new pipeline management, proto graph display timeline

This commit is contained in:
Florian Förster 2024-06-19 16:58:26 +02:00
parent c2714b8060
commit fb4437a3a2
21 changed files with 2838 additions and 11383 deletions

8
pdm.lock generated
View File

@ -5,7 +5,7 @@
groups = ["default", "notebooks", "trials"]
strategy = ["cross_platform", "inherit_metadata"]
lock_version = "4.4.1"
content_hash = "sha256:8781981bde2786c60273cd73599f4ab6a388d0b435484d5ba0afa0656723dd98"
content_hash = "sha256:e00f157f833ee7615d96375c352e2caa6b4f6b50e5615ccbefa79446189594c7"
[[package]]
name = "annotated-types"
@ -2938,13 +2938,13 @@ files = [
[[package]]
name = "typing-extensions"
version = "4.11.0"
version = "4.12.2"
requires_python = ">=3.8"
summary = "Backported and Experimental Type Hints for Python 3.8+"
groups = ["default", "notebooks", "trials"]
files = [
{file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
{file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
{file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
]
[[package]]

View File

@ -12,6 +12,7 @@ dependencies = [
"sentence-transformers>=2.7.0",
"numpy>=1.26.4",
"pip>=24.0",
"typing-extensions>=4.12.2",
]
requires-python = ">=3.11"
readme = "README.md"
@ -47,4 +48,7 @@ quote-style = "single"
skip-magic-trailing-comma = false
[tool.ruff.lint]
select = ["E", "F", "I"]
select = ["E", "F", "I"]
[tool.ruff.lint.isort]
extra-standard-library = ["typing_extensions"]

View File

@ -1,42 +1,44 @@
import typing
import warnings
from pathlib import Path
from typing import cast
from pandas import DataFrame, Series
from lang_main.analysis.graphs import TokenGraph
from lang_main.constants import (
DO_GRAPH_POSTPROCESSING,
DO_PREPROCESSING,
DO_TIME_ANALYSIS,
DO_TOKEN_ANALYSIS,
INPUT_PATH_FOLDER,
PATH_TO_DATASET,
SAVE_PATH_FOLDER,
SKIP_GRAPH_POSTPROCESSING,
SKIP_PREPROCESSING,
SKIP_TIME_ANALYSIS,
SKIP_TOKEN_ANALYSIS,
THRESHOLD_AMOUNT_CHARACTERS,
THRESHOLD_EDGE_WEIGHT,
)
from lang_main.io import create_saving_folder, load_pickle
from lang_main.io import create_saving_folder, get_entry_point, load_pickle
from lang_main.pipelines.base import PipelineContainer
from lang_main.pipelines.predefined import (
pipe_merge,
pipe_target_feat,
pipe_timeline,
pipe_token_analysis,
build_base_target_feature_pipe,
build_merge_duplicates_pipe,
build_timeline_pipe,
build_tk_graph_pipe,
build_tk_graph_post_pipe,
)
from lang_main.types import (
EntryPoints,
ObjectID,
PandasIndex,
SpacyDoc,
TimelineCandidates,
)
from pandas import DataFrame, Series
# ** build pipelines
pipe_merge = build_merge_duplicates_pipe()
pipe_target_feat = build_base_target_feature_pipe()
pipe_timeline = build_timeline_pipe()
pipe_token_analysis = build_tk_graph_pipe()
pipe_graph_postprocessing = build_tk_graph_post_pipe()
# ** processing pipeline
def run_preprocessing() -> DataFrame:
# ** preprocessing pipeline
def run_preprocessing() -> None:
create_saving_folder(
saving_path_folder=SAVE_PATH_FOLDER,
overwrite_existing=False,
@ -46,134 +48,69 @@ def run_preprocessing() -> DataFrame:
tuple[DataFrame], pipe_target_feat.run(starting_values=(PATH_TO_DATASET,))
)
target_feat_data = ret[0]
# only entries with more than threshold amount of characters
data_filter = typing.cast(Series, (target_feat_data['len'] > THRESHOLD_AMOUNT_CHARACTERS))
subset_data = target_feat_data.loc[data_filter].copy()
# merge duplicates, results saved separately
ret = typing.cast(tuple[DataFrame], pipe_merge.run(starting_values=(subset_data,)))
preprocessed_data = ret[0]
return preprocessed_data
_ = typing.cast(tuple[DataFrame], pipe_merge.run(starting_values=(target_feat_data,)))
def run_token_analysis(
preprocessed_data: DataFrame,
) -> tuple[TokenGraph, dict[PandasIndex, SpacyDoc]]:
# ** token analysis
def run_token_analysis() -> None:
# load entry point
entry_point_path = get_entry_point(SAVE_PATH_FOLDER, EntryPoints.TOKEN_ANALYSIS)
loaded_results = cast(tuple[DataFrame], load_pickle(entry_point_path))
preprocessed_data = loaded_results[0]
# build token graph
(tk_graph, docs_mapping) = typing.cast(
tuple[TokenGraph, dict[PandasIndex, SpacyDoc]],
tuple[TokenGraph, dict[PandasIndex, SpacyDoc] | None],
pipe_token_analysis.run(starting_values=(preprocessed_data,)),
)
tk_graph.save_graph(SAVE_PATH_FOLDER, directed=False)
tk_graph.to_pickle(SAVE_PATH_FOLDER, filename=f'{pipe_token_analysis.name}-TokenGraph')
return tk_graph, docs_mapping
tk_graph.to_GraphML(SAVE_PATH_FOLDER, filename='TokenGraph', directed=False)
def run_graph_postprocessing(
tk_graph: TokenGraph,
) -> TokenGraph:
def run_graph_postprocessing() -> None:
# load entry point
entry_point_path = get_entry_point(SAVE_PATH_FOLDER, EntryPoints.TK_GRAPH_POST)
loaded_results = cast(
tuple[TokenGraph, dict[PandasIndex, SpacyDoc] | None],
load_pickle(entry_point_path),
)
tk_graph = loaded_results[0]
# filter graph by edge weight and remove single nodes (no connection)
tk_graph_filtered = tk_graph.filter_by_edge_weight(THRESHOLD_EDGE_WEIGHT)
tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1)
tk_graph_filtered.save_graph(
ret = cast(tuple[TokenGraph], pipe_graph_postprocessing.run(starting_values=(tk_graph,)))
tk_graph_filtered = ret[0]
# tk_graph_filtered = tk_graph.filter_by_edge_weight(THRESHOLD_EDGE_WEIGHT, None)
# tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
tk_graph_filtered.to_GraphML(
SAVE_PATH_FOLDER, filename='TokenGraph-filtered', directed=False
)
tk_graph_filtered.to_pickle(
SAVE_PATH_FOLDER, filename=f'{pipe_token_analysis.name}-TokenGraph-filtered'
)
return tk_graph_filtered
def run_time_analysis() -> tuple[TimelineCandidates, dict[ObjectID, str]]:
filename = 'without_nan'
loading_path = INPUT_PATH_FOLDER.joinpath(filename).with_suffix('.pkl')
verify_path(loading_path)
ret = load_pickle(loading_path)
preprocessed_data = ret[0]
# ** time analysis
def run_time_analysis() -> None:
# load entry point
entry_point_path = get_entry_point(SAVE_PATH_FOLDER, EntryPoints.TIMELINE)
loaded_results = cast(tuple[DataFrame], load_pickle(entry_point_path))
preprocessed_data = loaded_results[0]
ret = cast(
_ = cast(
tuple[TimelineCandidates, dict[ObjectID, str]],
pipe_timeline.run(starting_values=(preprocessed_data,)),
)
return ret
def verify_path(
loading_path: Path,
) -> None:
if not loading_path.exists():
raise FileNotFoundError(f'Could not load results. File not found: {loading_path}')
def build_pipeline_container() -> PipelineContainer:
container = PipelineContainer(
name='Pipeline-Container-Base', working_dir=SAVE_PATH_FOLDER
)
container.add(run_preprocessing, skip=SKIP_PREPROCESSING)
container.add(run_token_analysis, skip=SKIP_TOKEN_ANALYSIS)
container.add(run_graph_postprocessing, skip=SKIP_GRAPH_POSTPROCESSING)
container.add(run_time_analysis, skip=SKIP_TIME_ANALYSIS)
return container
def main() -> None:
pre_step_skipped: bool = False
# ** preprocess
if DO_PREPROCESSING and not SKIP_PREPROCESSING:
preprocessed_data = run_preprocessing()
elif not SKIP_PREPROCESSING:
# !! hardcoded result filenames
target_pattern: str = r'*Pipe-Merge_Duplicates_Step-1*'
loading_path = list(SAVE_PATH_FOLDER.glob(target_pattern))[0]
verify_path(loading_path)
ret = typing.cast(tuple[DataFrame], load_pickle(loading_path))
preprocessed_data = ret[0]
else:
pre_step_skipped = True
warnings.warn('No preprocessing action selected. Skipped.')
# sys.exit(0)
# ** token analysis
if DO_TOKEN_ANALYSIS and not SKIP_TOKEN_ANALYSIS:
if pre_step_skipped:
raise RuntimeError(
'Preprocessing step skipped. Token analysis cannot be performed.'
)
preprocessed_data_trunc = typing.cast(
DataFrame, preprocessed_data[['batched_idxs', 'entry', 'num_occur']].copy()
) # type: ignore
tk_graph, docs_mapping = run_token_analysis(preprocessed_data_trunc)
elif not SKIP_TOKEN_ANALYSIS:
# !! hardcoded result filenames
# whole graph
filename: str = f'{pipe_token_analysis.name}-TokenGraph'
loading_path = SAVE_PATH_FOLDER.joinpath(filename).with_suffix('.pkl')
verify_path(loading_path)
# tk_graph = typing.cast(TokenGraph, load_pickle(loading_path))
tk_graph = TokenGraph.from_pickle(loading_path)
pre_step_skipped = False
else:
pre_step_skipped = True
warnings.warn('No token analysis action selected. Skipped.')
# ** graph postprocessing
if DO_GRAPH_POSTPROCESSING and not SKIP_GRAPH_POSTPROCESSING:
if pre_step_skipped:
raise RuntimeError(
(
'Preprocessing or token analysis step skipped. '
'Graph postprocessing cannot be performed.'
)
)
tk_graph_filtered = run_graph_postprocessing(tk_graph)
elif not SKIP_GRAPH_POSTPROCESSING:
# !! hardcoded result filenames
# filtered graph
filename: str = f'{pipe_token_analysis.name}-TokenGraph-filtered'
loading_path = SAVE_PATH_FOLDER.joinpath(filename).with_suffix('.pkl')
verify_path(loading_path)
# tk_graph_filtered = typing.cast(TokenGraph, load_pickle(loading_path))
tk_graph_filtered = TokenGraph.from_pickle(loading_path)
pre_step_skipped = False
else:
warnings.warn('No graph postprocessing action selected. Skipped.')
# ** time analysis
if DO_TIME_ANALYSIS and not SKIP_TIME_ANALYSIS:
# no check for fails, runs separately
ret = run_time_analysis()
elif not SKIP_TIME_ANALYSIS:
...
else:
warnings.warn('No time analysis action selected. Skipped.')
procedure = build_pipeline_container()
procedure.run()
if __name__ == '__main__':

