{
"cells": [
{
"cell_type": "code",
"execution_count": 216,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from pandas import DataFrame, Series\n",
"import numpy as np\n",
"import glob\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from itertools import combinations\n",
"\n",
"sns.set()"
]
},
{
"cell_type": "code",
"execution_count": 277,
"metadata": {},
"outputs": [],
"source": [
"# saving flag for figures\n",
"SAVE_FIGS = False"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Read and merge data"
]
},
{
"cell_type": "code",
"execution_count": 218,
"metadata": {},
"outputs": [],
"source": [
"date_cols = ['VorgangsDatum', 'ErledigungsDatum', 'ErstellungsDatum']\n",
"files = glob.glob('./Rohdaten/*.csv')\n",
"for idx, file in enumerate(files):\n",
" df = pd.read_csv(file, sep=';', encoding='cp1252', parse_dates=date_cols, dayfirst=True)\n",
" \n",
" if idx == 0:\n",
" data = df.copy()\n",
" else:\n",
" data = pd.concat([data, df], ignore_index=True)"
]
},
{
"cell_type": "code",
"execution_count": 219,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 105360 | \n",
" 4594 | \n",
" DU-04, Instandhaltung Küche, | \n",
" 2 | \n",
" 2023-02-16 | \n",
" 2 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" DU Neubau Spülmaschine - Neuanschaffungg | \n",
" 2023-03-21 | \n",
" Service durch externen Dienstleiter | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2023-02-01 | \n",
"
\n",
" \n",
" | 1 | \n",
" 7257 | \n",
" 241 | \n",
" DU-LA-H12-10, ROB007, | \n",
" 2 | \n",
" 2021-11-25 | \n",
" 0 | \n",
" 0 | \n",
" Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... | \n",
" NaN | \n",
" AKL Roboter 007 hat in letzter Zeit Greiferpro... | \n",
" 2021-11-29 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-25 | \n",
"
\n",
" \n",
" | 2 | \n",
" 7317 | \n",
" 0 | \n",
" HB-HVW-EG | \n",
" 2 | \n",
" 2021-11-30 | \n",
" 0 | \n",
" 0 | \n",
" Türkontakt Haupteingang prüfen | \n",
" HB-HVW-EG | \n",
" Türkontakt defekt | \n",
" 2021-11-30 | \n",
" Instandsetzung durch Facility Management | \n",
" Türkontakt nachjustiert, Schließriegel der Tür... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-30 | \n",
"
\n",
" \n",
" | 3 | \n",
" 31673 | \n",
" 4569 | \n",
" HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC | \n",
" 2 | \n",
" 2022-03-14 | \n",
" 0 | \n",
" 0 | \n",
" Umschalter zeitweise ohne Funktion | \n",
" NaN | \n",
" Schalter defekt? | \n",
" 2022-03-14 | \n",
" Instandsetzung durch Facility Management | \n",
" Gehäuse geöffnet, Schalter geprüft, gereinigt,... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-03-14 | \n",
"
\n",
" \n",
" | 4 | \n",
" 32908 | \n",
" 467 | \n",
" DU-LA-H09-07, Schnelllauftor Halle 9, | \n",
" 2 | \n",
" 2022-07-28 | \n",
" 5 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" Warnlampe innen - Leuchtmittel defekt | \n",
" 2022-08-10 | \n",
" NaN | \n",
" ausgetauscht ..ok | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-07-28 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 10453 | \n",
" 170528 | \n",
" 12020 | \n",
" A05709, D, 91332 - Heiligenstadt, Stücht 21, H... | \n",
" 2 | \n",
" 2022-03-30 | \n",
" 4 | \n",
" 0 | \n",
" Bitte mit Rechnungsstellung noch warten - Hr. ... | \n",
" NaN | \n",
" Überprüfung der Kleinkläranlage | \n",
" 2022-03-30 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-03-28 | \n",
"
\n",
" \n",
" | 10454 | \n",
" 169408 | \n",
" 8799 | \n",
" A04418, C, 08396 - Waldenburg, Thomas-Müntzer-... | \n",
" 2 | \n",
" 2022-04-13 | \n",
" 4 | \n",
" 1 | \n",
" 24.03.2022 11:00 Uhr (Sebastian Reinel [Tablet... | \n",
" NaN | \n",
" Mehrere Mängel beseitigen. | \n",
" 2022-04-13 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-03-10 | \n",
"
\n",
" \n",
" | 10455 | \n",
" 173874 | \n",
" 3203 | \n",
" A01623, C, 91275 - Auerbach, Niedernhof 1, Jür... | \n",
" 2 | \n",
" 2022-05-16 | \n",
" 4 | \n",
" 0 | \n",
" Abholung Verdichter\\nHiblow HP-100\\nSer.Nr.: 1... | \n",
" NaN | \n",
" Abholung Verdichter | \n",
" 2022-05-16 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-05-16 | \n",
"
\n",
" \n",
" | 10456 | \n",
" 171476 | \n",
" 1183 | \n",
" A00601, C, 95659 - Arzberg, Garmersreuth 11, H... | \n",
" 2 | \n",
" 2022-04-13 | \n",
" 4 | \n",
" 0 | \n",
" 06.04.2022 18:38:55 (Sebastian Reinel)\\nKunde ... | \n",
" NaN | \n",
" Verdichter oder Steuerung def. | \n",
" 2022-04-13 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-04-06 | \n",
"
\n",
" \n",
" | 10457 | \n",
" 172470 | \n",
" 4562 | \n",
" A02298, D + P, 82444 - Schlehdorf, Raut 41, Ku... | \n",
" 2 | \n",
" 2022-04-26 | \n",
" 4 | \n",
" 0 | \n",
" Hr Hacker vorher anrufen, ist in 30 Min da \\n0... | \n",
" NaN | \n",
" neuen Verdichter einbauen | \n",
" 2022-04-26 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-04-25 | \n",
"
\n",
" \n",
"
\n",
"
10458 rows × 17 columns
\n",
"
"
],
"text/plain": [
" VorgangsID ObjektID \\\n",
"0 105360 4594 \n",
"1 7257 241 \n",
"2 7317 0 \n",
"3 31673 4569 \n",
"4 32908 467 \n",
"... ... ... \n",
"10453 170528 12020 \n",
"10454 169408 8799 \n",
"10455 173874 3203 \n",
"10456 171476 1183 \n",
"10457 172470 4562 \n",
"\n",
" HObjektText VorgangsTypID \\\n",
"0 DU-04, Instandhaltung Küche, 2 \n",
"1 DU-LA-H12-10, ROB007, 2 \n",
"2 HB-HVW-EG 2 \n",
"3 HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC 2 \n",
"4 DU-LA-H09-07, Schnelllauftor Halle 9, 2 \n",
"... ... ... \n",
"10453 A05709, D, 91332 - Heiligenstadt, Stücht 21, H... 2 \n",
"10454 A04418, C, 08396 - Waldenburg, Thomas-Müntzer-... 2 \n",
"10455 A01623, C, 91275 - Auerbach, Niedernhof 1, Jür... 2 \n",
"10456 A00601, C, 95659 - Arzberg, Garmersreuth 11, H... 2 \n",
"10457 A02298, D + P, 82444 - Schlehdorf, Raut 41, Ku... 2 \n",
"\n",
