
||||
min=MIN_WEIGHT,
|
||||
max=MAX_WEIGHT,
|
||||
step=1,
|
||||
placeholder=f'Maximum edge weight: {MIN_WEIGHT} - {MAX_WEIGHT}',
|
||||
debounce=True,
|
||||
style={'width': '40%'},
|
||||
),
|
||||
html.H3('Graph'),
|
||||
html.Div(
|
||||
[
|
||||
cyto.Cytoscape(
|
||||
id='cytoscape-graph',
|
||||
layout={'name': 'cose'},
|
||||
style={'width': '100%', 'height': '600px'},
|
||||
stylesheet=my_stylesheet,
|
||||
elements=cyto_data,
|
||||
elements=cyto_data_base,
|
||||
zoom=1,
|
||||
),
|
||||
]
|
||||
],
|
||||
style={
|
||||
'border': '3px solid black',
|
||||
'borderRadius': '25px',
|
||||
'marginTop': '1em',
|
||||
'marginBottom': '2em',
|
||||
'padding': '7px',
|
||||
},
|
||||
),
|
||||
],
|
||||
style={'marginTop': '1em'},
|
||||
),
|
||||
],
|
||||
style={'margin': '2em'},
|
||||
)
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'layout', allow_duplicate=True),
|
||||
Input('layout_choice_internal', 'value'),
|
||||
Input('layout_choice', 'value'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def update_layout_internal(layout_choice):
|
||||
return {'name': layout_choice}
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'layout', allow_duplicate=True),
|
||||
Input('layout_choice_external', 'value'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def update_layout_external(layout_choice):
|
||||
return {'name': layout_choice}
|
||||
# return {'name': layout_choice}
|
||||
return cose_layout
|
||||
# return cose_bilkent_layout
|
||||
# return cola_layout
|
||||
|
||||
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'zoom'),
|
||||
Output('cytoscape-graph', 'elements'),
|
||||
Output('cytoscape-graph', 'elements', allow_duplicate=True),
|
||||
Output('weight_min', 'value'),
|
||||
Output('weight_max', 'value'),
|
||||
Input('bt-reset', 'n_clicks'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def reset_layout(n_clicks):
|
||||
return (1, cyto_data)
|
||||
return (1, cyto_data_base, None, None)
|
||||
|
||||
|
||||
# @app.callback(
|
||||
# Output('cytoscape-graph', 'stylesheet'),
|
||||
# Input('weight_slider', 'value'),
|
||||
# State('cytoscape-graph', 'stylesheet'),
|
||||
# update edge weight
|
||||
@app.callback(
|
||||
Output('cytoscape-graph', 'elements', allow_duplicate=True),
|
||||
Input('weight_min', 'value'),
|
||||
Input('weight_max', 'value'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def update_edge_weight(weight_min, weight_max):
|
||||
if not any([weight_min, weight_max]):
|
||||
return cyto_data_base
|
||||
|
||||
if weight_min is None:
|
||||
weight_min = MIN_WEIGHT
|
||||
if weight_max is None:
|
||||
weight_max = MAX_WEIGHT
|
||||
tk_graph_filtered = tk_graph.filter_by_edge_weight(weight_min, weight_max)
|
||||
tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
|
||||
cyto_data, _ = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
|
||||
return cyto_data
|
||||
|
||||
|
||||
# app.clientside_callback(
|
||||
# """
|
||||
# function(n_clicks, layout) {
|
||||
# let threshold = 1000;
|
||||
# layout.edgeLength = function(edge) {
|
||||
# let weight = edge.data().weight;
|
||||
# let length;
|
||||
# if (weight > threshold) {
|
||||
# length = 10;
|
||||
# } else {
|
||||
# length = 1000 / edge.data().weight;
|
||||
# length = Math.max(20, length);
|
||||
# }
|
||||
# return length;
|
||||
# };
|
||||
# cy.layout(layout).run();
|
||||
# return layout;
|
||||
# }
|
||||
# """,
|
||||
# Output('cytoscape-graph', 'layout', allow_duplicate=True),
|
||||
# Input('test_js', 'n_clicks'),
|
||||
# State('cytoscape-graph', 'layout'),
|
||||
# prevent_initial_call=True,
|
||||
# )
|
||||
# def select_weight(range_chosen, stylesheet):
|
||||