View File

@ -1,190 +0,0 @@
import time
import webbrowser
from pathlib import Path
from threading import Thread
from typing import cast
import pandas as pd
import plotly.express as px
from dash import (
Dash,
Input,
Output,
State,
callback,
dash_table,
dcc,
html,
)
from lang_main.io import load_pickle
from lang_main.types import ObjectID, TimelineCandidates
from pandas import DataFrame
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
# ** data
p_df = Path(r'./Pipe-TargetFeature_Step-3_remove_NA.pkl').resolve()
p_tl = Path(r'/Pipe-Timeline_Analysis_Step-4_get_timeline_candidates.pkl').resolve()
ret = cast(DataFrame, load_pickle(p_df))
data = ret[0]
ret = cast(tuple[TimelineCandidates, dict[ObjectID, str]], load_pickle(p_tl))
cands = ret[0]
texts = ret[1]
# p_df = Path(r'.\test-notebooks\dashboard\data.pkl')
# p_cands = Path(r'.\test-notebooks\dashboard\map_candidates.pkl')
# p_map = Path(r'.\test-notebooks\dashboard\map_texts.pkl')
# data = cast(DataFrame, load_pickle(p_df))
# cands = cast(TimelineCandidates, load_pickle(p_cands))
# texts = cast(dict[ObjectID, str], load_pickle(p_map))
table_feats = [
'ErstellungsDatum',
'ErledigungsDatum',
'VorgangsTypName',
'VorgangsBeschreibung',
]
table_feats_dates = [
'ErstellungsDatum',
'ErledigungsDatum',
]
# ** graph config
markers = {
'size': 12,
'color': 'yellow',
'line': {
'width': 2,
'color': 'red',
},
}
hover_data = {
'ErstellungsDatum': '|%d.%m.%Y',
'VorgangsBeschreibung': True,
}
app = Dash(prevent_initial_callbacks=True)
app.layout = [
html.H1(children='Demo Zeitreihenanalyse', style={'textAlign': 'center'}),
html.Div(
children=[
html.H2('Wählen Sie ein Objekt aus (ObjektID):'),
dcc.Dropdown(
list(cands.keys()),
id='dropdown-selection',
placeholder='ObjektID auswählen...',
),
]
),
html.Div(
children=[
html.H3(id='object_text'),
dcc.Dropdown(id='choice-candidates'),
dcc.Graph(id='graph-output'),
]
),
html.Div(children=[dash_table.DataTable(id='table-candidates')]),
]
@callback(
Output('object_text', 'children'),
Input('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_obj_text(obj_id):
obj_id = int(obj_id)
obj_text = texts[obj_id]
headline = f'HObjektText: {obj_text}'
return headline
@callback(
Output('choice-candidates', 'options'),
Input('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_choice_candidates(obj_id):
obj_id = int(obj_id)
cands_obj_id = cands[obj_id]
choices = list(range(1, len(cands_obj_id) + 1))
return choices
@callback(
Output('graph-output', 'figure'),
Input('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_timeline(index, obj_id):
obj_id = int(obj_id)
# title
obj_text = texts[obj_id]
title = f'HObjektText: {obj_text}'
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(index) - 1]
# data
df = data.loc[list(cands_choice)].sort_index() # type: ignore
# figure
fig = px.line(
data_frame=df,
x='ErstellungsDatum',
y='ObjektID',
title=title,
hover_data=hover_data,
)
fig.update_traces(mode='markers+lines', marker=markers, marker_symbol='diamond')
fig.update_xaxes(
tickformat='%B\n%Y',
rangeslider_visible=True,
)
fig.update_yaxes(type='category')
fig.update_layout(hovermode='x unified')
return fig
@callback(
[Output('table-candidates', 'data'), Output('table-candidates', 'columns')],
Input('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_table_candidates(index, obj_id):
obj_id = int(obj_id)
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(index) - 1]
# data
df = data.loc[list(cands_choice)].sort_index() # type: ignore
df = df.filter(items=table_feats, axis=1).sort_values(
by='ErstellungsDatum', ascending=True
)
cols = [{'name': i, 'id': i} for i in df.columns]
# convert dates to strings
for col in table_feats_dates:
df[col] = df[col].dt.strftime(r'%Y-%m-%d')
table_data = df.to_dict('records')
return table_data, cols
def _start_webbrowser():
host = '127.0.0.1'
port = '8050'
adress = f'http://{host}:{port}/'
time.sleep(2)
webbrowser.open_new(adress)
def main():
webbrowser_thread = Thread(target=_start_webbrowser, daemon=True)
webbrowser_thread.start()
app.run(debug=True)
if __name__ == '__main__':
main()

View File

@ -1,9 +1,9 @@
import copy
import time
import webbrowser
from pathlib import Path
from threading import Thread
from typing import cast
import copy
import dash_cytoscape as cyto
from dash import Dash, Input, Output, State, dcc, html
@ -30,20 +30,20 @@ app = Dash(__name__, external_stylesheets=external_stylesheets)
cose_layout = {
'name': 'cose',
'nodeOverlap': 20,
'nodeOverlap': 500,
'refresh': 20,
'fit': True,
'padding': 30,
'randomize': True,
'componentSpacing': 40,
'nodeRepulsion': 2000,
'padding': 20,
'randomize': False,
'componentSpacing': 1.2,
'nodeRepulsion': 1000,
'edgeElasticity': 1000,
'idealEdgeLength': 100,
'nestingFactor': 1.2,
'gravity': 50,
'numIter': 2000,
'initialTemp': 1000,
'coolingFactor': 0.95,
'numIter': 3000,
'initialTemp': 2000,
'coolingFactor': 0.7,
'minTemp': 1.0,
'nodeDimensionsIncludeLabels': True,
}
@ -108,9 +108,8 @@ my_stylesheet = [
# {'selector': '.triangle', 'style': {'shape': 'triangle'}},
]
app.layout = html.Div(
layout = html.Div(
[
html.Button('Trigger JS Layout', id='test_js'),
html.Button('Trigger JS Weight', id='test_js_weight'),
html.Div(id='output'),
html.Div(
@ -166,11 +165,13 @@ app.layout = html.Div(
style={'width': '40%'},
),
html.H3('Graph'),
html.Button('Re-Layout', id='trigger_relayout'),
html.Div(
[
cyto.Cytoscape(
id='cytoscape-graph',
style={'width': '100%', 'height': '600px'},
layout=cose_layout,
stylesheet=my_stylesheet,
elements=cyto_data_base,
zoom=1,
@ -192,6 +193,9 @@ app.layout = html.Div(
)
app.layout = layout
@app.callback(
Output('cytoscape-graph', 'layout', allow_duplicate=True),
Input('layout_choice', 'value'),
@ -266,17 +270,17 @@ app.clientside_callback(
"""
function(n_clicks, layout) {
layout.edgeElasticity = function(edge) {
return edge.data().weight * 4;
return edge.data().weight * 0.05;
};
layout.idealEdgeLength = function(edge) {
return edge.data().weight * 0.8;
return edge.data().weight * 0.4;
};
cy.layout(layout).run();
return layout;
}
""",
Output('cytoscape-graph', 'layout', allow_duplicate=True),
Input('test_js', 'n_clicks'),
Input('trigger_relayout', 'n_clicks'),
State('cytoscape-graph', 'layout'),
prevent_initial_call=True,
)