" VorgangsDatum VorgangsStatusId VorgangsPrioritaet \\\n",
"0 2023-02-16 2 0 \n",
"1 2021-11-25 0 0 \n",
"2 2021-11-30 0 0 \n",
"3 2022-03-14 0 0 \n",
"4 2022-07-28 5 0 \n",
"... ... ... ... \n",
"10453 2022-03-30 4 0 \n",
"10454 2022-04-13 4 1 \n",
"10455 2022-05-16 4 0 \n",
"10456 2022-04-13 4 0 \n",
"10457 2022-04-26 4 0 \n",
"\n",
" VorgangsBeschreibung VorgangsOrt \\\n",
"0 NaN NaN \n",
"1 Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... NaN \n",
"2 Türkontakt Haupteingang prüfen HB-HVW-EG \n",
"3 Umschalter zeitweise ohne Funktion NaN \n",
"4 NaN NaN \n",
"... ... ... \n",
"10453 Bitte mit Rechnungsstellung noch warten - Hr. ... NaN \n",
"10454 24.03.2022 11:00 Uhr (Sebastian Reinel [Tablet... NaN \n",
"10455 Abholung Verdichter\\nHiblow HP-100\\nSer.Nr.: 1... NaN \n",
"10456 06.04.2022 18:38:55 (Sebastian Reinel)\\nKunde ... NaN \n",
"10457 Hr Hacker vorher anrufen, ist in 30 Min da \\n0... NaN \n",
"\n",
" VorgangsArtText ErledigungsDatum \\\n",
"0 DU Neubau Spülmaschine - Neuanschaffungg 2023-03-21 \n",
"1 AKL Roboter 007 hat in letzter Zeit Greiferpro... 2021-11-29 \n",
"2 Türkontakt defekt 2021-11-30 \n",
"3 Schalter defekt? 2022-03-14 \n",
"4 Warnlampe innen - Leuchtmittel defekt 2022-08-10 \n",
"... ... ... \n",
"10453 Überprüfung der Kleinkläranlage 2022-03-30 \n",
"10454 Mehrere Mängel beseitigen. 2022-04-13 \n",
"10455 Abholung Verdichter 2022-05-16 \n",
"10456 Verdichter oder Steuerung def. 2022-04-13 \n",
"10457 neuen Verdichter einbauen 2022-04-26 \n",
"\n",
" ErledigungsArtText \\\n",
"0 Service durch externen Dienstleiter \n",
"1 NaN \n",
"2 Instandsetzung durch Facility Management \n",
"3 Instandsetzung durch Facility Management \n",
"4 NaN \n",
"... ... \n",
"10453 NaN \n",
"10454 NaN \n",
"10455 NaN \n",
"10456 NaN \n",
"10457 NaN \n",
"\n",
" ErledigungsBeschreibung MPMelderArbeitsplatz \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 Türkontakt nachjustiert, Schließriegel der Tür... NaN \n",
"3 Gehäuse geöffnet, Schalter geprüft, gereinigt,... NaN \n",
"4 ausgetauscht ..ok NaN \n",
"... ... ... \n",
"10453 NaN NaN \n",
"10454 NaN NaN \n",
"10455 NaN NaN \n",
"10456 NaN NaN \n",
"10457 NaN NaN \n",
"\n",
" MPAbteilungBezeichnung Arbeitsbeginn ErstellungsDatum \n",
"0 NaN NaN 2023-02-01 \n",
"1 NaN NaN 2021-11-25 \n",
"2 NaN NaN 2021-11-30 \n",
"3 NaN NaN 2022-03-14 \n",
"4 NaN NaN 2022-07-28 \n",
"... ... ... ... \n",
"10453 NaN NaN 2022-03-28 \n",
"10454 NaN NaN 2022-03-10 \n",
"10455 NaN NaN 2022-05-16 \n",
"10456 NaN NaN 2022-04-06 \n",
"10457 NaN NaN 2022-04-25 \n",
"\n",
"[10458 rows x 17 columns]"
]
},
"execution_count": 219,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data"
]
},
{
"cell_type": "code",
"execution_count": 220,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"RangeIndex: 10458 entries, 0 to 10457\n",
"Data columns (total 17 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 VorgangsID 10458 non-null int64 \n",
" 1 ObjektID 10458 non-null int64 \n",
" 2 HObjektText 10451 non-null object \n",
" 3 VorgangsTypID 10458 non-null int64 \n",
" 4 VorgangsDatum 10458 non-null datetime64[ns]\n",
" 5 VorgangsStatusId 10458 non-null int64 \n",
" 6 VorgangsPrioritaet 10458 non-null int64 \n",
" 7 VorgangsBeschreibung 9868 non-null object \n",
" 8 VorgangsOrt 534 non-null object \n",
" 9 VorgangsArtText 10458 non-null object \n",
" 10 ErledigungsDatum 10457 non-null datetime64[ns]\n",
" 11 ErledigungsArtText 8421 non-null object \n",
" 12 ErledigungsBeschreibung 6330 non-null object \n",
" 13 MPMelderArbeitsplatz 5050 non-null object \n",
" 14 MPAbteilungBezeichnung 7059 non-null object \n",
" 15 Arbeitsbeginn 5618 non-null object \n",
" 16 ErstellungsDatum 10458 non-null datetime64[ns]\n",
"dtypes: datetime64[ns](3), int64(5), object(9)\n",
"memory usage: 1.4+ MB\n"
]
}
],
"source": [
"data.info()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analysing data"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Look for duplicates\n",
"- complete duplicates where each row contains the same values for all columns"
]
},
{
"cell_type": "code",
"execution_count": 221,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"566"
]
},
"execution_count": 221,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"duplicated = data.duplicated()\n",
"duplicated.sum()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"***566 Duplicates***"
]
},
{
"cell_type": "code",
"execution_count": 222,
"metadata": {},
"outputs": [],
"source": [
"data_rem_dupl = data.drop_duplicates(ignore_index=True)"
]
},
{
"cell_type": "code",
"execution_count": 223,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9892"
]
},
"execution_count": 223,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data_rem_dupl)"
]
},
{
"cell_type": "code",
"execution_count": 224,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 105360 | \n",
" 4594 | \n",
" DU-04, Instandhaltung Küche, | \n",
" 2 | \n",
" 2023-02-16 | \n",
" 2 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" DU Neubau Spülmaschine - Neuanschaffungg | \n",
" 2023-03-21 | \n",
" Service durch externen Dienstleiter | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2023-02-01 | \n",
"
\n",
" \n",
" | 1 | \n",
" 7257 | \n",
" 241 | \n",
" DU-LA-H12-10, ROB007, | \n",
" 2 | \n",
" 2021-11-25 | \n",
" 0 | \n",
" 0 | \n",
" Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... | \n",
" NaN | \n",
" AKL Roboter 007 hat in letzter Zeit Greiferpro... | \n",
" 2021-11-29 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-25 | \n",
"
\n",
" \n",
" | 2 | \n",
" 7317 | \n",
" 0 | \n",
" HB-HVW-EG | \n",
" 2 | \n",
" 2021-11-30 | \n",
" 0 | \n",
" 0 | \n",
" Türkontakt Haupteingang prüfen | \n",
" HB-HVW-EG | \n",
" Türkontakt defekt | \n",