# min_weight, max_weight = range_chosen
|
||||
# new_stylesheet = stylesheet.copy()
|
||||
# new_stylesheet.append(
|
||||
# {
|
||||
# 'selector': f'[weight >= {min_weight}]',
|
||||
# 'style': {'line-color': 'blue', 'line-style': 'dashed'},
|
||||
# }
|
||||
# )
|
||||
# new_stylesheet.append(
|
||||
# {
|
||||
# 'selector': f'[weight <= {max_weight}]',
|
||||
# 'style': {'line-color': 'blue', 'line-style': 'dashed'},
|
||||
# }
|
||||
# )
|
||||
# return new_stylesheet
|
||||
|
||||
app.clientside_callback(
|
||||
"""
|
||||
function(n_clicks, layout) {
|
||||
layout.edgeElasticity = function(edge) {
|
||||
return edge.data().weight * 4;
|
||||
};
|
||||
layout.idealEdgeLength = function(edge) {
|
||||
return edge.data().weight * 0.8;
|
||||
};
|
||||
cy.layout(layout).run();
|
||||
return layout;
|
||||
}
|
||||
""",
|
||||
Output('cytoscape-graph', 'layout', allow_duplicate=True),
|
||||
Input('test_js', 'n_clicks'),
|
||||
State('cytoscape-graph', 'layout'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
|
||||
# app.layout = html.Div(
|
||||
# [
|
||||
# cyto.Cytoscape(
|
||||
# id='cytoscape-two-nodes',
|
||||
# layout={'name': 'preset'},
|
||||
# style={'width': '100%', 'height': '400px'},
|
||||
# stylesheet=my_stylesheet,
|
||||
# elements=[
|
||||
# {
|
||||
# 'data': {
|
||||
# 'id': 'one',
|
||||
# 'label': 'Titel 1',
|
||||
# },
|
||||
# 'position': {'x': 75, 'y': 75},
|
||||
# 'grabbable': False,
|
||||
# #'locked': True,
|
||||
# 'classes': 'red',
|
||||
# },
|
||||
# {
|
||||
# 'data': {'id': 'two', 'label': 'Title 2'},
|
||||
# 'position': {'x': 200, 'y': 200},
|
||||
# 'classes': 'triangle',
|
||||
# },
|
||||
# {'data': {'source': 'one', 'target': 'two', 'weight': 2000}},
|
||||
# ],
|
||||
# )
|
||||
# ]
|
||||
# )
|
||||
app.clientside_callback(
|
||||
"""
|
||||
function(n_clicks, stylesheet) {
|
||||
function edge_weight(ele) {
|
||||
let threshold = 1000;
|
||||
let weight = ele.data('weight');
|
||||
if (weight > threshold) {
|
||||
weight = 12;
|
||||
} else {
|
||||
weight = weight / threshold * 10;
|
||||
weight = Math.max(1, weight);
|
||||
}
|
||||
return weight;
|
||||
}
|
||||
stylesheet[1].style.width = edge_weight;
|
||||
cy.style(stylesheet).update();
|
||||
return stylesheet;
|
||||
}
|
||||
""",
|
||||
Output('cytoscape-graph', 'stylesheet'),
|
||||
Input('test_js_weight', 'n_clicks'),
|
||||
State('cytoscape-graph', 'stylesheet'),
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
|
||||
|
||||
def _start_webbrowser():
|
||||
|
||||
18
scripts/dashboard/test.py
Normal file
18
scripts/dashboard/test.py
Normal file
@ -0,0 +1,18 @@
|
||||
from pathlib import Path
|
||||
from typing import cast
|
||||
import statistics
|
||||
|
||||
import lang_main.io
|
||||
from lang_main.analysis import graphs
|
||||
|
||||
# target = '../results/test_20240529/Pipe-Token_Analysis_Step-1_build_token_graph.pkl'
|
||||
# p = Path(target).resolve()
|
||||
# ret = lang_main.io.load_pickle(p)
|
||||
# tk_graph = cast(graphs.TokenGraph, ret[0])
|
||||
# tk_graph_filtered = tk_graph.filter_by_edge_weight(150, None)
|
||||
# tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
|
||||
# cyto_data_base, weight_data, all_weights = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
|
||||
|
||||
|
||||
test = [1, 1, 1, 2, 2, 3, 3, 4, 4, 1000]
|
||||
print(statistics.mean(test))
|
||||
@ -130,7 +130,7 @@ def convert_graph_to_cytoscape(
|
||||
cyto_data: list[CytoscapeData] = []
|
||||
# iterate over nodes
|
||||
nodes = cast(Iterable[NodeTitle], graph.nodes)
|
||||
for i, node in enumerate(nodes):
|
||||
for node in nodes:
|
||||
node_data: CytoscapeData = {
|
||||
'data': {
|
||||