View File

@ -1,368 +0,0 @@
import json
import os
import dash
import dash_cytoscape as cyto
from dash import Input, Output, State, callback, dcc, html
# Load extra layouts
cyto.load_extra_layouts()
# Display utility functions
def _merge(a, b):
return dict(a, **b)
def _omit(omitted_keys, d):
return {k: v for k, v in d.items() if k not in omitted_keys}
# Custom Display Components
def Card(children, **kwargs):
return html.Section(
children,
style=_merge(
{
'padding': 20,
'margin': 5,
'borderRadius': 5,
'border': 'thin lightgrey solid',
'background-color': 'white',
# Remove possibility to select the text for better UX
'user-select': 'none',
'-moz-user-select': 'none',
'-webkit-user-select': 'none',
'-ms-user-select': 'none',
},
kwargs.get('style', {}),
),
**_omit(['style'], kwargs),
)
def SectionTitle(title, size, align='center', color='#222'):
return html.Div(
style={'text-align': align, 'color': color},
children=dcc.Markdown('#' * size + ' ' + title),
)
def NamedCard(title, size, children, **kwargs):
size = min(size, 6)
size = max(size, 1)
return html.Div([Card([SectionTitle(title, size, align='left')] + children, **kwargs)])
def NamedSlider(name, **kwargs):
return html.Div(
style={'padding': '20px 10px 25px 4px'},
children=[
html.P(f'{name}:'),
html.Div(style={'margin-left': '6px'}, children=dcc.Slider(**kwargs)),
],
)
def NamedDropdown(name, **kwargs):
return html.Div(
style={'margin': '10px 0px'},
children=[
html.P(children=f'{name}:', style={'margin-left': '3px'}),
dcc.Dropdown(**kwargs),
],
)
def NamedRadioItems(name, **kwargs):
return html.Div(
style={'padding': '20px 10px 25px 4px'},
children=[html.P(children=f'{name}:'), dcc.RadioItems(**kwargs)],
)
def NamedInput(name, **kwargs):
return html.Div(children=[html.P(children=f'{name}:'), dcc.Input(**kwargs)])
# Utils
def DropdownOptionsList(*args):
return [{'label': val.capitalize(), 'value': val} for val in args]
asset_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'assets')
app = dash.Dash(__name__, assets_folder=asset_path)
server = app.server
# ###################### DATA PREPROCESSING ######################
# Load data
with open('sample_network.txt', 'r', encoding='utf-8') as f:
network_data = f.read().split('\n')
# We select the first 750 edges and associated nodes for an easier visualization
edges = network_data[:750]
nodes = set()
following_node_di = {} # user id -> list of users they are following
following_edges_di = {} # user id -> list of cy edges starting from user id
followers_node_di = {} # user id -> list of followers (cy_node format)
followers_edges_di = {} # user id -> list of cy edges ending at user id
cy_edges = []
cy_nodes = []
for edge in edges:
if ' ' not in edge:
continue
source, target = edge.split(' ')
cy_edge = {'data': {'id': source + target, 'source': source, 'target': target}}
cy_target = {'data': {'id': target, 'label': 'User #' + str(target[-5:])}}
cy_source = {'data': {'id': source, 'label': 'User #' + str(source[-5:])}}
if source not in nodes:
nodes.add(source)
cy_nodes.append(cy_source)
if target not in nodes:
nodes.add(target)
cy_nodes.append(cy_target)
# Process dictionary of following
if not following_node_di.get(source):
following_node_di[source] = []
if not following_edges_di.get(source):
following_edges_di[source] = []
following_node_di[source].append(cy_target)
following_edges_di[source].append(cy_edge)
# Process dictionary of followers
if not followers_node_di.get(target):
followers_node_di[target] = []
if not followers_edges_di.get(target):
followers_edges_di[target] = []
followers_node_di[target].append(cy_source)
followers_edges_di[target].append(cy_edge)
genesis_node = cy_nodes[0]
genesis_node['classes'] = 'genesis'
default_elements = [genesis_node]
default_stylesheet = [
{'selector': 'node', 'style': {'opacity': 0.65, 'z-index': 9999}},
{
'selector': 'edge',
'style': {'curve-style': 'bezier', 'opacity': 0.45, 'z-index': 5000},
},
{'selector': '.followerNode', 'style': {'background-color': '#0074D9'}},
{
'selector': '.followerEdge',
'style': {
'mid-target-arrow-color': 'blue',
'mid-target-arrow-shape': 'vee',
'line-color': '#0074D9',
},
},
{'selector': '.followingNode', 'style': {'background-color': '#FF4136'}},
{
'selector': '.followingEdge',
'style': {
'mid-target-arrow-color': 'red',
'mid-target-arrow-shape': 'vee',
'line-color': '#FF4136',
},
},
{
'selector': '.genesis',
'style': {
'background-color': '#B10DC9',
'border-width': 2,
'border-color': 'purple',
'border-opacity': 1,
'opacity': 1,
'label': 'data(label)',
'color': '#B10DC9',
'text-opacity': 1,
'font-size': 12,
'z-index': 9999,
},
},
{
'selector': ':selected',
'style': {
'border-width': 2,
'border-color': 'black',
'border-opacity': 1,
'opacity': 1,
'label': 'data(label)',
'color': 'black',
'font-size': 12,
'z-index': 9999,
},
},
]
# ################################# APP LAYOUT ################################
styles = {
'json-output': {
'overflow-y': 'scroll',
'height': 'calc(50% - 25px)',
'border': 'thin lightgrey solid',
},
'tab': {'height': 'calc(98vh - 80px)'},
}
app.layout = html.Div(
[
html.Div(
className='eight columns',
children=[
cyto.Cytoscape(
id='cytoscape',
elements=default_elements,
stylesheet=default_stylesheet,
style={'height': '95vh', 'width': '100%'},
)
],
),
html.Div(
className='four columns',
children=[
dcc.Tabs(
id='tabs',
children=[
dcc.Tab(
label='Control Panel',
children=[
NamedDropdown(
name='Layout',
id='dropdown-layout',
options=DropdownOptionsList(
'random',
'grid',
'circle',
'concentric',
'breadthfirst',
'cose',
'cose-bilkent',
'dagre',
'cola',
'klay',
'spread',
'euler',
),
value='grid',
clearable=False,
),
NamedRadioItems(
name='Expand',
id='radio-expand',
options=DropdownOptionsList('followers', 'following'),
value='followers',
),
],
),
dcc.Tab(
label='JSON',
children=[
html.Div(
style=styles['tab'],
children=[
html.P('Node Object JSON:'),
html.Pre(
id='tap-node-json-output',
style=styles['json-output'],
),
html.P('Edge Object JSON:'),
html.Pre(
id='tap-edge-json-output',
style=styles['json-output'],
),
],
)
],
),
],
),
],
),
]
)
# ############################## CALLBACKS ####################################
@callback(Output('tap-node-json-output', 'children'), Input('cytoscape', 'tapNode'))
def display_tap_node(data):
return json.dumps(data, indent=2)
@callback(Output('tap-edge-json-output', 'children'), Input('cytoscape', 'tapEdge'))
def display_tap_edge(data):
return json.dumps(data, indent=2)
@callback(Output('cytoscape', 'layout'), Input('dropdown-layout', 'value'))
def update_cytoscape_layout(layout):
return {'name': layout}
@callback(
Output('cytoscape', 'elements'),
Input('cytoscape', 'tapNodeData'),
State('cytoscape', 'elements'),
State('radio-expand', 'value'),
)
def generate_elements(nodeData, elements, expansion_mode):
if not nodeData:
return default_elements
# If the node has already been expanded, we don't expand it again
if nodeData.get('expanded'):
return elements
# This retrieves the currently selected element, and tag it as expanded
for element in elements:
if nodeData['id'] == element.get('data').get('id'):
element['data']['expanded'] = True
break
if expansion_mode == 'followers':
followers_nodes = followers_node_di.get(nodeData['id'])
followers_edges = followers_edges_di.get(nodeData['id'])
if followers_nodes:
for node in followers_nodes:
node['classes'] = 'followerNode'
elements.extend(followers_nodes)
if followers_edges:
for follower_edge in followers_edges:
follower_edge['classes'] = 'followerEdge'
elements.extend(followers_edges)
elif expansion_mode == 'following':
following_nodes = following_node_di.get(nodeData['id'])
following_edges = following_edges_di.get(nodeData['id'])
if following_nodes:
for node in following_nodes:
if node['data']['id'] != genesis_node['data']['id']:
node['classes'] = 'followingNode'
elements.append(node)
if following_edges:
for follower_edge in following_edges:
follower_edge['classes'] = 'followingEdge'
elements.extend(following_edges)
return elements
if __name__ == '__main__':
app.run_server(debug=True)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,507 @@
import time
import webbrowser
from pathlib import Path
from threading import Thread
from typing import cast
import dash_cytoscape as cyto
import pandas as pd
import plotly.express as px
from dash import (
Dash,
Input,
Output,
State,
callback,
dash_table,
dcc,
html,
)
from pandas import DataFrame
from lang_main.analysis import graphs
from lang_main.io import load_pickle
from lang_main.types import ObjectID, TimelineCandidates
from lang_main.analysis import tokens
from lang_main.constants import SPCY_MODEL
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
# ** data
# p_df = Path(r'../Pipe-TargetFeature_Step-3_remove_NA.pkl').resolve()
p_df = Path(r'../results/test_20240619/TIMELINE.pkl').resolve()
# p_tl = Path(r'/Pipe-Timeline_Analysis_Step-4_get_timeline_candidates.pkl').resolve()
p_tl = Path(r'../results/test_20240619/TIMELINE_POSTPROCESSING.pkl').resolve()
ret = cast(tuple[DataFrame], load_pickle(p_df))
data = ret[0]
ret = cast(tuple[TimelineCandidates, dict[ObjectID, str]], load_pickle(p_tl))
cands = ret[0]
texts = ret[1]
# p_df = Path(r'.\test-notebooks\dashboard\data.pkl')
# p_cands = Path(r'.\test-notebooks\dashboard\map_candidates.pkl')
# p_map = Path(r'.\test-notebooks\dashboard\map_texts.pkl')
# data = cast(DataFrame, load_pickle(p_df))
# cands = cast(TimelineCandidates, load_pickle(p_cands))
# texts = cast(dict[ObjectID, str], load_pickle(p_map))
table_feats = [
'ErstellungsDatum',
'ErledigungsDatum',
'VorgangsTypName',
'VorgangsBeschreibung',
]
table_feats_dates = [
'ErstellungsDatum',
'ErledigungsDatum',
]
# ** figure config
markers = {
'size': 12,
'color': 'yellow',
'line': {
'width': 2,