" 2021-11-30 | \n",
" Instandsetzung durch Facility Management | \n",
" Türkontakt nachjustiert, Schließriegel der Tür... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-30 | \n",
"
\n",
" \n",
" | 3 | \n",
" 31673 | \n",
" 4569 | \n",
" HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC | \n",
" 2 | \n",
" 2022-03-14 | \n",
" 0 | \n",
" 0 | \n",
" Umschalter zeitweise ohne Funktion | \n",
" NaN | \n",
" Schalter defekt? | \n",
" 2022-03-14 | \n",
" Instandsetzung durch Facility Management | \n",
" Gehäuse geöffnet, Schalter geprüft, gereinigt,... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-03-14 | \n",
"
\n",
" \n",
" | 4 | \n",
" 32908 | \n",
" 467 | \n",
" DU-LA-H09-07, Schnelllauftor Halle 9, | \n",
" 2 | \n",
" 2022-07-28 | \n",
" 5 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" Warnlampe innen - Leuchtmittel defekt | \n",
" 2022-08-10 | \n",
" NaN | \n",
" ausgetauscht ..ok | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-07-28 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID ObjektID HObjektText \\\n",
"0 105360 4594 DU-04, Instandhaltung Küche, \n",
"1 7257 241 DU-LA-H12-10, ROB007, \n",
"2 7317 0 HB-HVW-EG \n",
"3 31673 4569 HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC \n",
"4 32908 467 DU-LA-H09-07, Schnelllauftor Halle 9, \n",
"\n",
" VorgangsTypID VorgangsDatum VorgangsStatusId VorgangsPrioritaet \\\n",
"0 2 2023-02-16 2 0 \n",
"1 2 2021-11-25 0 0 \n",
"2 2 2021-11-30 0 0 \n",
"3 2 2022-03-14 0 0 \n",
"4 2 2022-07-28 5 0 \n",
"\n",
" VorgangsBeschreibung VorgangsOrt \\\n",
"0 NaN NaN \n",
"1 Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... NaN \n",
"2 Türkontakt Haupteingang prüfen HB-HVW-EG \n",
"3 Umschalter zeitweise ohne Funktion NaN \n",
"4 NaN NaN \n",
"\n",
" VorgangsArtText ErledigungsDatum \\\n",
"0 DU Neubau Spülmaschine - Neuanschaffungg 2023-03-21 \n",
"1 AKL Roboter 007 hat in letzter Zeit Greiferpro... 2021-11-29 \n",
"2 Türkontakt defekt 2021-11-30 \n",
"3 Schalter defekt? 2022-03-14 \n",
"4 Warnlampe innen - Leuchtmittel defekt 2022-08-10 \n",
"\n",
" ErledigungsArtText \\\n",
"0 Service durch externen Dienstleiter \n",
"1 NaN \n",
"2 Instandsetzung durch Facility Management \n",
"3 Instandsetzung durch Facility Management \n",
"4 NaN \n",
"\n",
" ErledigungsBeschreibung MPMelderArbeitsplatz \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 Türkontakt nachjustiert, Schließriegel der Tür... NaN \n",
"3 Gehäuse geöffnet, Schalter geprüft, gereinigt,... NaN \n",
"4 ausgetauscht ..ok NaN \n",
"\n",
" MPAbteilungBezeichnung Arbeitsbeginn ErstellungsDatum \n",
"0 NaN NaN 2023-02-01 \n",
"1 NaN NaN 2021-11-25 \n",
"2 NaN NaN 2021-11-30 \n",
"3 NaN NaN 2022-03-14 \n",
"4 NaN NaN 2022-07-28 "
]
},
"execution_count": 224,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_rem_dupl.head()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Plot properties without duplicates**"
]
},
{
"cell_type": "code",
"execution_count": 225,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABsIAAAWrCAYAAACOl6ZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5d7G8Xs3hTQCSUihVwliKhCKVCkqTeWg4hFQAREERVEjUl4QBRsIAkdQAQEriIAesSBgiVICAVE60kJvCSSkl933j5wdWRIggUCS5fu5Li6SKc88s0xyM/ObecZktVqtAgAAAAAAAAAAAByMuaQ7AAAAAAAAAAAAAFwPFMIAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDohAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOCQKYQAAACjzLBZLSXcBAIBCKQ2ZVRr6AAAAcKNQCAOuoHPnzgoODtZDDz1U4PyRI0cqODhYrVq1Um5u7g3uXekSGxur4OBgBQcH6/Tp05Kkl156yZhm+xMWFqaOHTtq4sSJOnfuXMl2GgBg57ffftPQoUPVsmVLhYSEqHnz5ho4cKBWrVplt1z79u0VHBysDz744LLt2XJgwIABRepH3759FRwcrLFjx152ud27d+uRRx7RsWPHLtm3C/PJ9ue2225T8+bNNWjQIG3atKlIfQMAFK/L/c4fO3asgoOD1bdvX7vphc0rqfRmVkHnShf/ad++fZH6ciUF5SYAgOt/RXGl7AoODtaMGTOKdZsXZ+2RI0fybbNhw4Zq2rSp+vbtq59//rlYt4+yj0IYcAXdu3eXJG3ZsiXfyUJOTo5++uknSVLXrl3l5OR0w/tXVri6uiowMFB+fn6yWq06fPiwPvroIz344IM6e/ZsSXcPACDp7bff1uOPP65Vq1YpMTFR5cuX1/nz5xUTE6OhQ4dq5MiRslqtRWqzQoUKCgwMlK+vb7H3d/fu3erRo4diY2MLvY6/v7/8/f3l7u6us2fP6pdfftEjjzyiFStWFHv/AADXx/XIK+nGZ5Zte4GBgfL39zem+/r6Fjj9evQBAJCH63+FZ8uowMBAeXp6SpKcnZ3tpnt5ed2w/vj6+iogIEBeXl5KSkrShg0bNHjwYC1YsOCG9QGlH4Uw4ApsQWi1WvX999/bzVu3bp3xRJNtORSsadOmiomJ0dq1a/Xnn3/q3XfflZubm+Lj4/XWW2+VdPcA4Ka3fPly4075++67T2vWrNG6deu0YcMGDRo0SJK0dOlSzZ07t0jtjhw5UjExMZo0aVKx9zk9Pb3Id2MuW7ZMv//+u+Li4rRq1SpFRkYqJydHo0eP1vnz54u9jwCA4nW98kq68Zll215MTIwWLlxoTJ81a5YxfdGiRde1DwCAPFz/KzxbRsXExKhfv36SpOrVqxc4/UaYNWuWfvvtN23YsEG///678TT1W2+9pUOHDt2wfqB0oxAGXEH16tUVGRkpSfruu+/s5tnuHq9du7ZCQkK0atUq9e7dW40aNVKjRo3Uv3//fMMt2YblmD9/vh588EE1atRIb775piTp2LFjGjp0qCIjI9WyZUvNmDFD8+bNU3BwsF566SWjjfj4eA0bNswYBqRly5Z64YUXdOrUKWMZ2yPDH3/8sebMmaN27dopLCxMjz32mA4ePGjXpx9//FHdunVTaGioevTooQ0bNujee+9VcHCwcbdgdna23n33Xd11110KDw9Xs2bN9Mgjj2jjxo1F/kzNZrM6duxohOI333yjtLS0IrcDACg+77//viQpPDxcb7zxhnE3vKenp5577jl16dJFkjR79mxlZ2cb62VlZWnChAmKiopSkyZNNGLECLsnfQsaZiorK0uTJ09W27ZtFRISorvvvlvz58+/7N3727dvV0REhIKDgxUdHa3169erV69exvwOHTrYZWVhVK9e3cjg8+fP58t5AEDpc7V5JZXdzLJarZozZ446deqkkJAQtW/fXu+8846ysrKM7YWEhCg4OFgTJkyQJKWlpRnnno888kix5CYAODKu/xXf9b8zZ87otttuU3BwsN1nabFY1Lp1a+Nzkf4ZZvH333/X8OHDFRkZqRYtWujNN9/Ml+OF4e/vr7feekseHh7KycnRl19+WeQ24JgohAGFYLvbY9u2bcadBLm5ucb48927d9eCBQs0dOhQxcXFKTc3V1lZWVqzZo0eeeSRAsepnzx5snbt2qWcnByFhIQoJSVFffv21apVq5SWlqaMjAz95z//MYLBJisrS/369dOKFSuUnJwsLy8vnTlzRt98841GjRqVbzvz58/X5MmTlZycrMzMTK1bt04jRoww5q9evVrDhg3T33//LYvFov3792vgwIE6ceKEXTtTp07V9OnTdfDgQbm7uys9PV2xsbEaMGCA9u3bd1Wfa8uWLSXlhez27duvqg0AwLU7ffq09uzZI0m69957ZTKZ8i1z3333SZLOnTtn9zt7zpw5+vjjj2WxWHT+/Hl99dVXGjhw4GXvOB82bJhmz56tU6dOydPTUwcPHtTrr79+ySeET548qSeffFLp6elq1aqVXnvtNZUrV85u6Cp/f39VqFChyPtes2ZNVatWTVLeMCgAgNLrWvJKKruZNXHiRE2aNEmHDh2Sp6enTpw4oVmzZumFF16QJN1222168sknJUmffvqptm7dqilTpujo0aPy8vLS66+/Xmy5CQCOjOt/xXP9r1KlSmrXrp0k6dtvvzWmb9q0SadOnZKzs3O+J+tGjBhhPImXmJioDz/8UGPGjCnU9i5Wvnx5