'id': node,
|
||||
@ -151,7 +151,7 @@ def convert_graph_to_cytoscape(
|
||||
],
|
||||
graph.edges.data('weight', default=1), # type: ignore
|
||||
)
|
||||
for i, (source, target, weight) in enumerate(edges):
|
||||
for source, target, weight in edges:
|
||||
weights.add(weight)
|
||||
edge_data: CytoscapeData = {
|
||||
'data': {
|
||||
@ -288,27 +288,35 @@ class TokenGraph(DiGraph):
|
||||
|
||||
def filter_by_edge_weight(
|
||||
self,
|
||||
threshold: int,
|
||||
bound_lower: int | None,
|
||||
bound_upper: int | None,
|
||||
) -> Self:
|
||||
"""filters all edges which are below the given threshold
|
||||
"""filters all edges which are within the provided bounds
|
||||
|
||||
Parameters
|
||||
----------
|
||||
threshold : int
|
||||
edges with weights smaller than this value will be removed
|
||||
bound_lower : int | None
|
||||
lower bound for edge weights, edges with weight equal to this value are retained
|
||||
bound_upper : int | None
|
||||
upper bound for edge weights, edges with weight equal to this value are retained
|
||||
|
||||
Returns
|
||||
-------
|
||||
Self
|
||||
a copy of the graph with filtered edges
|
||||
"""
|
||||
# filter edges by weight
|
||||
original_graph_edges = copy.deepcopy(self.edges)
|
||||
filtered_graph = self.copy()
|
||||
|
||||
if not any([bound_lower, bound_upper]):
|
||||
logger.warning('No bounds provided, returning original graph.')
|
||||
return filtered_graph
|
||||
|
||||
for edge in original_graph_edges:
|
||||
weight = typing.cast(int, filtered_graph[edge[0]][edge[1]]['weight'])
|
||||
if weight < threshold:
|
||||
if bound_lower is not None and weight < bound_lower:
|
||||
filtered_graph.remove_edge(edge[0], edge[1])
|
||||
if bound_upper is not None and weight > bound_upper:
|
||||
filtered_graph.remove_edge(edge[0], edge[1])
|
||||
|
||||
if filtered_graph._undirected is not None:
|
||||
@ -320,14 +328,17 @@ class TokenGraph(DiGraph):
|
||||
|
||||
def filter_by_node_degree(
|
||||
self,
|
||||
threshold: int,
|
||||
bound_lower: int | None,
|
||||
bound_upper: int | None,
|
||||
) -> Self:
|
||||
"""filters all nodes which have a degree below the given threshold
|
||||
"""filters all nodes which are within the provided bounds by their degree
|
||||
|
||||
Parameters
|
||||
----------
|
||||
threshold : int
|
||||
nodes with a degree smaller than this value will be removed
|
||||
bound_lower : int | None
|
||||
lower bound for node degree, nodes with degree equal to this value are retained
|
||||
bound_upper : int | None
|
||||
upper bound for node degree, nodes with degree equal to this value are retained
|
||||
|
||||
Returns
|
||||
-------
|
||||
@ -338,9 +349,15 @@ class TokenGraph(DiGraph):
|
||||
original_graph_nodes = copy.deepcopy(self.nodes)
|
||||
filtered_graph = self.copy()
|
||||
|
||||
if not any([bound_lower, bound_upper]):
|
||||
logger.warning('No bounds provided, returning original graph.')
|
||||
return filtered_graph
|
||||
|
||||
for node in original_graph_nodes:
|
||||
degree = filtered_graph.degree[node] # type: ignore
|
||||
if degree < threshold:
|
||||
if bound_lower is not None and degree < bound_lower:
|
||||
filtered_graph.remove_node(node)
|
||||
if bound_upper is not None and degree > bound_upper:
|
||||
filtered_graph.remove_node(node)
|
||||
|
||||
if filtered_graph._undirected is not None:
|
||||
|
||||
@ -21,7 +21,7 @@ class STFRDeviceTypes(enum.StrEnum):
|
||||
GPU = 'cuda'
|
||||
|
||||
|
||||
# ** datatsets
|
||||
# ** datasets
|
||||
PandasIndex: TypeAlias = int | np.int64
|
||||
ObjectID: TypeAlias = int
|
||||
Embedding: TypeAlias = SpacyDoc | Tensor
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user