'color': 'red',
},
}
hover_data = {
'ErstellungsDatum': '|%d.%m.%Y',
'VorgangsBeschreibung': True,
}
# ** graphs
target = '../results/test_20240529/Pipe-Token_Analysis_Step-1_build_token_graph.pkl'
p = Path(target).resolve()
ret = load_pickle(p)
tk_graph = cast(graphs.TokenGraph, ret[0])
tk_graph_filtered = graphs.filter_graph_by_edge_weight(tk_graph, 150, None)
tk_graph_filtered = graphs.filter_graph_by_node_degree(tk_graph_filtered, 1, None)
# tk_graph_filtered = tk_graph.filter_by_edge_weight(150, None)
# tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
cyto_data_base, weight_data = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
MIN_WEIGHT = weight_data['min']
MAX_WEIGHT = weight_data['max']
cyto.load_extra_layouts()
cose_layout = {
'name': 'cose',
'nodeOverlap': 500,
'refresh': 20,
'fit': True,
'padding': 20,
'randomize': False,
'componentSpacing': 1.2,
'nodeRepulsion': 1000,
'edgeElasticity': 1000,
'idealEdgeLength': 100,
'nestingFactor': 1.2,
'gravity': 50,
'numIter': 3000,
'initialTemp': 2000,
'coolingFactor': 0.7,
'minTemp': 1.0,
'nodeDimensionsIncludeLabels': True,
}
my_stylesheet = [
# Group selectors
{
'selector': 'node',
'style': {
'shape': 'circle',
'content': 'data(label)',
'background-color': '#B10DC9',
'border-width': 2,
'border-color': 'black',
'border-opacity': 1,
'opacity': 1,
'color': 'black',
'text-opacity': 1,
'font-size': 12,
'z-index': 9999,
},
},
{
'selector': 'edge',
'style': {
#'width': f'mapData(weight, {MIN_WEIGHT}, {MAX_WEIGHT}, 1, 10)',
# 'width': """function(ele) {
# return ele.data('weight');
# """,
'curve-style': 'bezier',
'line-color': 'grey',
'line-style': 'solid',
'line-opacity': 1,
},
},
# Class selectors
# {'selector': '.red', 'style': {'background-color': 'red', 'line-color': 'red'}},
# {'selector': '.triangle', 'style': {'shape': 'triangle'}},
]
# ** app
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = Dash(__name__, external_stylesheets=external_stylesheets)
graph_layout = html.Div(
[
html.Button('Trigger JS Weight', id='test_js_weight'),
html.Button('Trigger Candidate Graph', id='cand_graph'),
html.Div(id='output'),
html.Div(
[
html.H2('Token Graph', style={'margin': 0}),
html.Button(
'Reset Default',
id='bt-reset',
style={
'marginLeft': 'auto',
'width': '300px',
},
),
],
style={
'display': 'flex',
'marginBottom': '1em',
},
),
html.H3('Layout'),
dcc.Dropdown(
id='layout_choice',
options=[
'cose',
'cola',
'euler',
'random',
],
value='cose',
clearable=False,
),
html.Div(
[
html.H3('Graph Filter'),
dcc.Input(
id='weight_min',
type='number',
min=MIN_WEIGHT,
max=MAX_WEIGHT,
step=1,
placeholder=f'Minimum edge weight: {MIN_WEIGHT} - {MAX_WEIGHT}',
debounce=True,
style={'width': '40%'},
),
dcc.Input(
id='weight_max',
type='number',
min=MIN_WEIGHT,
max=MAX_WEIGHT,
step=1,
placeholder=f'Maximum edge weight: {MIN_WEIGHT} - {MAX_WEIGHT}',
debounce=True,
style={'width': '40%'},
),
html.H3('Graph'),
html.Button('Re-Layout', id='trigger_relayout'),
html.Div(
[
cyto.Cytoscape(
id='cytoscape-graph',
style={'width': '100%', 'height': '600px'},
layout=cose_layout,
stylesheet=my_stylesheet,
elements=cyto_data_base,
zoom=1,
),
],
style={
'border': '3px solid black',
'borderRadius': '25px',
'marginTop': '1em',
'marginBottom': '2em',
'padding': '7px',
},
),
],
style={'marginTop': '1em'},
),
],
)
app.layout = html.Div(
[
html.H1(children='Demo Zeitreihenanalyse', style={'textAlign': 'center'}),
html.Div(
children=[
html.H2('Wählen Sie ein Objekt aus (ObjektID):'),
dcc.Dropdown(
list(cands.keys()),
id='dropdown-selection',
placeholder='ObjektID auswählen...',
),
]
),
html.Div(
children=[
html.H3(id='object_text'),
dcc.Dropdown(id='choice-candidates'),
dcc.Graph(id='graph-output'),
]
),
html.Div(
[dash_table.DataTable(id='table-candidates')], style={'marginBottom': '2em'}
),
graph_layout,
],
style={'margin': '2em'},
)
@callback(
Output('object_text', 'children'),
Input('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_obj_text(obj_id):
obj_id = int(obj_id)
obj_text = texts[obj_id]
headline = f'HObjektText: {obj_text}'
return headline
@callback(
Output('choice-candidates', 'options'),
Input('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_choice_candidates(obj_id):
obj_id = int(obj_id)
cands_obj_id = cands[obj_id]
choices = list(range(1, len(cands_obj_id) + 1))
return choices
@callback(
Output('graph-output', 'figure'),
Input('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_timeline(index, obj_id):
obj_id = int(obj_id)
# title
obj_text = texts[obj_id]
title = f'HObjektText: {obj_text}'
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(index) - 1]
# data
df = data.loc[list(cands_choice)].sort_index() # type: ignore
# figure
fig = px.line(
data_frame=df,
x='ErstellungsDatum',
y='ObjektID',
title=title,
hover_data=hover_data,
)
fig.update_traces(mode='markers+lines', marker=markers, marker_symbol='diamond')
fig.update_xaxes(
tickformat='%B\n%Y',
rangeslider_visible=True,
)
fig.update_yaxes(type='category')
fig.update_layout(hovermode='x unified')
return fig
@callback(
[Output('table-candidates', 'data'), Output('table-candidates', 'columns')],
Input('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_table_candidates(index, obj_id):
# obj_id = int(obj_id)
# # cands
# cands_obj_id = cands[obj_id]
# cands_choice = cands_obj_id[int(index) - 1]
# # data
# df = data.loc[list(cands_choice)].sort_index() # type: ignore
df = pre_filter_data(data, idx=index, obj_id=obj_id)
df = df.filter(items=table_feats, axis=1).sort_values(
by='ErstellungsDatum', ascending=True
)
cols = [{'name': i, 'id': i} for i in df.columns]
# convert dates to strings
for col in table_feats_dates:
df[col] = df[col].dt.strftime(r'%Y-%m-%d')
table_data = df.to_dict('records')
return table_data, cols
def pre_filter_data(
data: DataFrame,
idx: int,
obj_id: ObjectID,
) -> DataFrame:
obj_id = int(obj_id)
data = data.copy()
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(idx) - 1]
# data
data = data.loc[list(cands_choice)].sort_index() # type: ignore
return data
# ** graph
@app.callback(
Output('cytoscape-graph', 'elements', allow_duplicate=True),
Output('weight_min', 'min', allow_duplicate=True),
Output('weight_min', 'max', allow_duplicate=True),
Output('weight_min', 'placeholder', allow_duplicate=True),
Output('weight_max', 'min', allow_duplicate=True),
Output('weight_max', 'max', allow_duplicate=True),
Output('weight_max', 'placeholder', allow_duplicate=True),
Input('cand_graph', 'n_clicks'),
State('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_graph_candidates(_, index, obj_id):
df = pre_filter_data(data, idx=index, obj_id=obj_id)
tk_graph_cands, _ = tokens.build_token_graph(
data=df,
model=SPCY_MODEL,
target_feature='VorgangsBeschreibung',
build_map=False,
)
cyto_data, weight_info = graphs.convert_graph_to_cytoscape(tk_graph_cands)
weight_min = weight_info['min']
weight_max = weight_info['max']
placeholder_min = f'Minimum edge weight: {weight_min} - {weight_max}'
placeholder_max = f'Minimum edge weight: {weight_min} - {weight_max}'
return (
cyto_data,
weight_min,
weight_max,
placeholder_min,
weight_min,
weight_max,
placeholder_max,
)
@app.callback(
Output('cytoscape-graph', 'layout', allow_duplicate=True),
Input('layout_choice', 'value'),
prevent_initial_call=True,
)
def update_layout_internal(layout_choice):
# return {'name': layout_choice}
return cose_layout
# return cose_bilkent_layout
# return cola_layout
@app.callback(
Output('cytoscape-graph', 'zoom'),
Output('cytoscape-graph', 'elements', allow_duplicate=True),
Output('weight_min', 'value'),
Output('weight_max', 'value'),
Input('bt-reset', 'n_clicks'),
prevent_initial_call=True,
)
def reset_layout(n_clicks):
return (1, cyto_data_base, None, None)
# update edge weight
@app.callback(
Output('cytoscape-graph', 'elements', allow_duplicate=True),
Input('weight_min', 'value'),
Input('weight_max', 'value'),
prevent_initial_call=True,
)
def update_edge_weight(weight_min, weight_max):
if not any([weight_min, weight_max]):
return cyto_data_base
if weight_min is None:
weight_min = MIN_WEIGHT
if weight_max is None:
weight_max = MAX_WEIGHT
tk_graph_filtered = graphs.filter_graph_by_edge_weight(tk_graph, weight_min, weight_max)
# tk_graph_filtered = tk_graph.filter_by_edge_weight(weight_min, weight_max)
tk_graph_filtered = graphs.filter_graph_by_node_degree(tk_graph_filtered, 1, None)
# tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
cyto_data, _ = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
return cyto_data
app.clientside_callback(
"""
function(n_clicks, layout) {
layout.edgeElasticity = function(edge) {
return edge.data().weight * 0.05;
};
layout.idealEdgeLength = function(edge) {
return edge.data().weight * 0.4;
};
cy.layout(layout).run();
return layout;
}
""",
Output('cytoscape-graph', 'layout', allow_duplicate=True),
Input('trigger_relayout', 'n_clicks'),
State('cytoscape-graph', 'layout'),
prevent_initial_call=True,
)
app.clientside_callback(
"""
function(n_clicks, stylesheet) {
function edge_weight(ele) {
let threshold = 1000;
let weight = ele.data('weight');
if (weight > threshold) {
weight = 12;
} else {
weight = weight / threshold * 10;
weight = Math.max(1, weight);
}
return weight;
}
stylesheet[1].style.width = edge_weight;
cy.style(stylesheet).update();
return stylesheet;
}
""",
Output('cytoscape-graph', 'stylesheet'),
Input('test_js_weight', 'n_clicks'),
State('cytoscape-graph', 'stylesheet'),
prevent_initial_call=False,
)
def _start_webbrowser():
host = '127.0.0.1'
port = '8050'
adress = f'http://{host}:{port}/'
time.sleep(2)
webbrowser.open_new(adress)
def main():
webbrowser_thread = Thread(target=_start_webbrowser, daemon=True)
webbrowser_thread.start()
app.run(debug=True)
if __name__ == '__main__':
main()