hYaGSuIcD/+gEAYUQufOneXs7CxJxi/l2NhY4+7BVq1aGcNn9OrVS3FxcdqwYYPuuOMO5eTkaOzYscrMzLRrs2LFivrll1+0du1adezYUUuXLtWRI0fk5OSkefPmadOmTZo3b55Onz5tt97hw4dVp04dhYSE6LffftP69euNF0X+8ccf+fp+5swZffHFF4qLi1Pv3r0l5YVAUlKSJOk///mPrFarbrvtNv3+++/atGmTunXrZjzybRMTEyMp72XV69evV2xsrLp06aIOHTrozJkzV/W5+vn5GV9fvJ8AgBvnwpOfGjVqFLhM9erVja+PHz9ufO3i4qLly5dr06ZNeuWVVyRJW7duNXLjYuvWrdPPP/8sHx8f/fjjj4qNjdXXX3+tcuXKacGCBTp58qTd8hkZGXryySd18uRJhYSEaPr06XJxcVFkZKRmzZplLLdw4UKNHDmy6DuvvBM1SVedZwCA4rFo0aJ8L76/cGjAa8krqWxmVnx8vD755BO5uLhoyZIlio2N1erVq+Xv768VK1bozz//lCQNGjRIoaGhslgsevbZZ/Xpp59KkkaNGqWqVasWa24CgKPi+l/xXf+7//77jfZSUlLsPtPWrVvbXROUJFdXV61atUqbN2/W448/Lkn66quvtH///kJv80Kc4+FiFMKAQvD19TWeXrI90vvDDz9IkiIiIrR3715lZ2fL1dVVI0eOlIuLizw8PDR69GhJUkJCgjZv3mzXZrt27eTr6ysvLy+VK1fOeIS6RYsWuv322yVJt99+u9q0aWO3Xt26dTVnzhwtXLhQBw8e1EcffWT0JTU1NV/fW7RoobCwMJnNZnXq1MmYnpqaqtTUVO3cuVOS1L9/f/n4+MjZ2VnR0dH52rn11lsl5b2Y+tlnn9XSpUv11FNPaerUqWrWrFlRPk7DhXdwWiyWq2oDAHDtLrwT/uITN5sLh4C68Otu3brplltukZR3Mli5cmVJl77zbt26dZKklJQU9e7dW23atNHAgQOVk5Oj3NxcrV+/3m755cuXG3f0Dx482HgZc3Gy5RFZBAAly8PDQ4GBgXZ/PDw8jPnXkldS2cys9evXy2q1ymKxaMiQIWrTpo169eplXNhcs2aNJMnZ2Vlvvvmm3NzcdOTIEVksFrVv3149e/a85j4AwM2C63/Fd/2vTZs2CggIUFZWllatWiWLxaIff/xRktSjR498y//73/9WtWrVZDKZNGzYMKMgefGQk4VlO8fj3ZiwoRAGFJLtkd1du3Zp7969do9F2+4u8Pf3l7u7u7FO1apVjV+8F9+B4O/vb/f9+fPnJUkBAQF206tUqWL3vcVi0aRJk9SsWTP16tVLc+bMUU5OjqT8J3qS/VNXbm5udu2kpKQY61y43YoVK9qdcErSuHHjjDHlv//+e73yyivq0qWL7r//fsXHx+fbbmEkJiYW2E8AwI0VFBRkfH3xOPIFTbddOJTy//4ODAyUJOOuv4vZ7qbMzs7WyZMnjT+2E5SL766/8MRl5syZl30ny9Wy5dGFQ0YBAG687t27KyYmxu7PhUMnXUteSWUzs2x9yM3NteuD7f1gFz4lV7duXTVt2tT4/sILoQCAwuH6X/Fc/3NycjIKXt999502btyo06dPq2LFirrjjjvyLX/h51SuXDn5+PhI+ufzKirbOR7XG2FDIQwopI4dOxrh8MorryghIUHOzs7q3Lmz8bjt6dOnlZGRYaxz5MgRI2guDr4LQ0n655Hdi8fmPXbsmN33X3zxhebMmSNPT0999913iomJ0ZAhQy7ZbycnJ+Pri8fQ9/X1ldlszrfds2fPKi0tzW5ZLy8vjRo1SmvXrtWnn36q559/XjVr1tTWrVuNFzIXle2uDhcXF4WEhFxVGwCAaxcUFKTatWtLysuZgl5KbHvJsLe3t2677TZj+tGjR+2Wsw3pUbFixQK3ZcvDkJAQ7d692/izefNm7d69W0888YTd8h4eHpo1a5Y8PDy0Y8cOff3118a8gt4NU1QnT540xv+PiIi45vYAANfPteSVVDYzy9YHX1/fAvtgG+JRkn7++We7YR4nTZpkd/NhceQmADg6rv8V3/W/nj17ymQyae3atfr8888lSV26dJGrq2u+ZQ8fPmx8nZWVZQzZeKmMvpzMzExt3bpVEud4+AeFMKCQ3N3d1aFDB0l54wNLeY8u+/n5qXXr1nJyclJWVpZee+01ZWdnKy0tTa+//rqkvBBs1KiRXXsXh1KTJk0k5Q19YRuCw3YX5IV2794tKa94FBgYqPT0dC1evNiYX5RhnVxcXBQeHi4p76Wa586dU3Z2dr4XP6elpenOO+9URESEFixYoMaNG+vxxx9XixYtJOU9+l1U69at09y5cyVJXbt2Vfny5YvcBgCg+Dz55JOS8t5FEh0dbdzJmJKSotdff10//fSTJGnAgAF2Jy4//PCD4uLiJElLliwxLjLacu1iUVFRkqTt27cbbf7yyy9q3Lix2rdvn+8uw+7du6t9+/Z65JFHJEnTpk0zhsO68GQvLS3NuEOysE6dOqWxY8fKarXKy8tL99xzT5HWBwDceFebV1LZzKzGjRvLbDYrMTHReO/Xzp071bRpU7Vq1crYn3Pnzun//u//JOU9CVahQgUlJibq5ZdfNtq61twEgJsB1/+K7/pfzZo1FRUVpezsbOP9YAUNiyjlFf4OHDggSXrvvfeUnZ0tk8lkZHFhnT9/XuPHj9f58+fl5ORkPN0GOJd0B4CypHv37vrmm2/svpfyHit+5plnNGXKFC1atEhff/21cnNzlZ2dLRcXF02cOLHAux0udM899+j999/XkSNH9Nhjj8nLy0spKSny9fVVYmKiEZyNGjXSZ599pqNHj6ply5ayWq124+MnJSUZjw8XxpAhQ/TEE09o+/btatWqlZycnFSuXDk5OTkpNzdXJpNJHh4euvPOOzV79mxNmTJFH3zwgaxWqzEmse0FmJezYcMGY7zj9PR0JScnS8p7fHzEiBGF7i8A4Pq49957tWfPHs2ZM0fff/+9VqxYIR8fHyUlJRkXyrp165bv7ncfHx/17t1bnp6eRi40bdpUzZs3L3A7LVq0UMuWLbVmzRo9+eSTqlChgpKTk2W1WhUSEqKaNWsWuN7AgQO1aNEiHTt2TAsWLNATTzyhKlWqyGw2y2KxqFevXmrdurWmT59+2f3s0aOHzGazcnNzlZiYKIvFIrPZrFdffZWbMgCgDLjavJLKXmZJUq1atdSzZ08tXrxYr7zyiqZOnaq0tDTl5uaqcuXKioyMlCS9+uqrOn36tPz8/DRhwgStXLlSY8aM0YoVK7R8+XJ169btqvsAADcbrv9d/fW/i/Xs2VMbNmyQJNWpU0dhYWEFLpeamqrOnTvLw8PD2N4DDzyg6tWrX3EbTz75pFxcXGSxWHT27Fnj/wO2p9kAiSfCgCJp2bKlMbasu7u7OnbsaMwbNGiQZsyYoaioKJnNZrm4uKhVq1b6+OOP1bZt2yu27ebmpvnz56tt27Zyc3OTp6enRo4caYzrbnuUunv37nrmmWcUFBQkk8mkWrVq6Y033jD6ZbubpLDatGmjKVOmqE6dOjKZTGrQoIHmzZtnPDJt2+4LL7yg8ePHq2HDhrJarXJyclJoaKgmTZqkhx9++IrbycrKMsazz8jIUI0aNdSvXz8tWbKEd7IAQCkRHR2tefPmqWPHjvL19VVSUpK8vLzUqlUrvfPOO3r77beNfLAZMWKE+vXrJxcXF5UvX149e/bUrFmzjBM4252KF96FPmPGDPXv319VqlRRWlqaqlSposGDB2vy5MmX7JuXl5cGDx4sSfrggw+UmJgoX19fPfvss0YGFqaQdfr0aZ08eVJnz55VhQoVdMcdd+iTTz5Rly5divZhAQBKzNXklVT2Mstm3LhxevbZZ1WrVi1lZGTIz89PDz/8sObMmSMnJyetXLlSy5cvlySNGjVKFStW1P3332+8L8xWJLuWPgDAzYTrf1d//a+g7drcd999l1zupZde0r333iur1SpfX1898cQTGjduXKG2kZiYqJMnTyohIUEeHh5q0aKF3nvvPQ0YMKDI/YXjMlmvxxvHARTZunXrtHr1avn4+KhLly6qXbu2UlNT1bdvX23fvl3R0dF6/PHHi327M2fOVGpqqgIDA9W7d285OTlp8+bN+ve//230i0IVAKCo0tPTtWfPHo0cOVL79u1T586d9c4775R0twAAyIfMAgDcKDfb9b9p06Zp5syZcnJy0urVq1W5cmW7+cHBwZKkKVOmqGvXrsW+fcCGoRGBUqJChQr67LPPlJubq5kzZ6pixYpKSkpSdna23N3d1blz5+uy3eTkZM2bN0+SNHXqVJUrV05nz56VJLVt25YiGADgqmzYsMFuWCrbCQ4AAKUNmQUAuFFulut/Y8eO1erVq413eXbt2jVfEQy4kSiEAaVEw4YNNX36dM2ZM0d///23EhMT5eXlpWbNmumpp55S1apVr8t2n3vuOZnNZq1evVpHjx5VVlaWqlSpovbt2+uZZ565LtsEADi+hIQEeXp6ymq1qm3bturbt29JdwkAgAKRWQCAG+Vmuf4XFBRkvPvsjjvu0JgxY4p9G0BRMDQiAAAAAAAAAAAAHFL+t8cCAAAAAAAAAAAADoBCGAAAAAAAAAAAABwShTAAAAAAAAAAAAA4JAphAAAAAAAAAAAAcEjOJd2B0sJqtcpisZZ0NwAAFzCbTTKZTCXdjVKL7AKA0on8ujzyCwBKH7Lr8sguACidCptfFML+x2KxKjExtaS7AQC4gK+vp5ycOBm7FLILAEon8uvyyC8AKH3IrssjuwCgdCpsfjE0IgAAAAAAAAAAABzSNRXCZs6cqb59+9pN27lzp/r06aOIiAi1a9dOc+fOtZtvsVg0ffp0tW7dWuHh4erfv7/i4+OLvQ0AAAAAAAAAAADc3K66EDZ//nxNnz7dbtrZs2fVr18/1apVS0uWLNHTTz+tadOmacmSJcYyM2fO1MKFCzVhwgQtWrRIJpNJAwcOVFZWVrG1AQAAAAAAAAAAABS5EHby5Ek9/vjjmjZtmmrXrm0374svvpCrq6tefvll1a1bVz179tRjjz2m2bNnS5KysrL04Ycf6umnn1bbtm3VoEEDTZ06VSdPntTKlSuLrQ0AAAAAAAAAAACgyIWw7du3q0KFCvrvf/+r8PBwu3lxcXGKioqSs7OzMa158+Y6cOCAEhIStGvXLqWmpqp58+bGfG9vbzVs2FAbN24stjYAAAAAAAAAAAAA5ysvYq99+/Zq3759gfNOnDih+vXr200LCAiQJB07dkwnTpyQJFWuXDnfMsePHy+2Nq6Ws/M1vTINAIAbjuwCAJRF5BcAoKwhuwCg7CpyIexyMjIy5OrqajetXLlykqTMzEylp6dLUoHLJCUlFVsbV8NsNsnHx/Oq1wcA4EYjuwAAZRH5BQAoa8guACjbirUQ5ubmpqysLLtpmZmZkiQPDw+5ublJynvPl+1r2zLu7u7F1sZVOX9Elk+bX3m5wjAVTzO4CVlLugNA6WLqvVYm75ol3Y3Si+xCaUB2AfmQX1dAfqE0IL8AO2TXFZBdKA3ILiCfwuZXsRbCgoKCdOrUKbtptu8DAwOVk5NjTKtRo4bdMg0aNCi2Nq6GyZItU9qxq14fAHAdWHJLugelGtkFAKUU+XVZ5BcAlEJk12WRXQBQShUyv4q1EBYVFaWFCxcqNzdXTk5OkqR169apdu3a8vPzU/ny5eXl5aXY2FijiJWcnKwdO3aoT58+xdbG1bCaXWTxqHItuy+T8h6VTknLUq7Fck1t4ebjZDbLy8NVFouVGzyA/zGbnbhZ7jLILpQ0sgsoGPl1eeQXShr5BeRHdl0e2YWSRnYBBStsfhVrIaxnz56aM2eORo8erccff1x//fWXFixYoPHjx0vKe69Xnz59NHnyZPn6+qpq1aqaNGmSgoKC1KlTp2Jr42pYPKsq8f5d17T/zs5m+fh46rVp3+ng8bPX1BZuPrWq+ui1QV2UdDZVOTn8hwiQJF9PTzmVdCdKMbILJY3sAgpGfl0e+YWSRn4B+ZFdl0d2oaSRXUDBCptfxVoI8/Pz05w5czRx4kT16NFD/v7+evHFF9WjRw9jmWHDhiknJ0djxoxRRkaGoqKiNHfuXLm6uhZbGwAAAAAAAAAAAMA1FcLeeOONfNPCwsK0aNGiS67j5OSk6OhoRUdHX3KZ4mgDAAAAAAAAAAAANzdzSXcAAAAAAAAAAAAAuB4ohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ7qmd4QBcGxms0lms6mku4EyymKxymKxlnQ3AAAAAAAAANzEKIQBKJDZbJKPj7vMZqeS7grKKIslV2fPplMMAwAAAAAAAFBiKIQBKFDe02BOOrB8ttITjpd0d1DGuPtVVu1uA2U2myiEAQAAAAAAACgxFMIAXFZ6wnGlnzxU0t0AAAAAAAAAAKDIzCXdAQAAAAAAAAAAAOB6oBAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOCQKYQAAAAAAAAAAAHBIFMIAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDohAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOCQKYQAAAAAAAAAAAHBIFMIAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDohAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOKRiL4RlZ2dr6tSpateunSIjI/Xwww9r8+bNxvydO3eqT58+ioiIULt27TR37ly79S0Wi6ZPn67WrVsrPDxc/fv3V3x8vN0yV2oDAAAAAAAAAAAAKPZC2KxZs7RkyRJNmDBBX331lerUqaOBAwfq5MmTOnv2rPr166datWppyZIlevrppzVt2jQtWbLEWH/mzJlauHChJkyYoEWLFslkMmngwIHKysqSpEK1AQAAAAAAAAAAADgXd4OrV69Wt27d1KpVK0nSSy+9pMWLF2vLli06ePCgXF1d9fLLL8vZ2Vl169ZVfHy8Zs+erZ49eyorK0sffvihoqOj1bZtW0nS1KlT1bp1a61cuVJdu3bVF198cdk2AAAAAAAAAAAAAOk6PBFWsWJF/fzzzzpy5Ihyc3O1aNEiubq66tZbb1VcXJyioqLk7PxP/a158+Y6cOCAEhIStGvXLqWmpqp58+bGfG9vbzVs2FAbN26UpCu2AQAAAAAAAAAAAEjX4Ymw0aNHa/jw4erQoYOcnJxkNps1bdo01ahRQydOnFD9+vXtlg8ICJAkHTt2TCdOnJAkVa5cOd8yx48fl6QrtuHn53fVfXd2vra6oJNTsdcVcRMqLcdRaekHyjaOo+uP7EJpwHEEoKjIL5QGHEcAioLsQmnAcQRcnWIvhO3bt0/e3t569913FRgYqMWLF2vEiBH65JNPlJGRIVdXV7vly5UrJ0nKzMxUenq6JBW4TFJSkiRdsY2rZTab5OPjedXrA8XF29u9pLsAFBuO5+uL7EJpwc86gKIgv1BakF8ACovsQmlBdgFXp1gLYUePHlV0dLTmz5+vJk2aSJJCQ0O1d+9ezZgxQ25ubsrKyrJbx1a88vDwkJubmyQpKyvL+Nq2jLt73g/5ldq4WhaLVcnJaVe9vpRXkeeXEa5VcnK6cnMtJd0NjmcUi2s9nr293bnb6TLILpQWpSW7gNKC/Lo88gulBfkF/IPsujyyC6UF2QXYK2x+FWsh7K+//lJ2drZCQ0PtpoeHhysmJkZVqlTRqVOn7ObZvg8MDFROTo4xrUaNGnbLNGjQQJIUFBR02TauRU4Ov0RQ8nJzLRyLcBgcz9cfny9KA37WARQVvzNQGpBfAIqC3xcoDcgu4OoU660etnd77d692276nj17VLNmTUVFRWnTpk3Kzc015q1bt061a9eWn5+fGjRoIC8vL8XGxhrzk5OTtWPHDuMJsyu1AQAAAAAAAAAAAEjFXAgLCwtTkyZNNGLECK1fv14HDx7UO++8o3Xr1umJJ55Qz549lZKSotGjR2vv3r1aunSpFixYoEGDBknKezdYnz59NHnyZK1evVq7du3S8OHDFRQUpE6dOknSFdsAAAAAAAAAAAAApGIeGtFsNmvmzJl65513NHLkSCUlJal+/fqaP3++IiIiJElz5szRxIkT1aNHD/n7++vFF19Ujx49jDaGDRumnJwcjRkzRhkZGYqKitLcuXPl6uoqSfLz87tiGwAAAAAAAAAAAECxFsIkqUKFCho3bpzGjRtX4PywsDAtWrTokus7OTkpOjpa0dHRl1zmSm0AAAAAAAAAAAAAxTo0IgAAAAAAAAAAAFBaUAgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAId0XQphX331lbp06aLQ0FB17dpV33//vTFv586d6tOnjyIiItSuXTvNnTvXbl2LxaLp06erdevWCg8PV//+/RUfH2+3zJXaAAAAAAAAAAAAAIq9EPb1119r1KhR6tWrl5YvX64uXbroueee0x9//KGzZ8+qX79+qlWrlpYsWaKnn35a06ZN05IlS4z1Z86cqYULF2rChAlatGiRTCaTBg4cqKysLEkqVBsAAAAAAAAAAACAc3E2ZrVaNW3aND366KN69NFHJUlDhw7V5s2btWHDBm3YsEGurq56+eWX5ezsrLp16yo+Pl6zZ89Wz549lZWVpQ8//FDR0dFq27atJGnq1Klq3bq1Vq5cqa5du+qLL764bBsAAAAAAAAAAACAVMxPhO3fv19Hjx5V9+7d7abPnTtXgwYNUlxcnKKiouTs/E/9rXnz5jpw4IASEhK0a9cupaamqnnz5sZ8b29vNWzYUBs3bpSkK7YBAAAAAAAAAAAASMVcCDt48KAkKS0tTQMGDFCLFi30wAMP6KeffpIknThxQkFBQXbrBAQESJKOHTumEydOSJIqV66cb5njx48Xqg0AAAAAAAAAAABAKuahEVNSUiRJI0aM0FNPPaUXXnhBK1as0JAhQzRv3jxlZGTI1dXVbp1y5cpJkjIzM5Weni5JBS6TlJQkSVds41o4O19bXdDJqdhfuYabUGk5jkpLP1C2cRxdf2QXSgOOIwBFRX6hNOA4AlAUZBdKA44j4OoUayHMxcVFkjRgwAD16NFDknTrrbdqx44dmjdvntzc3JSVlWW3jq145eHhITc3N0lSVlaW8bVtGXd3d0m6YhtXy2w2ycfH86rXB4qLt7d7SXcBKDYcz9cX2YXSgp91AEVBfqG0IL8AFBbZhdKC7AKuTrEWwmxDFtavX99uer169fTLL7+oatWqOnXqlN082/eBgYHKyckxptWoUcNumQYNGhjbuFwbV8tisSo5Oe2q15fyKvL8MsK1Sk5OV26upaS7wfGMYnGtx7O3tzt3O10G2YXSorRkF1BakF+XR36htCC/gH+QXZdHdqG0ILsAe4XNr2IthDVs2FCenp76888/1aRJE2P6nj17VKNGDTVq1EgLFy5Ubm6unJycJEnr1q1T7dq15efnp/Lly8vLy0uxsbFGISw5OVk7duxQnz59JElRUVGXbeNa5OTwSwQlLzfXwrEIh8HxfP3x+aI04GcdQFHxOwOlAfkFoCj4fYHSgOwCrk6x3urh5uamxx9/XO+++66WL1+uQ4cOadasWVqzZo369eunnj17KiUlRaNHj9bevXu1dOlSLViwQIMGDZKU926wPn36aPLkyVq9erV27dql4cOHKygoSJ06dZKkK7YBAAAAAAAAAAAASMX8RJgkDRkyRO7u7po6dapOnjypunXrasaMGWrWrJkkac6cOZo4caJ69Oghf39/vfjii8b7xCRp2LBhysnJ0ZgxY5SRkaGoqCjNnTtXrq6ukiQ/P78rtgEAAAAAAAAAAAAUeyFMkvr166d+/foVOC8sLEyLFi265LpOTk6Kjo5WdHT0JZe5UhsAAAAAAAAAAAAAb8EEAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ3Iu6Q6gbEo6tVfHdv6ijPOn5ezqoYA6TRVYr4Uk6eS+9Tp9YKOy0pPlUs5LfjXCVTm4rUwmk3KzM3V0x2qdO75LOTkZKu9XU9VDO8vNy1eSlJ2RoiPbf1Ty6QOy5GbLo0JlVbutozx9qpbk7gIAHADZBQAoi642vyw52Tq8/UedO75buTkZcvP0U+X6reVTtaEkyWrJ1R/fviGrJddue7d1eMrIOAAArgbnXgBKG54IQ5GlJ5/SvthFys5MUWDd5nJx89KR7St16sBGJZ3YoyPbfpSzq4cC67aQi5uXju+OUeLhvyRJh/76VqcPxsmrUi3512ys82fi9ffaj2XJzZYk7d+4WIlHtsk7oK4q1YhUauJh/b3uU2VnppbkLgMAyjiyCwBQFl1Lfh3b/YvOHNwkL7/qCqjdVLnZGdoft0SZaeckSWnJJ2W15Kp8pdqqemt7449zOY8S3GMAQFnHuReA0ohCGIos+fR+WS25CqrXUlVuvUO3tOgtSTq9f6MyUhIkSV5+NeVTtaG8/GpIksxOLpKkcyf+lrOrh+o0+Zeqh94l/1qNlZWepHMn9ig3O1NWq0XeAfVUu9F9qh56lyoE1VdudobSk06UzM4CABwC2QUAKIuuJb9s832qNJRPlYZy8/KTyWyWyZR3GSDt3HFJkm/1UPlWD1fgLS0VVL+VnF3cbug+AgAcC+deAEojhkZEkbm6V5AknTu+S15+1ZWScFiSlJFyRj5VG+p0/Gad3LtWJ/eulSQF1G1mDL/h6l5BGedPK/HIVpXz8lNKwiFJUnrySflWvU0N2gwwtpObnanUc8ckSW7lK92w/QMAOB6yCwBQFl1LfgXWba6UM/E6ELckrzGTSXWa3C9Xd29JUtr/8urQX9/JmpsjJ+dyqhZypyrVjLyRuwgAcDCcewEojSiEocgqVm4gn6q36ezR7dr5ywdyda8gs3M5WXIyZbVa5ebpK7OTiwJqN9WZQ5t1al+svHxryKfKraoR1ln7Nn6hA5uWSZLcvQMkSZacbLtt5GSlae/6hcpOT1alWo2NEAUA4GqQXQCAsuha8svJxV0u7t7yLu+v8v51dGzXL4rf8o08KgSpnKePLJZcubpXUKWakXIu56nju35V/JblcitfSV6+1Ut61wEAZRTnXgBKIwphKDKTyaQ6TXoqvX5rZWecl6dPNW1dOV0ymXRy7zolnfxbt7ToLe+AuvKoEKidv87Wqf2x8qlyq8pXqqnQjk8r9ewxubh56fyZgzq89Qc5uZQz2s9MTdTf6z5XZmqCfKuFqkZo5xLcW9wM/jxyVos3HdTRc2kqX85Fd91WRV1Dq9ktc+xcmkZ//YfKu7loeq+mkqTUzBx9Ertf24+f0/mMbFX38dSDTWoqpIqPTp/P0DNfbCxwe4Na11fb+oHXfb8A/IPsAgCURdeSXwc3f6WMlDO6tc3jMju7yJKTqSPbVyrh8J+q0qCdaje6z25bltxsHdn2o5JP7qUQBgC4apx7ASiNeEcYiiwrLUnxW5Yr+fQBeQfUVU52unKz0+XuHajM1ERJUm5O5v/+zpIkmc15NdfTBzcp/s9v5e4dIHfvAGNceo8KlSXljWO/67f5ykxNUNAtrVSr0X0ymTlMcf0cTkzV2yu3Kyk9W11Cqqqih6s+3XBAK3ccM5bJzrVoxs+7lJljsVv3k9j9+vXvk6rnX14dG1TW4bOpmvTjdiWnZ8mznLMealLL+NMzsoaczCZVcHfRrZW5Uwm40cguAEBZdC35lZGSIFmtys3Nm27722R2ltVq0dGdP+nw1hWyWq1587Mz8tZ3dr1xOwgAcDicewEojXgiDEXmXM5T547vkuXIVmVnnFfSyb2SpMA6zZSbk6nkU/t0eOsKpZ07obPHdkqSfKuFSpIsOVk6e3S7cjLT5Oblp4TDf6mcl5+8A+vJarVo34YvlJOZonKevnJydtXJv9dIynusmvF+cT1sPXZOORaruodV050Nq6hraI4e/3idftx5TJ0aVpEkfbbhgI4lpedb96GoWrr7tioKKO+m/WdStGbfKWXkWCSTSR6uzron/J87aT9ev18Wi1XD7miggPK8gBy40cguAEBZdC35VSGwns4d36W96z9X+Uq1dPpgnExmJ/lUbiCTyay0pBNKPrlXmWln5eblp9MH4uTkXE5+1cNLbH8BAGUf514ASiMKYSgys5Oz6jZ9UIe2/qBT+2Pl6l5BNSO6ya+G7YTJpNMHNurkvvVydfdW9dC7jXkBdZopM+2cEo9sU+q5o6pYuYGqh94ls9lJyaf2K+P8aUl5jzkf3fmTsc1yXr4EGq6LSp55j9dvjE9Q/UBv7TmZLEk6di5dORaLth49pxU7jumR5nX00fr9dutWcHdVBXdXrdxxTPPW7ZOLk0nD2t8qbzcXu+UOJqToh+1H1S44SLdWrnhD9guAPbILAFAWXUt+1Wp0n47t+llnj+7U6QMb5VbeX1UbtjeyqXajHjqyfZWSTu5R8qn98vSpouohd8nFzauE9hYA4Ag49wJQGlEIw1Xx8quhhu2eKHBeQJ0oBdSJKnCeyWxWjbDOqhGWf/xe74A6anzv2GLtJ3AlTWr5qXntSlp/4IxGffWHKnmWk7uLk9Kzc3U+I0fvx+xReDUf3dWwSr5CmE3tSl4a2OoWLfvjkN79ZbfGdwtXdV9PY/5XWw7JyWzSvyJr3KjdAlAAsgsAUBZdbX45Obuqeshdqh5yV4HznV3dVSuye7H1EwAAG869AJQ2FMIA3NTMprynuHokpupcepbq+ZfXM19slNkkvfvLLmXm5Oq+iOo6eT7vnQkWi1UnktPl7+UmJ7NJklQvwFv1ArxlsVo1d81e/bLnpPo2ryNJSkrP0sb4BDWq7ic/z3KX7AcAAAAAAAAAoPhRCANwUzuTkqFlWw6rWkUPdQ6pqtPnM5SSmaOavp7acTxJkjR++V/G8olpWXpucZymPRilTzfs19FzaZp4b6RcnZ2UlpUjSXJ3dTKW/+NwoqxWqUlNvxu7YwAAAAAAAAAACmEAbm7ebq6Kiz+jtfssOpeepS2HEyVJnUOqqpyz2W7ZaT/tkrebi/rdXlfe7i4K9HbXhoMJenPFdtXzL69Vu47L3cVJresFGOvsO31eklQvoPyN2ykAAAAAAAAAgCQKYQBucq7OZj3XsaHmr92nH7YflZ+nmwa2ukVtbgksYOldcnU2q1ltf0nSg41rycls0m9/n9KBhBTV9vNS72a1FejtbqyRmJolSarkxbCIAAAAAAAAAHCjUQgDcNMLDqyg13s0uuJynw1obfe9k9mkBxvX0oONa11yneg7b7vW7gEAAAAAAAAArpL5yosAAAAAAAAAAAAAZQ+FMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JCuayHswIEDioyM1NKlS41pO3fuVJ8+fRQREaF27dpp7ty5dutYLBZNnz5drVu3Vnh4uPr376/4+Hi7Za7UBgAAAAAAAAAAAHDdCmHZ2dl64YUXlJaWZkw7e/as+vXrp1q1amnJkiV6+umnNW3aNC1ZssRYZubMmVq4cKEmTJigRYsWyWQyaeDAgcrKyip0GwAAAAAAAAAAAIDz9Wp4xowZ8vT0tJv2xRdfyNXVVS+//LKcnZ1Vt25dxcfHa/bs2erZs6eysrL04YcfKjo6Wm3btpUkTZ06Va1bt9bKlSvVtWvXK7YBAAAAAAAAAAAASNfpibCNGzdq0aJFevPNN+2mx8XFKSoqSs7O/9TfmjdvrgMHDighIUG7du1Samqqmjdvbsz39vZWw4YNtXHjxkK1AQAAAAAAAAAAAEjXoRCWnJysF198UWPGjFHlypXt5p04cUJBQUF20wICAiRJx44d04kTJyQp33oBAQE6fvx4odoAAAAAAAAAAAAApOswNOLLL7+siIgIde/ePd+8jIwMubq62k0rV66cJCkzM1Pp6emSVOAySUlJhWrjWjg7X1td0Mnpur1yDTeR0nIclZZ+oGzjOLr+yC6UBhxHAIqK/EJpwHEEoCjILpQGHEfA1SnWQthXX32luLg4ffPNNwXOd3NzU1ZWlt00W/HKw8NDbm5ukqSsrCzja9sy7u7uhWrjapnNJvn4eF55QeA68/Z2L+kuAMWG4/n6IrtQWvCzDqAoyC+UFuQXgMIiu1BakF3A1SnWQtiSJUuUkJCgdu3a2U0fN26c5s6dqypVqujUqVN282zfBwYGKicnx5hWo0YNu2UaNGggSQoKCrpsG1fLYrEqOTntqteX8iry/DLCtUpOTldurqWku8HxjGJxrcezt7c7dztdBtmF0qK0ZBdQWpBfl0d+obQgv4B/kF2XR3ahtCC7AHuFza9iLYRNnjxZGRkZdtPuvPNODRs2TF26dNG3336rhQsXKjc3V05OTpKkdevWqXbt2vLz81P58uXl5eWl2NhYoxCWnJysHTt2qE+fPpKkqKioy7ZxLXJy+CWCkpeba+FYhMPgeL7++HxRGvCzDqCo+J2B0oD8AlAU/L5AaUB2AVenWG/1CAwMVM2aNe3+SJKfn5+qVq2qnj17KiUlRaNHj9bevXu1dOlSLViwQIMGDZKU926wPn36aPLkyVq9erV27dql4cOHKygoSJ06dZKkK7YBAAAAAAAAAAAASMX8RNiV+Pn5ac6cOZo4caJ69Oghf39/vfjii+rRo4exzLBhw5STk6MxY8YoIyNDUVFRmjt3rlxdXQvdBgAAAAAAAAAAAHDdC2G7d++2+z4sLEyLFi265PJOTk6Kjo5WdHT0JZe5UhsAAAAAAAAAAAAAb8EEAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgk55LuAAAAAAAAwM3MbDbJbDaVdDdQRlksVlks1pLuBgAApRaFMAAAAAAAgBJiNpvk4+Mus9mppLuCMspiydXZs+kUwwAAuAQKYQAAAAAAACUk72kwJx1YPlvpCcdLujsoY9z9Kqt2t4Eym00UwgAAuAQKYQAAAAAAACUsPeG40k8eKuluAAAAOBxzSXcAAAAAAAAAAAAAuB4ohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFMAAAAAAAAAAAADgkCmEAAAAAAAAAAABwSBTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ3Iu7gbPnTunKVOm6JdfflFKSoqCg4P1/PPPq0mTJpKknTt3auLEidq2bZsqVqyovn37asCAAcb6FotF//nPf7R48WIlJyercePGGjdunGrWrGksc6U2AAAAcHMym00ym00l3Q2UYRaLVRaLtaS7AQAAAAAoJsVeCHvuueeUkJCgKVOmyNfXV5999pkGDBigpUuXytfXV/369VPHjh01fvx4bdmyRePHj1fFihXVs2dPSdLMmTO1cOFCvf766woMDNSkSZM0cOBALV++XK6urjp79uwV2wAAAMDNx2w2ycfHXWazU0l3BWWYxZKrs2fTKYYBAAAAgIMo1kJYfHy81qxZo88//1yNGjWSJI0ePVoxMTFavny53Nzc5OrqqpdfflnOzs6qW7eu4uPjNXv2bPXs2VNZWVn68MMPFR0drbZt20qSpk6dqtatW2vlypXq2rWrvvjii8u2AQAAgJtT3tNgTjqwfLbSE46XdHdQBrn7VVbtbgNlNpsohAEAAACAgyjWQpiPj48++OADhYSEGNNMJpOsVquSkpK0bds2RUVFydn5n802b95c77//vhISEnT06FGlpqaqefPmxnxvb281bNhQGzduVNeuXRUXF3fZNvz8/IpzlwAAAFDGpCccV/rJQyXdDQAAAAAAUAqYi7Mxb29vtW3bVq6ursa077//XocOHVKrVq104sQJBQUF2a0TEBAgSTp27JhOnDghSapcuXK+ZY4fz7ur90ptAAAAAAAAAAAAANJ1eEfYhTZt2qRRo0apQ4cOat++vV5//XW7IpkklStXTpKUmZmp9PR0SSpwmaSkJElSRkbGZdu4Fs7O11YXdHIq1roiblKl5TgqLf1A2cZxdP2RXSgNSstxVFr6gbKPY+n6I79QGpSW46i09ANlG8fR9Ud2oTTgOAKuznUrhK1atUovvPCCwsPDNWXKFEmSm5ubsrKy7JazFa88PDzk5uYmScrKyjK+ti3j7u5eqDauVt7L1T2ven2guHh7u5d0F4Biw/F8fZFdKC34WYej4Zi+vsgvlBb8rMORcDxfX2QXSgt+1oGrc10KYZ988okmTpyoTp06afLkycYTXEFBQTp16pTdsrbvAwMDlZOTY0yrUaOG3TINGjQoVBtXy2KxKjk57arXl/Iq8vwywrVKTk5Xbq6lpLvB8Yxica3Hs7e3O3c7XQbZhdKC7IKjIb+uL/ILpQX5BUdCdl1fZBdKi9KSXUBpUdj8KvZC2GeffaZXX31Vffv21ahRo2Q2/9OJqKgoLVy4ULm5uXJycpIkrVu3TrVr15afn5/Kly8vLy8vxcbGGoWw5ORk7dixQ3369ClUG9ciJ4dfIih5ubkWjkU4DI7n64/PF6UBP+twNBzT1x+fL0oDftbhSDierz8+X5QG/KwDV6dYb/U4cOCAXnvtNXXq1EmDBg1SQkKCTp8+rdOnT+v8+fPq2bOnUlJSNHr0aO3du1dLly7VggULNGjQIEl57wbr06ePJk+erNWrV2vXrl0aPny4goKC1KlTJ0m6YhsAAAAAAAAAAACAVMxPhK1YsULZ2dlauXKlVq5caTevR48eeuONNzRnzhxNnDhRPXr0kL+/v1588UX16NHDWG7YsGHKycnRmDFjlJGRoaioKM2dO9cYXtHPz++KbQAAAAAAAKB02XjwjL7564iOnkuTm4uTmtaqpIeiaqmcs5P2nj6vj9bt0+Gzqark5ab7G9VQs9r+xroxf5/U138e1tm0LNXy9dRjt9dTDV/7dzbtP31eY7/ZovBqvoq+87YbvXsAAKCUKtZC2ODBgzV48ODLLhMWFqZFixZdcr6Tk5Oio6MVHR191W0AAAAAAACg9DiZnK7