View File

@ -1,38 +0,0 @@
# lang_main: Config file
[paths]
inputs = 'A:/Arbeitsaufgaben/lang-main/scripts'
results = 'A:/Arbeitsaufgaben/lang-main/scripts/results/test_20240529/'
dataset = 'A:/Arbeitsaufgaben/lang-main/data/02_202307/Export4.csv'
#results = './results/Export7/'
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
#results = './results/Export7_trunc/'
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
[control]
preprocessing = true
preprocessing_skip = false
token_analysis = false
token_analysis_skip = true
graph_postprocessing = false
graph_postprocessing_skip = true
#[export_filenames]
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
[preprocess]
filename_cossim_filter_candidates = 'CosSim-FilterCandidates'
date_cols = [
"VorgangsDatum",
"ErledigungsDatum",
"Arbeitsbeginn",
"ErstellungsDatum",
]
threshold_amount_characters = 5
threshold_similarity = 0.8
[graph_postprocessing]
threshold_edge_weight = 150
[time_analysis]
threshold_unique_texts = 5

View File

@ -2,22 +2,20 @@
[paths]
inputs = './inputs/'
results = './results/test_20240529/'
results = './results/test_20240619/'
dataset = '../data/02_202307/Export4.csv'
#results = './results/Export7/'
#dataset = './01_03_Rohdaten_202403/Export7_59499_Zeilen.csv'
#results = './results/Export7_trunc/'
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
# only debugging features, production-ready pipelines should always
# be fully executed
[control]
preprocessing = false
preprocessing_skip = false
token_analysis = true
token_analysis_skip = false
graph_postprocessing = false
preprocessing_skip = true
token_analysis_skip = true
graph_postprocessing_skip = true
time_analysis = false
time_analysis_skip = true
time_analysis_skip = false
#[export_filenames]
#filename_cossim_filter_candidates = 'CosSim-FilterCandidates'

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import copy
import sys
import typing
@ -169,6 +171,90 @@ def convert_graph_to_cytoscape(
return cyto_data, weight_metadata
def filter_graph_by_edge_weight(
graph: TokenGraph,
bound_lower: int | None,
bound_upper: int | None,
) -> TokenGraph:
"""filters all edges which are within the provided bounds
Parameters
----------
bound_lower : int | None
lower bound for edge weights, edges with weight equal to this value are retained
bound_upper : int | None
upper bound for edge weights, edges with weight equal to this value are retained
Returns
-------
TokenGraph
a copy of the graph with filtered edges
"""
original_graph_edges = copy.deepcopy(graph.edges)
filtered_graph = graph.copy()
if not any([bound_lower, bound_upper]):
logger.warning('No bounds provided, returning original graph.')
return filtered_graph
for edge in original_graph_edges:
weight = typing.cast(int, filtered_graph[edge[0]][edge[1]]['weight'])
if bound_lower is not None and weight < bound_lower:
filtered_graph.remove_edge(edge[0], edge[1])
if bound_upper is not None and weight > bound_upper:
filtered_graph.remove_edge(edge[0], edge[1])
if filtered_graph._undirected is not None:
filtered_graph.to_undirected(inplace=True, logging=False)
filtered_graph.update_metadata(logging=False)
return filtered_graph
def filter_graph_by_node_degree(
graph: TokenGraph,
bound_lower: int | None,
bound_upper: int | None,
) -> TokenGraph:
"""filters all nodes which are within the provided bounds by their degree
Parameters
----------
bound_lower : int | None
lower bound for node degree, nodes with degree equal to this value are retained
bound_upper : int | None
upper bound for node degree, nodes with degree equal to this value are retained
Returns
-------
TokenGraph
a copy of the graph with filtered nodes
"""
# filter nodes by degree
original_graph_nodes = copy.deepcopy(graph.nodes)
filtered_graph = graph.copy()
if not any([bound_lower, bound_upper]):
logger.warning('No bounds provided, returning original graph.')
return filtered_graph
for node in original_graph_nodes:
degree = filtered_graph.degree[node] # type: ignore
if bound_lower is not None and degree < bound_lower:
filtered_graph.remove_node(node)
if bound_upper is not None and degree > bound_upper:
filtered_graph.remove_node(node)
if filtered_graph._undirected is not None:
filtered_graph.to_undirected(inplace=True, logging=False)
filtered_graph.update_metadata(logging=False)
return filtered_graph
# ** ---------------------------------------
class TokenGraph(DiGraph):
def __init__(
self,
@ -286,87 +372,6 @@ class TokenGraph(DiGraph):
graph=self._undirected, logging=logging
)
def filter_by_edge_weight(
self,
bound_lower: int | None,
bound_upper: int | None,
) -> Self:
"""filters all edges which are within the provided bounds
Parameters
----------
bound_lower : int | None
lower bound for edge weights, edges with weight equal to this value are retained
bound_upper : int | None
upper bound for edge weights, edges with weight equal to this value are retained
Returns
-------
Self
a copy of the graph with filtered edges
"""
original_graph_edges = copy.deepcopy(self.edges)
filtered_graph = self.copy()
if not any([bound_lower, bound_upper]):
logger.warning('No bounds provided, returning original graph.')
return filtered_graph
for edge in original_graph_edges:
weight = typing.cast(int, filtered_graph[edge[0]][edge[1]]['weight'])
if bound_lower is not None and weight < bound_lower:
filtered_graph.remove_edge(edge[0], edge[1])
if bound_upper is not None and weight > bound_upper:
filtered_graph.remove_edge(edge[0], edge[1])
if filtered_graph._undirected is not None:
filtered_graph.to_undirected(inplace=True, logging=False)
filtered_graph.update_metadata(logging=False)
return filtered_graph
def filter_by_node_degree(
self,
bound_lower: int | None,
bound_upper: int | None,
) -> Self:
"""filters all nodes which are within the provided bounds by their degree
Parameters
----------
bound_lower : int | None
lower bound for node degree, nodes with degree equal to this value are retained
bound_upper : int | None
upper bound for node degree, nodes with degree equal to this value are retained
Returns
-------
Self
a copy of the graph with filtered nodes
"""
# filter nodes by degree
original_graph_nodes = copy.deepcopy(self.nodes)
filtered_graph = self.copy()
if not any([bound_lower, bound_upper]):
logger.warning('No bounds provided, returning original graph.')
return filtered_graph
for node in original_graph_nodes:
degree = filtered_graph.degree[node] # type: ignore
if bound_lower is not None and degree < bound_lower:
filtered_graph.remove_node(node)
if bound_upper is not None and degree > bound_upper:
filtered_graph.remove_node(node)
if filtered_graph._undirected is not None:
filtered_graph.to_undirected(inplace=True, logging=False)
filtered_graph.update_metadata(logging=False)
return filtered_graph
def _save_prepare(
self,
path: Path,
@ -379,14 +384,13 @@ class TokenGraph(DiGraph):
return saving_path
def save_graph(
def to_GraphML(
self,
path: Path,
filename: str | None = None,
directed: bool = False,
) -> None:
"""save one of the stored graphs to disk file,
currently only GraphML format is supported
"""save one of the stored graphs to GraphML format on disk,
Parameters
----------