pP+2Sj4erOjaorL9PJ2vFjmMym0y6N6K6Xv9+q0wmqUODyoqLT9D0n3ZpXLdyqh/ora1Hz+q9mD2qXMFdd9QP0k+7j+u177dq6gNN5O6ad2lrU3yC3v9tjyzWEt5RAABQ6hT7O8IAAAAAAACAC/l5ltNbPRvLzcVJGdm5ysq1aNeJZLk4mbTx4BmlZ+fq3vDq6tWkluoHeuud1TsV8/dJ1Q/01q97TkqSHmtRV6FVfWSxWrVixzH9cThRt9cN0Ozf/9bPu0+oakV3pWTmlPCeAgCA0qZY3xEGAAAAAAAAXMzZyazKFdzl4+Gq8cv/1Iodx9SwcgX1bFRTR86mSZIqV3CXJFX5399HzqXZ/Z1v/v/WCyjvpmHtG6jf7fVu3A4BAIAygyfCAAAAAAAAcENYrFb1alJL+8+c1+pdJzR3zd8ym0ySJFenvPu1Xf73d2Z2riQp439/26a7OOf9nZGTN/3e8OqSpB3Hz92YnQAAAGUKT4QBAAAAAADghjCbTLojOEj9b68nHw9Xxfx9ynivV3auxe7vci5OeX//r/CVk5u3YFZO3nw3Z6cb2XUAAFBGUQgDAAAAAADAdfXnkbN6adlmfbv1iCQpx2JVVo5FzmaTavp6SpJOns+QJB1PSpckVffxkCRVqZj394nkdLv51f43HwAA4HIYGhEAAAAoY/aePq+FGw/owJkUuTiZFVKlono3qyMfD1f9vveUvvnrsE4mZ8jbzUUt6wWoZ6Macjbb3wP3+95TmvnrbrW5JUCD2wRLkg4npuqz/7VrsVoVHFhBfZrVVqC3e0nsJgDAgdTw9VRCSqa+3Byvc+lZOngmRalZOep0a2U1r+OvxZvj9cP2Y8rMyVVcfIJMktrcEihJal0vQLEHzmj+ur2KqOarX/8+KW83F0VW9y3ZnQIAAGUCT4QBAAAAZUhyRrbe+GGb9p0+rw4NKqtBUAWt3X9a037aqa1Hz2rWr7uVkWNR19Cq8nZ30dd/HtbSzYfs2jiRnK55a/faTbNarZqyaod2Hk9Sizr+iqjuq02HEjTtp503cvcAAA7Kx8NVI+8OUV3/8lq964ROns9Qj4jq6vu/GznGdA5VtYoeWrXzuJzNJj3dvoFuCfCWJDWq4acn29SX1Sqt3n1CNX09NfLuELm7cn83AAC4Mv7HAAAAAJQhx86lKaC8mxrV8NX9jWpKkp74ZJ3+PpmsI2fTVM3HQw9F1VZkdV81q+2vl5Zt1o7jScb6ORaL/vPzLuXYXshygVGdQ5VjscrdxUl/HT2r3/eeyvckGQAAV6uOf3mN6RJ2yXkvdw+/5LqtbwlU6/89IXYpDStX1GcDWl9THwEAgOOhEAYAAACUIQ2CKui1+yKN7w+eSVFqZo4Cyrupc0hVdQ6paszbfuycJKlKxX+GNvwiLl7xial6qEktfbrhgDHdZDLJv7ybJGnaTzsVe+CMfD1dNbRd8HXeIwAAAAAArh9u7wQAAADKqINnUvTmj9tklfRgk1p282L+PqnPNhyQu4uTuodVlyRtPXpW3249ogca1VTtSl6XbLdl3QA93LS2ktOzNenH7crKyb2OewEAAAAAwPXDE2EAAABAGbTlcKKm/7xLmTm5eqxFXbWo42/MW/rHIX25OV6ers6KvvM2Va7gruSMbM36dbeq+Xgoqpaf9p1OkSSlZ+fq9PkM42kwSWpS00+SdOBMitbtP62tR8+p8f+mAQAAAABQllAIAwAAAMqYDQfOaMbPu+RkNml4h4ZG4UqSPl6/X99vP6qA8m568c7bVKWihyTpyNlUnUvP1rn0bD3/5SZj+Y0HE3TgTIpe6R6hySu3y7+8m55pf6skKS0rR5Lk7up0A/cOAAAAAIDiQyEMAAAAKENOn8/Qu7/uVq7VqtuCKurYuTT991yaJKmih6u+335UkhRW1Udx8QlSfILKu7mocQ1fPdO+gdHOkbNpWvLHITWsXEHdQqupooerzCaTYg+c0Xsxu2U2mfTXkbOq6eup+gHeJbKvAAAAAABcKwphAAAAQBny8+4Tys61SJL+OnpWfx09a8yr9r+nvyRp1a7jdtPvCA5Ss9r/DJ9Y3u2c9IdUyaucIqr7SpKe69hQn27Yr82HEmUySbfX9VfvpnXk7MSrhQEAAAAAZROFMAAAAKAMebBJLT3YpNY1t9OwckV9NqC13bSKHq4a2q7BJdYAAAAAAKDs4dZOAAAAAAAAAAAAOCQKYQAAAAAAAAAAAHBIFMIAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDohAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOCQKYQAAAAAAAAAAAHBIFMIAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDKrOFMIvFounTp6t169YKDw9X//79FR8fX9LdAgAAAAAAAAAAN6EdO7Zp2LDBuvPOturWrZNefnm0zpw5U9LduumV2ULYzJkztXDhQk2YMEGLFi2SyWTSwIEDlZWVVdJdAwAAAAAAAAAAN5Fz587pueee1s6d23Xfff9SREQjrVq1Qv/3fyNKums3PeeS7sDVyMrK0ocffqjo6Gi1bdtWkjR16lS1bt1aK1euVNeuXUu4hwAAAAAAAAAA4GYRH39AVapUVcuWrTVgwCBJUpcuHbRt21/KysqSq6trCffw5lUmC2G7du1Samqqmjdvbkzz9vZWw4YNtXHjRgphAAAAAAAAAADghgkPj9SHH35ifL9nzy6dP5+sKlWqUgQrYWVyaMQTJ05IkipXrmw3PSAgQMePHy+JLgEAAAAAAAAAAGjPnl164YVnZLVa9cQTQ0q6Ozc9k9VqtZZ0J4rq66+/1osvvqidO3fKbP6nlvfiiy/q1KlTmj9/fpHbtFqtsliu7aMwmSSz2ayklAzl5lquqS3cfJyczKrg5SaLxaLS8FNpO56zU5NlteSWdHdQxpjMTnLx9L7m49lsNslkMhVfxxwM2YWSRnbB0ZBfNwb5hZJGfsGRkF03BtmFklbassuGXxsFi4mJ0fDhw5WRkaFRo0apd+/eJd2lUqk4juXC5leZHBrRzc1NUt67wmxfS1JmZqbc3d2vqk2TySQnp+L5ya3g5XblhYBLuLC4Wxq4eHqXdBdQhpW249nRkF0oLUrbzzrZhWtV2o5pR0N+obQobT/r5BeuRWk7nh0N2YXSgp/10m/FihV67rnn5OzsrBkzZqhjx44l3SWojA6NaBsS8dSpU3bTT506paCgoJLoEgAAAAAAAAAAuEkdOXJE0dHRysnJUZMmTbR//3598MEH+uCDD5SRkVHS3buplcknwho0aCAvLy/FxsaqRo0akqTk5GTt2LFDffr0KeHeAQAAAAAAAACAm8nixYuVmZkpSfr999/1+++/G/Puv/9+u9HtcGOVyXeESdLUqVO1cOFCvfbaa6pataomTZqkI0eO6JtvvpGrq2tJdw8AAAAAAAAAAAAlrEw+ESZJw4YNU05OjsaMGaOMjAxFRUVp7ty5FMEAAAAAAAAAAAAgqQw/EQYAAAAAAAAAAABcjrmkOwAAAAAAAAAAAABcDxTCAAAAAAAAAAAA4JAohAEAAAAAAAAAAMAhUQgDAAAAAAAAAACAQ6IQBgAAAAAAAAAAAIdEIQwAAAAAAAAAAAAOiUIYAAAAAAAAAAAAHBKFsJtc+/bt1a5dO6WkpOSb99JLL6lv377XvQ99+/ZVo0aNdOzYsXzzZsyYofbt2+ebbrFY1K5dO4WEhCghIeG69xFo3769ZsyYUdLdACCyCygssgsoXcgvoHDIL6B0Ib+AKyO7Sj8KYdDx48f1xhtvlGgfUlNTNWbMmEIvv3btWp07d05+fn5asmTJdewZkOfLL79U//79S7obAP6H7AKujOwCSh/yC7gy8gsofcgv4PLIrtKPQhhUvXp1LV68WL/99luJ9mHNmjVatGhRoZZfsmSJGjdurA4dOmjRokWyWCzXuYe42fn6+srT07OkuwHgf8gu4MrILqD0Ib+AKyO/gNKH/AIuj+wq/SiEQffcc49atGih//u//yvwMWebc+fOafz48Wrbtq3CwsL073//W3Fxccb8GTNmqG/fvpo9e7batGmj0NBQPfLII9q/f/8V+9CkSRP17NlTb775ZoGPOV8oKSlJq1atUsuWLXX33XfryJEjJRrEKP2Cg4O1dOlSu2kXPrK8dOlStW/fXsuWLVOnTp0UEhKinj176o8//ihweUlavHix7rzzToWHh2vgwIGaO3eu3aP4V9qmJG3evFm9e/dWWFiY2rVrp/Hjx1/2ZxDAP8guODqyC3BM5BccHfkFOCbyC46M7Lo5UAiDTCaTJk6cqOTkZL3++usFLpObm6v+/fsrLi5Ob775ppYtW6YGDRroscce09atW43l/vjjD23cuFEffPCB5s+fr2PHjmn8+PGF6sfIkSNVvnx5jR49+rLLLV++XFlZWbrzzjvVpEkTBQQEaOHChYXfYaAAp06d0sKFCzVp0iQtWrRIZrNZI0aMkNVqzbfsN998o3Hjxqlv37766quvFBkZqWnTphVpe7t27dJjjz2mli1b6r///a8mT56s7du3q3///gVuE4A9sgsgu4CyiPwCyC+gLCK/cLMju8o+CmGQJFWtWlXR0dH68ssvC7xD4vfff9f27dv19ttvq3nz5qpbt67Gjh2r+vXra+7cucZyOTk5euutt9SgQQM1btxYffv21aZNmwrVh/Lly+vVV1/V2rVrLxtOS5YsUUREhKpVqyaz2awuXbro119/1fHjx4u+48D/ZGdn6+WXX1ZERIRuu+02DRo0SPHx8Tp9+nS+ZRcsWKAuXbqob9++ql27toYMGaJWrVoVaXtz585VixYtNGTIENWqVUtNmjTR22+/rT///FMbNmwort0CHBrZhZsd2QWUTeQXbnbkF1A2kV+4mZFdZR+FMBgeeuihSz7mvGfPHpUvX17169c3pplMJjVp0kS7d+82plWqVEkVK1Y0vi9fvryys7MlSe+9954iIyONP2PHjs3XhzZt2qhnz5566623dPTo0Xzzd+/ere3bt6tz587GtK5duyo3N1dffPHFVe87IEl169Y1vi5fvrwkGcfvhfbu3auwsDC7aU2bNi3Stnbs2KE1a9bY/Uzcc889kqR9+/YVtevATYvsws2O7ALKJvILNzvyCyibyC/czMiuss25pDuA0sP2mHP37t3zPeZstVplMpnyrWOxWOTs/M9h5Orqesn2H3roIbsQ8vLyKnC5kSNHas2aNRozZowaNWpkN2/JkiWSpDfffFNvvfWW3bwvv/xSQ4cOtesPYHPxY8MFBVVBx++lHje+eHph1r1wmxaLRd27d9fgwYPzrefr61vgNgHkR3bBkZFdgOMiv+DIyC/AcZFfcFRkl+PjiTDYqVq1ql588UV9+eWXdi+zDA4OVnJysvbs2WO3/KZNm1SvXr1CtV2xYkXVrFnT+OPn51fgchc+5vzf//7XmJ6dna1vvvlGrVq10tdff62vvvrK+DNkyBCdOnVKP/3001XsNRydi4uLzp8/b3yfkpKixMTEq26vYcOG+R7bv3C868Js85ZbbtHff/9t9zORm5ur119/nUf1gSIiu+CIyC7A8ZFfcETkF+D4yC84GrLr5kAhDPk89NBDuv3223X48GFjWsuWLRUcHKznn39esbGx2rdvn8aPH689