View File

@ -22,7 +22,7 @@ from lang_main.analysis.shared import (
similar_index_groups,
)
from lang_main.loggers import logger_preprocess as logger
from lang_main.pipelines.base import BasePipeline
from lang_main.pipelines.base import Pipeline
from lang_main.types import Embedding, PandasIndex
# ** RE patterns
@ -119,10 +119,9 @@ def remove_duplicates(
).copy()
logger.info('Removed all duplicates from dataset successfully.')
logger.info(
(
f'New Dataset properties: number of entries: {len(wo_duplicates)}, '
f'number of features {len(wo_duplicates.columns)}'
)
'New Dataset properties: number of entries: %d, number of features %d',
len(wo_duplicates),
len(wo_duplicates.columns),
)
return (wo_duplicates,)
@ -176,6 +175,7 @@ def clean_string_slim(string: str) -> str:
string = pattern_special_chars.sub(' ', string)
string = pattern_repeated_chars.sub(r'\1', string)
# string = pattern_dates.sub('', string)
# dates are used for context, should not be removed at this stage
string = pattern_whitespace.sub(' ', string)
# remove whitespaces at the beginning and the end
string = string.strip()
@ -241,11 +241,84 @@ def analyse_feature(
return (result_df,)
# ** pre-filter
def numeric_pre_filter_feature(
data: DataFrame,
feature: str,
bound_lower: int | None,
bound_upper: int | None,
) -> tuple[DataFrame]:
if not any([bound_lower, bound_upper]):
raise ValueError('No bounds for filtering provided')
data = data.copy()
if bound_lower is None:
bound_lower = cast(int, data[feature].min())
if bound_upper is None:
bound_upper = cast(int, data[feature].max())
filter_lower = data[feature] >= bound_lower
filter_upper = data[feature] <= bound_upper
filter = filter_lower & filter_upper
data = data.loc[filter]
return (data,)
# ** embedding based similarity
# following functions used to identify similar entries to have
# a more robust identification of duplicates negating negative side effects
# of several disturbances like typos, escape characters, etc.
# build mapping of embeddings for given model
def merge_similarity_dupl(
data: DataFrame,
model: SentenceTransformer,
cos_sim_threshold: float,
) -> tuple[DataFrame]:
logger.info('Start merging of similarity candidates...')
# data
merged_data = data.copy()
model_input = merged_data['entry']
candidates_idx = candidates_by_index(
data_model_input=model_input,
model=model,
cos_sim_threshold=cos_sim_threshold,
)
# graph of similar ids
similar_id_graph, _ = similar_index_connection_graph(candidates_idx)
for similar_id_group in similar_index_groups(similar_id_graph):
similar_id_group = list(similar_id_group)
similar_data = merged_data.loc[similar_id_group, :]
# keep first entry with max number occurrences, then number of
# associated objects, then length of entry
similar_data = similar_data.sort_values(
by=['num_occur', 'num_assoc_obj_ids', 'len'],
ascending=[False, False, False],
)
# merge information to first entry
data_idx = cast(PandasIndex, similar_data.index[0])
similar_data.at[data_idx, 'num_occur'] = similar_data['num_occur'].sum()
assoc_obj_ids = similar_data['assoc_obj_ids'].to_numpy()
assoc_obj_ids = np.concatenate(assoc_obj_ids)
assoc_obj_ids = np.unique(assoc_obj_ids)
similar_data.at[data_idx, 'assoc_obj_ids'] = assoc_obj_ids
similar_data.at[data_idx, 'num_assoc_obj_ids'] = len(assoc_obj_ids)
# remaining indices, should be removed
similar_id_group.remove(data_idx)
merged_similar_data = similar_data.drop(index=similar_id_group)
# update entry in main dataset, drop remaining entries
merged_data.update(merged_similar_data)
merged_data = merged_data.drop(index=similar_id_group)
logger.info('Similarity candidates merged successfully.')
return (merged_data,)
#####################################################################
def build_embedding_map(
data: Series,
model: GermanSpacyModel | SentenceTransformer,
@ -373,7 +446,7 @@ def list_cosSim_dupl_candidates(
save_candidates: bool = False,
saving_path: Path | None = None,
filename: str = 'CosSim-FilterCandidates',
pipeline: BasePipeline | None = None,
pipeline: Pipeline | None = None,
) -> tuple[list[tuple[PandasIndex, PandasIndex]], dict[int, tuple[Embedding, str]]]:
"""providing an overview of candidates with a similarity score greater than
given threshold; more suitable for debugging purposes
@ -465,53 +538,6 @@ def similar_ids_groups(
"""
def merge_similarity_dupl(
data: DataFrame,
model: SentenceTransformer,
cos_sim_threshold: float,
) -> tuple[DataFrame]:
logger.info('Start merging of similarity candidates...')
# data
merged_data = data.copy()
model_input = merged_data['entry']
candidates_idx = candidates_by_index(
data_model_input=model_input,
model=model,
cos_sim_threshold=cos_sim_threshold,
)
# graph of similar ids
similar_id_graph, _ = similar_index_connection_graph(candidates_idx)
for similar_id_group in similar_index_groups(similar_id_graph):
similar_id_group = list(similar_id_group)
similar_data = merged_data.loc[similar_id_group, :]
# keep first entry with max number occurrences, then number of
# associated objects, then length of entry
similar_data = similar_data.sort_values(
by=['num_occur', 'num_assoc_obj_ids', 'len'],
ascending=[False, False, False],
)
# merge information to first entry
data_idx = cast(PandasIndex, similar_data.index[0])
similar_data.at[data_idx, 'num_occur'] = similar_data['num_occur'].sum()
assoc_obj_ids = similar_data['assoc_obj_ids'].to_numpy()
assoc_obj_ids = np.concatenate(assoc_obj_ids)
assoc_obj_ids = np.unique(assoc_obj_ids)
similar_data.at[data_idx, 'assoc_obj_ids'] = assoc_obj_ids
similar_data.at[data_idx, 'num_assoc_obj_ids'] = len(assoc_obj_ids)
# remaining indices, should be removed
similar_id_group.remove(data_idx)
merged_similar_data = similar_data.drop(index=similar_id_group)
# update entry in main dataset, drop remaining entries
merged_data.update(merged_similar_data)
merged_data = merged_data.drop(index=similar_id_group)
logger.info('Similarity candidates merged successfully.')
return (merged_data.copy(),)
# merge duplicates
def merge_similarity_dupl_old(
data: DataFrame,

View File

@ -24,13 +24,13 @@ PATH_TO_DATASET: Final[Path] = path_dataset_conf.resolve()
# if not PATH_TO_DATASET.exists():
# raise FileNotFoundError(f'Dataset path >>{PATH_TO_DATASET}<< does not exist.')
# ** control
DO_PREPROCESSING: Final[bool] = CONFIG['control']['preprocessing']
# DO_PREPROCESSING: Final[bool] = CONFIG['control']['preprocessing']
SKIP_PREPROCESSING: Final[bool] = CONFIG['control']['preprocessing_skip']
DO_TOKEN_ANALYSIS: Final[bool] = CONFIG['control']['token_analysis']
# DO_TOKEN_ANALYSIS: Final[bool] = CONFIG['control']['token_analysis']
SKIP_TOKEN_ANALYSIS: Final[bool] = CONFIG['control']['token_analysis_skip']
DO_GRAPH_POSTPROCESSING: Final[bool] = CONFIG['control']['graph_postprocessing']
# DO_GRAPH_POSTPROCESSING: Final[bool] = CONFIG['control']['graph_postprocessing']
SKIP_GRAPH_POSTPROCESSING: Final[bool] = CONFIG['control']['graph_postprocessing_skip']
DO_TIME_ANALYSIS: Final[bool] = CONFIG['control']['time_analysis']
# DO_TIME_ANALYSIS: Final[bool] = CONFIG['control']['time_analysis']
SKIP_TIME_ANALYSIS: Final[bool] = CONFIG['control']['time_analysis_skip']
# ** models
@ -66,11 +66,11 @@ UNIQUE_CRITERION_FEATURE: Final[str] = CONFIG['time_analysis']['uniqueness'][
]
FEATURE_NAME_OBJ_ID: Final[str] = CONFIG['time_analysis']['uniqueness']['feature_name_obj_id']
# ** time_analysis.model_input
MODEL_INPUT_FEATURES: Final[tuple[str]] = tuple(
MODEL_INPUT_FEATURES: Final[tuple[str, ...]] = tuple(
CONFIG['time_analysis']['model_input']['input_features']
)
ACTIVITY_FEATURE: Final[str] = CONFIG['time_analysis']['model_input']['activity_feature']
ACTIVITY_TYPES: Final[tuple[str]] = tuple(
ACTIVITY_TYPES: Final[tuple[str, ...]] = tuple(
CONFIG['time_analysis']['model_input']['activity_types']
)
THRESHOLD_NUM_ACTIVITIES: Final[int] = CONFIG['time_analysis']['model_input'][

View File

@ -1,4 +1,3 @@
import os
import pickle
import shutil
import tomllib
@ -22,7 +21,7 @@ def create_saving_folder(
if overwrite_existing:
# overwrite if desired (deletes whole path and re-creates it)
shutil.rmtree(saving_path_folder)
os.makedirs(saving_path_folder)
saving_path_folder.mkdir(parents=True)
else:
logger.info(
(
@ -62,56 +61,14 @@ def load_pickle(
return obj
# TODO: remove, too specialised for common application
"""
def filter_candidates_idx(
data_model_input: Series,
model: SentenceTransformer,
cos_sim_threshold: float,
) -> Iterator[tuple[PandasIndex, PandasIndex]]:
common function to filter candidate indices based on cosine similarity
using SentenceTransformer model in batch mode,
feed of data as Series to retain information about indices of entries
Parameters
----------
data_model_input : Series
containing indices and text entries to process
model : SentenceTransformer
necessary SentenceTransformer model to encode text entries
cos_sim_threshold : float
threshold for cosine similarity to filter candidates
Yields
------
Iterator[tuple[PandasIndex, PandasIndex]]
index pairs which meet the cosine similarity threshold
# embeddings
batch = typing.cast(list[str],
data_model_input.to_list())
embds = typing.cast(Tensor,
model.encode(
batch,
convert_to_numpy=False,
convert_to_tensor=True,
show_progress_bar=False,
))
# cosine similarity
cos_sim = typing.cast(
npt.NDArray,
sentence_transformers.util.cos_sim(embds, embds).numpy()
)
np.fill_diagonal(cos_sim, 0.)
cos_sim = np.triu(cos_sim)
cos_sim_idx = np.argwhere(cos_sim >= cos_sim_threshold)
for idx_array in cos_sim_idx:
idx_pair = typing.cast(
tuple[np.int64, np.int64],
tuple(data_model_input.index[idx] for idx in idx_array)
def get_entry_point(
saving_path: Path,
filename: str,
) -> Path:
entry_point_path = (saving_path / filename).with_suffix('.pkl')
if not entry_point_path.exists():
raise FileNotFoundError(
f'Could not find provided entry data under path: >>{entry_point_path}<<'
)
yield idx_pair
"""
return entry_point_path

View File

@ -9,14 +9,12 @@ dataset = './01_2_Rohdaten_neu/Export4.csv'
#results = './results/Export7_trunc/'
#dataset = './01_03_Rohdaten_202403/Export7_trunc.csv'
# only debugging features, production-ready pipelines should always
# be fully executed
[control]
preprocessing = true
preprocessing_skip = false
token_analysis = false
token_analysis_skip = false
graph_postprocessing = false
graph_postprocessing_skip = false
time_analysis = false
time_analysis_skip = false
#[export_filenames]
@ -42,9 +40,12 @@ criterion_feature = 'HObjektText'
feature_name_obj_id = 'ObjektID'
[time_analysis.model_input]
# input_features = [
# 'VorgangsTypName',
# 'VorgangsArtText',
# 'VorgangsBeschreibung',
# ]
input_features = [
'VorgangsTypName',
'VorgangsArtText',
'VorgangsBeschreibung',
]
activity_feature = 'VorgangsTypName'

View File

@ -1,9 +1,14 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from collections.abc import Callable
from pathlib import Path
from typing import Any
from typing import Any, Never, cast
from typing_extensions import override
from lang_main.loggers import logger_pipelines as logger
from lang_main.io import load_pickle, save_pickle
from lang_main.loggers import logger_pipelines as logger
from lang_main.types import ResultHandling
# ** pipelines to perform given actions on dataset in a customisable manner
@ -12,7 +17,18 @@ class NoPerformableActionError(Exception):
"""Error describing that no action is available in the current pipeline"""
class BasePipeline:
class WrongActionTypeError(Exception):
"""Error raised if added action type is not supported by corresponding pipeline"""
class OutputInPipelineContainerError(Exception):
"""Error raised if an output was detected by one of the performed
actions in a PipelineContainer. Each action in a PipelineContainer is itself a
procedure which does not have any parameters or return values and should therefore not
return any values."""
class BasePipeline(ABC):
def __init__(
self,
name: str,
@ -25,18 +41,12 @@ class BasePipeline:
self.name = name
# working directory for pipeline == output path
self.working_dir = working_dir
# if not self.working_dir.exists():
# self.working_dir.mkdir(parents=True)
# container for actions to perform during pass
self.actions: list[Callable] = []
self.action_names: list[str] = []
self.actions_kwargs: list[dict[str, Any]] = []
self.is_save_result: list[bool] = []
# progress tracking, start at 1
self.curr_proc_idx: int = 1
# intermediate result
self._intermediate_result: Any | None = None
def __repr__(self) -> str:
return (
@ -44,15 +54,132 @@ class BasePipeline:
f'working dir: {self.working_dir}, contents: {self.action_names})'
)
@property
def intermediate_result(self) -> Any:
return self._intermediate_result
def panic_wrong_action_type(
self,
action: Any,
compatible_type: str,
) -> Never:
raise WrongActionTypeError(
(
f'Action must be of type {compatible_type}, '
f'but is of type >>{type(action)}<<.'
)
)
def prep_run(self) -> None:
logger.info('Starting pipeline >>%s<<...', self.name)
# progress tracking
self.curr_proc_idx = 1
# check if performable actions available
if len(self.actions) == 0:
raise NoPerformableActionError(
'The pipeline does not contain any performable actions.'
)
def post_run(self) -> None:
logger.info(
'Processing pipeline >>%s<< successfully ended after %d steps.',
self.name,
(self.curr_proc_idx - 1),
)
@abstractmethod
def add(self) -> None: ...
@abstractmethod
def logic(self) -> None: ...
def run(self, *args, **kwargs) -> Any:
self.prep_run()
ret = self.logic(*args, **kwargs)
self.post_run()
return ret
class PipelineContainer(BasePipeline):
def __init__(
self,
name: str,
working_dir: Path,
) -> None:
super().__init__(name=name, working_dir=working_dir)
self.action_skip: list[bool] = []
@override
def add(
self,
action: Callable,
skip: bool = False,
) -> None:
if isinstance(action, Callable):
self.actions.append(action)
self.action_names.append(action.__name__)
self.action_skip.append(skip)
else:
self.panic_wrong_action_type(action=action, compatible_type=Callable.__name__)
@override
def logic(self) -> None:
for idx, (action, action_name) in enumerate(zip(self.actions, self.action_names)):
# loading
if self.action_skip[idx]:
logger.info('[No Calculation] Skipping >>%s<<...', action_name)
self.curr_proc_idx += 1
continue
# calculation
ret = action()
if ret is not None:
raise OutputInPipelineContainerError(
(
f'Output in PipelineContainers not allowed. Action {action_name} '
f'returned values in Container {self.name}.'
)
)
# processing tracking
self.curr_proc_idx += 1
class Pipeline(BasePipeline):
def __init__(
self,
name: str,
working_dir: Path,
) -> None:
# init base class
super().__init__(name=name, working_dir=working_dir)
# name of pipeline
self.name = name
# working directory for pipeline == output path
self.working_dir = working_dir
# if not self.working_dir.exists():
# self.working_dir.mkdir(parents=True)
# container for actions to perform during pass
self.actions_kwargs: list[dict[str, Any]] = []
self.save_results: ResultHandling = []
self.load_results: ResultHandling = []
# intermediate result
self._intermediate_result: tuple[Any, ...] | None = None
def __repr__(self) -> str:
return (
f'{self.__class__.__name__}(name: {self.name}, '
f'working dir: {self.working_dir}, contents: {self.action_names})'
)
# @property
# def intermediate_result(self) -> tuple[Any, ...] | None:
# return self._intermediate_result
@override
def add(
self,
action: Callable,
action_kwargs: dict[str, Any] = {},
save_result: bool = False,
load_result: bool = False,
filename: str | None = None,
) -> None:
# check explicitly for function type
# if isinstance(action, FunctionType):
@ -60,11 +187,10 @@ class BasePipeline:
self.actions.append(action)
self.action_names.append(action.__name__)
self.actions_kwargs.append(action_kwargs.copy())
self.is_save_result.append(save_result)
self.save_results.append((save_result, filename))
self.load_results.append((load_result, filename))
else:
raise TypeError(
f'Action must be custom function, but is of type >>{type(action)}<<.'
)
self.panic_wrong_action_type(action=action, compatible_type=Callable.__name__)
# TODO: add multiple entries by utilising simple add method
"""
@ -88,57 +214,84 @@ class BasePipeline:
f"but is of type >>{type(action)}<<."))
"""
def save_curr_result(
def get_result_path(
self,
filename: str,
action_idx: int,
filename: str | None,
) -> tuple[Path, str]:
action_name = self.action_names[action_idx]
if filename is None:
target_filename = f'Pipe-{self.name}_Step-{self.curr_proc_idx}_{action_name}'
else:
target_filename = filename
target_path = self.working_dir.joinpath(target_filename).with_suffix('.pkl')
return target_path, action_name
def load_step(
self,
action_idx: int,
filename: str | None,
) -> tuple[Any, ...]:
target_path, action_name = self.get_result_path(action_idx, filename)
if not target_path.exists():
raise FileNotFoundError(
(
f'No intermediate results for action >>{action_name}<< '
f'under >>{target_path}<< found'
)
)
# results should be tuple, but that is not guaranteed
result_loaded = cast(tuple[Any, ...], load_pickle(target_path))
if not isinstance(result_loaded, tuple):
raise TypeError(f'Loaded results must be tuple, not {type(result_loaded)}')
return result_loaded
def save_step(
self,
action_idx: int,
filename: str | None,
) -> None:
target_filename = f'Pipe-{self.name}_Step-{self.curr_proc_idx}_' + filename
target_path = self.working_dir.joinpath(target_filename)
target_path = target_path.with_suffix('.pkl')
# target_filename = f'Pipe-{self.name}_Step-{self.curr_proc_idx}_' + filename
# target_path = self.working_dir.joinpath(target_filename)
# target_path = target_path.with_suffix('.pkl')
target_path, _ = self.get_result_path(action_idx, filename)
# saving file locally
save_pickle(obj=self._intermediate_result, path=target_path)
def load_intermediate_result(
self,
saving_path: str,
filename: str,
) -> tuple[Any, ...]:
target_path = Path(saving_path + filename).with_suffix('.pkl')
# loading DataFrame or Series from pickle
data = load_pickle(target_path)
return data
def prep_run(self) -> None:
logger.info('Starting processing pipeline >>%s<<...', self.name)
# progress tracking
self.curr_proc_idx = 1
# check if performable actions available
if len(self.actions) == 0:
raise NoPerformableActionError(
'The pipeline does not contain any performable actions.'
)
def run(
@override
def logic(
self,
starting_values: tuple[Any, ...],
) -> tuple[Any, ...]:
# prepare start
self.prep_run()
for idx, (action, action_kwargs) in enumerate(zip(self.actions, self.actions_kwargs)):
# loading
if self.load_results[idx][0]:
filename = self.load_results[idx][1]
ret = self.load_step(action_idx=idx, filename=filename)
logger.info(
'[No Calculation] Loaded result for action >>%s<< successfully',
self.action_names[idx],
)
self.curr_proc_idx += 1
continue
# calculation
if idx == 0:
ret = action(*starting_values, **action_kwargs)
else:
ret = action(*ret, **action_kwargs)
if not isinstance(ret, tuple):
ret = (ret,)
ret = cast(tuple[Any, ...], ret)
# save intermediate result
self._intermediate_result = ret
# check if result should be saved locally
if self.is_save_result[idx]:
self.save_curr_result(filename=self.action_names[idx])
# saving result locally, always save last action
if self.save_results[idx][0] or idx == (len(self.actions) - 1):
filename = self.save_results[idx][1]
self.save_step(action_idx=idx, filename=filename)
# processing tracking
self.curr_proc_idx += 1
logger.info('Processing pipeline >>%s<< successfully ended.', self.name)
return ret

View File

@ -1,9 +1,11 @@
from lang_main.analysis import graphs
from lang_main.analysis.preprocessing import (
analyse_feature,
clean_string_slim,
entry_wise_cleansing,
load_raw_data,
merge_similarity_dupl,
numeric_pre_filter_feature,
remove_duplicates,
remove_NA,
)
@ -23,40 +25,50 @@ from lang_main.constants import (
SAVE_PATH_FOLDER,
SPCY_MODEL,
STFR_MODEL,
THRESHOLD_AMOUNT_CHARACTERS,
THRESHOLD_EDGE_WEIGHT,
THRESHOLD_NUM_ACTIVITIES,
THRESHOLD_SIMILARITY,
THRESHOLD_TIMELINE_SIMILARITY,
THRESHOLD_UNIQUE_TEXTS,
UNIQUE_CRITERION_FEATURE,
)
from lang_main.pipelines.base import BasePipeline
from lang_main.pipelines.base import Pipeline
from lang_main.types import EntryPoints
# ** pipeline configuration
# ** target feature preparation
pipe_target_feat = BasePipeline(name='TargetFeature', working_dir=SAVE_PATH_FOLDER)
pipe_target_feat.add(
load_raw_data,
{
'date_cols': DATE_COLS,
},
)
pipe_target_feat.add(remove_duplicates)
pipe_target_feat.add(remove_NA, save_result=True)
pipe_target_feat.add(
entry_wise_cleansing,
{
'target_feature': 'VorgangsBeschreibung',
'cleansing_func': clean_string_slim,
},
save_result=True,
)
pipe_target_feat.add(
analyse_feature,
{
'target_feature': 'VorgangsBeschreibung',
},
save_result=True,
)
def build_base_target_feature_pipe() -> Pipeline:
pipe_target_feat = Pipeline(name='TargetFeature', working_dir=SAVE_PATH_FOLDER)
pipe_target_feat.add(
load_raw_data,
{
'date_cols': DATE_COLS,
},
)
pipe_target_feat.add(remove_duplicates)
pipe_target_feat.add(remove_NA, save_result=True)
pipe_target_feat.add(
entry_wise_cleansing,
{
'target_feature': 'VorgangsBeschreibung',
'cleansing_func': clean_string_slim,
},
save_result=True,
filename=EntryPoints.TIMELINE,
)
pipe_target_feat.add(
analyse_feature,
{
'target_feature': 'VorgangsBeschreibung',
},
save_result=True,
)
return pipe_target_feat
# output: DataFrame containing target feature with
# number of occurrences and associated ObjectIDs
@ -81,68 +93,114 @@ pipe_target_feat.add(
# save_result=True,
# )
# ** Merge duplicates
pipe_merge = BasePipeline(name='Merge_Duplicates', working_dir=SAVE_PATH_FOLDER)
# pipe_merge.add(merge_similarity_dupl, save_result=True)
pipe_merge.add(
merge_similarity_dupl,
{
'model': STFR_MODEL,
'cos_sim_threshold': THRESHOLD_SIMILARITY,
},
save_result=True,
)
def build_merge_duplicates_pipe() -> Pipeline:
pipe_merge = Pipeline(name='Merge_Duplicates', working_dir=SAVE_PATH_FOLDER)
# pipe_merge.add(merge_similarity_dupl, save_result=True)
pipe_merge.add(
numeric_pre_filter_feature,
{
'feature': 'len',
'bound_lower': THRESHOLD_AMOUNT_CHARACTERS,
'bound_upper': None,
},
)
pipe_merge.add(
merge_similarity_dupl,
{
'model': STFR_MODEL,
'cos_sim_threshold': THRESHOLD_SIMILARITY,
},
save_result=True,
filename=EntryPoints.TOKEN_ANALYSIS,
)
return pipe_merge
# ** token analysis
pipe_token_analysis = BasePipeline(name='Token_Analysis', working_dir=SAVE_PATH_FOLDER)
pipe_token_analysis.add(
build_token_graph,
{
'model': SPCY_MODEL,
'target_feature': 'entry',
'weights_feature': 'num_occur',
'batch_idx_feature': 'batched_idxs',
'build_map': True,
'batch_size_model': 50,
},
save_result=True,
)
def build_tk_graph_pipe() -> Pipeline:
pipe_token_analysis = Pipeline(name='Token_Analysis', working_dir=SAVE_PATH_FOLDER)
pipe_token_analysis.add(
build_token_graph,
{
'model': SPCY_MODEL,
'target_feature': 'entry',
'weights_feature': 'num_occur',
'batch_idx_feature': 'batched_idxs',
'build_map': False,
'batch_size_model': 50,
},
save_result=True,
filename=EntryPoints.TK_GRAPH_POST,
)
return pipe_token_analysis
def build_tk_graph_post_pipe() -> Pipeline:
pipe_graph_postprocessing = Pipeline(
name='Graph_Postprocessing', working_dir=SAVE_PATH_FOLDER
)
pipe_graph_postprocessing.add(
graphs.filter_graph_by_edge_weight,
{
'bound_lower': THRESHOLD_EDGE_WEIGHT,
'bound_upper': None,
},
)
pipe_graph_postprocessing.add(
graphs.filter_graph_by_node_degree,
{
'bound_lower': 1,
'bound_upper': None,
},
save_result=True,
filename=EntryPoints.TK_GRAPH_ANALYSIS,
)
return pipe_graph_postprocessing
# ** timeline analysis
pipe_timeline = BasePipeline(name='Timeline_Analysis', working_dir=SAVE_PATH_FOLDER)
pipe_timeline.add(
remove_non_relevant_obj_ids,
{
'thresh_unique_feat_per_id': THRESHOLD_UNIQUE_TEXTS,
'feature_uniqueness': UNIQUE_CRITERION_FEATURE,
'feature_obj_id': FEATURE_NAME_OBJ_ID,
},
save_result=True,
)
pipe_timeline.add(
generate_model_input,
{
'target_feature_name': 'nlp_model_input',
'model_input_features': MODEL_INPUT_FEATURES,
},
)
pipe_timeline.add(
filter_activities_per_obj_id,
{
'activity_feature': ACTIVITY_FEATURE,
'relevant_activity_types': ACTIVITY_TYPES,
'feature_obj_id': FEATURE_NAME_OBJ_ID,
'threshold_num_activities': THRESHOLD_NUM_ACTIVITIES,
},
)
pipe_timeline.add(
get_timeline_candidates,
{
'model': STFR_MODEL,
'cos_sim_threshold': THRESHOLD_TIMELINE_SIMILARITY,
'feature_obj_id': FEATURE_NAME_OBJ_ID,
'model_input_feature': 'nlp_model_input',
},
save_result=True,
)
def build_timeline_pipe() -> Pipeline:
pipe_timeline = Pipeline(name='Timeline_Analysis', working_dir=SAVE_PATH_FOLDER)
pipe_timeline.add(
remove_non_relevant_obj_ids,
{
'thresh_unique_feat_per_id': THRESHOLD_UNIQUE_TEXTS,
'feature_uniqueness': UNIQUE_CRITERION_FEATURE,
'feature_obj_id': FEATURE_NAME_OBJ_ID,
},
save_result=True,
)
pipe_timeline.add(
generate_model_input,
{
'target_feature_name': 'nlp_model_input',
'model_input_features': MODEL_INPUT_FEATURES,
},
)
pipe_timeline.add(
filter_activities_per_obj_id,
{
'activity_feature': ACTIVITY_FEATURE,
'relevant_activity_types': ACTIVITY_TYPES,
'feature_obj_id': FEATURE_NAME_OBJ_ID,
'threshold_num_activities': THRESHOLD_NUM_ACTIVITIES,
},
)
pipe_timeline.add(
get_timeline_candidates,
{
'model': STFR_MODEL,
'cos_sim_threshold': THRESHOLD_TIMELINE_SIMILARITY,
'feature_obj_id': FEATURE_NAME_OBJ_ID,
'model_input_feature': 'nlp_model_input',
},
save_result=True,
filename=EntryPoints.TIMELINE_POST,
)
return pipe_timeline

View File

@ -17,8 +17,20 @@ class LoggingLevels(enum.IntEnum):
# ** devices
class STFRDeviceTypes(enum.StrEnum):
CPU = 'cpu'
GPU = 'cuda'
CPU = enum.auto()
GPU = enum.auto()
# ** pipelines
ResultHandling: TypeAlias = list[tuple[bool, str | None]]
class EntryPoints(enum.StrEnum):
TIMELINE = 'TIMELINE'
TIMELINE_POST = 'TIMELINE_POSTPROCESSING'
TK_GRAPH_POST = 'TK-GRAPH_POSTPROCESSING'
TK_GRAPH_ANALYSIS = 'TK-GRAPH_ANALYSIS'
TOKEN_ANALYSIS = 'TOKEN_ANALYSIS'
# ** datasets

1687
test-notebooks/misc.ipynb Normal file

File diff suppressed because it is too large Load Diff