e/bo0UcfLfY+tGnTRvfff78OHTpkTPv555+VmJiofv36qX79+nZ/BgwYoPLly+vzzz8v9r6g7IuMjNSiRYu0fft27dmzRy+++OI13f0zaNAgrVy5UrNnz9bBgwf16aef2v3HqzDb7N+/v3bu3KmxY8dq7969+vPPP/XCCy/owIEDqlWr1lX3DbhZkV1wNGQXcHMgv+BoyC/g5kB+wZGQXTcHCmEo0IQJE+Tp6Wl87+zsrHnz5unWW2/V008/rZ49e2rPnj2aP3++IiIirksfRo4cqcqVKxvfL126VLVq1VLLli3zLevl5aUHH3xQ69atU3x8/HXpD8qul19+Wf7+/nrooYc0cOBANW3aVJGRkVfdXtu2bfXOO+9o6dKl6tatm1atWqWePXsWaZsRERGaM2eO9uzZo3/961964oknVL16dc2bN++ywwQAuDSyC46E7AJuHuQXHAn5Bdw8yC84CrLr5mCyXmogSwBAoc2YMUPLli3jEXsAQJlBdgEAyiLyCwBQ1pBdJY8nwgAAAAAAAAAAAOCQKIQBAAAAAAAAAADAITE0IgAAAAAAAAAAABwST4QBAAAAAAAAAADAIVEIu4m8/vrrmj9/fr7pGzdu1K233ppv+tmzZ/X8888rKipKUVFR+r//+z+lpaXZLfP999+rS5cuCg0NVffu3RUTE3PZPlgsFk2fPl2tW7dWeHi4+vfvr/j4eLtldu7cqT59+igiIkLt2rXT3LlzL9vm4cOH1atXL0VGRmrw4MFKTk622969996rX3/91W6d1NRU3X333Tp27Nhl2wYAlDzy6x/kFwCUXRfmmdVq1ccff6zOnTsrIiJCvXr10tq1a+2WP3z4sAYPHqymTZuqZcuWmjBhgtLT0y+7jXXr1umBBx5QZGSk7rrrLn3yySd28xMSEhQdHa3mzZsrMjJSTzzxhPbu3XvZNj/44AM1a9ZM7dq107fffms3b8WKFXrggQfyrTNv3jxNnDjxsu0CAEofzr3+wbkX4FgohN0k/vjjD/3888/q3bu33fTY2FgNGTJEFosl3zrDhg3T4cOHNX/+fE2fPl1r1qzR+PHjjfnr169XdHS0Hn74YX311Vdq1aqVhg4dqn379l2yHzNnztTChQs1YcIELVq0SCaTSQMHDlRWVpakvADt16+fatWqpSVLlujpp5/WtGnTtGTJkku2OWnSJNWtW1dfffWVcnJy9P777xvzvv76a1WoUEFt27a1W8fT01OPP/64xowZc/kPDgBQosgv8gsAHMHFeTZ79my9+eab6t27t7766it169ZNgwcP1oYNGyRJ58+f17///W8lJSVpzpw5eu+997Rt2zYNHTr0ktvYsmWL+vfvr4YNG+rLL7/UiBEj9N5772nWrFnGMk8++aQOHz6s2bNn68svv5Sbm5see+yxSxbY9uzZo1mzZum9997T2LFjNXr0aJ07d06SlJOToylTpujFF1/Mt16fPn0UExOjuLi4q/3IAAA3GOdenHsBDs2Km0Lv3r2t8+fPN77Pzs62vvrqq9aGDRtae/ToYa1fv77d8ps3b7bWr1/funfvXmPab7/9Zg0ODraeOHHCarVarf3797c+++yzduv16tXL+n//938F9iEzM9MaGRlp/eyzz4xpSUlJ1rCwMOvy5cutVqvV+t5771lbt25tzc7ONpZ5++23rXfdddcl961z587WmJgYq9VqtX722WfWgQMHWq1WqzUjI8N6xx13WP/6668C18vOzrY2b97cumbNmku2DQAoWeRXfuQXAJQ9F+dZVFSU9c0337RbZvTo0dZHHnnEarVarQsWLLCGh4dbExISjPnHjh2zBgcHWzdu3FjgNoYOHWq9//777aZ9/fXX1vDwcGtmZqY1MTHROnz4cOuePXuM+Tt37rTWr1/f+ueffxbY5rfffmt98MEHje9vv/12Y9lPPvnEOmjQoEvu84IFC6wPPfTQJecDAEoXzr3y49wLcBw8EXYT2Lp1qzZt2qQuXboY09LS0rRt2zZ9+OGH6tOnT7514uLi5O/vr7p16xrTmjZtKpPJpE2bNslisWjz5s1q3ry53XrNmjW75F1/u3btUmpqqt063t7eatiwoTZu3GhsNyoqSs7OzsYyzZs314EDB5SQkFBgu9WrVzf69Mcff6h69eqSpAULFig8PFyhoaEFrufs7KxOnTpd8fFpAEDJIL/ILwBwBBfnWWJiopKSkhQVFWW33K233qpNmzYpNzdXBw4cUJ06deTr62vMr1y5snx8fIynxi524MABNWnSxG5aw4YNlZ6err/++ks+Pj6aMmWKbrnlFknSmTNnNHfuXAUFBalevXoFtlm9enUdPHhQZ86c0b59+5ScnKwqVaooNTVVs2bN0vPPP3/J/b777ru1ZcsWbdmy5YqfEQCgZHHuxbkX4OgohN0EVq1apZCQEPn7+xvTvL29tXDhQjVr1qzAdU6ePKnKlSvbTXN1dVXFihV1/PhxJScnKy0tTUFBQXbLBAQE6Pjx4wW2eeLECUnK1+6F65w4caLANiVdckzeZ555RkuWLFFISIh27typJ554QufOndP8+fP13HPPFbiOTfv27RUbG6vU1NTLLgcAuPHIr0sjvwCg7Lg4zypUqCBXV9d8uXP06FFlZ2crOTlZ/v7+On36tHJzc435KSkpSkpKuuRFPn9//wLblJRvnf/7v/9Ty5Yt9cMPP2jixIny8PAosM3Q0FDdfffdat26te69914NHz5clSpV0uzZs9W2bVujqFaQgIAANWzYUD/99NMllwEAlA6ce10a516AY6AQdhPYsmWL6tevX6R10tPT5erqmm96uXLllJmZqYyMDEnKt4xt/qXavNI6GRkZBc6XdMl2GzZsqF9++UW//vqrvvnmGwUGBmrmzJnq0qWLAgICNHLkSLVt21bDhg2zexmmJAUHBys7O1s7d+4ssG0AQMkhv8gvAHAEF+eZk5OT7r33Xs2aNUtbtmyRxWLRunXrjHebZGVlqWvXrkpKStJrr72m1NRUJScna9y4cTKZTMY7Ui72r3/9SytWrNBXX32l7OxsxcfH65133ilwnUcffVRLlizRPffco6FDh2r79u2X7P/48eMVGxurjRs3qn///jp16pQWLlyoYcOGae3ateratavuuusu/fDDD/nWDQ4O1p9//nk1HxsA4Abi3ItzL8DRUQi7CZw5c8ZuSI3CcHNzK/AEKzMzUx4eHkbAXLxMZmam3N3dL9nmldYpaLu2ELvUXYpS3smk7a6Vw4cP67///a+GDBmizz//XImJiVq5cqUqVqyo//znP3br2T6X06dPX7JtAEDJIL/ILwBwBAXl2UsvvaTmzZvr4YcfVkhIiN544w0NHDhQklS+fHnVrFlTM2bM0KpVq9S4cWO1adNGVapUUUhIiLy8vArczj333KPhw4dr/PjxCg8P18MPP6xHH33UaPNC9erVU0hIiF599VVVq1ZNn3zyyWX3wdvb28i86dOn68EHH5SPj49eeOEFvfrqq/rggw80duzYfLnk6+urM2fOFP7DAgCUCM69OPcCHB2FsJuAyWSSxWIp0jpBQUE6deqU3bSsrCydO3dOgYGBqlixojw8PPItc+rUqXyPJ9vYHmu+3DoFbdf2fWBgYKH6PnXqVD366KPy9fVVbGys2rZtK1dXV3Xo0CHfGMS2z8XJyalQbQMAbhzyi/wCAEdQUJ55eXlp0qRJ+uOPP/Trr7/q66+/lru7u/z9/Y2LeG3bttWvv/6q3377TevXr9fzzz+vw4cPq1atWpfc1hNPPKFNmzbp559/VkxMjEJCQmS1WlWzZk0lJCRo+fLldsMtms1m1a1bN1+GXcq+ffv0888/a+DAgdq7d68kqVGjRqpZs6Zq1qyprVu32i2fm5srs5nLDgBQ2nHuxbkX4Oj4H+lNIDAwUImJiUVaJyoqSidOnFB8fLwxLTY2VlLeiY7JZFKjRo3yvag5NjZWjRs3LrDNBg0ayMvLy2hHkpKTk7Vjxw7jpc5RUVHGC6Jt1q1bp9q1a8vPz++K/d62bZvi4uL02GOPSco7sbO1lZ2dnS/UbWPlXzgGMgCgdCC/yC8AcAQF5dno0aP1xRdfqFy5csbv8h9++EGtW7eWJG3atEl9+vRRVlaW/P395ebmpg0bNujs2bO6/fbbC9zOp59+qnHjxslsNiswMFBOTk764YcfVK1aNdWuXVunTp3S888/b5eB2dnZ2rFjh+rWrVuofZk0aZKeeOIJlS9f3i6rbG1dnFdnz5413tsCACi9OPfi3AtwdBTCbgJhYWGXHfO9IOHh4WrUqJGGDx+uv/76S+vXr9e4ceN03333GXdX9OvXT99++63mzZunffv26a233tLOnTuN4TckKTExUefPn5eUN75vnz59NHnyZK1evVq7du3S8OHDFRQUpE6dOkmSevbsqZSUFI0ePVp79+7V0qVLtWDBAg0aNKhQ/X7rrbf09NNPG49Lh4eH67///a/27dunJUuWqFGjRnbL79ixQ+XKlVODBg2K9PkAAK4/8ov8AgBHUFCeVa5cWdOmTdO6det06NAhjR8/Xjt27NDgwYMlSXXr1tXff/+t1157TYcPH9batWv13HPP6aGHHlL16tUl5b0j5fTp08bFu3r16mnx4sVavHixjh49qkWLFum9997T888/Lynv4mKrVq00fvx4xcXFac+ePRoxYoSSk5ONi4GXs3HjRv3999/697//LUmqWbOmrFarli1bpt9//10HDx5UaGio3Trbt29XeHj4NX1+AIDrj3Mvzr0Ah2eFw9u2bZu1QYMG1oSEhALnL1myxFq/fv1808+cOWN9+umnrREREdZmzZpZx40bZ83IyLBbZtmyZdZOnTpZQ0NDrT169LCuXbvWbv4dd9xhHTFihPF9Tk6O9a233rI2b97cGhERYR04cKD18OHDduv8+eef1gcffNAaEhJiveOOO6wff/xxofbzl19+sXbu3Nmak5NjTEtJSbE+9dRT1sjISOvjjz+e7zMYP368ddCgQYVqHwBwY5Ff5BcAOIKC8iw7O9v65ptvWlu2bGmNiIiwPvbYY9bt27fbrbdlyxZrr169rOHh4dZ27dpZZ8yYYZcVthy8MI+WLl1qvfPOO61hYWHW7t27W7/77ju7NpOTk63jxo2ztmzZ0hoWFmbt37+/dc+ePYXaj/vvv9/6zTff2E1buXKltW3bttaWLVtaly1bZjfvzJkz1uDgYOu2bdsK1T4AoORw7sW5F+DoTFar1VrSxThcf71791b79u01YMCAku5KqZGZmak2bdronXfeUYsWLUq6OwCAApBf+ZFfAFD23Ix5Nnv2bP3yyy/69NNPS7orAIBCuBmz6ko49wIcB0Mj3iSeffZZff7558rKyirprpQay5YtU4MGDQgyACjFyK/8yC8AKHtutjzLysrSwoUL9eyzz5Z0VwAAhXSzZVVhcO4FOA4KYTeJqKgotWvXTh9//HFJd6VUSE1N1YcffqgJEyaUdFcAAJdBftkjvwCgbLrZ8uyjjz5S27ZtFRUVVdJdAQAU0s2WVVfCuRfgWBgaEQAAAAAAAAAAAA6JJ8IAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDohAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOCQKYQAAAAAAAAAAAHBIFMIAAAAAAAAAAADgkCiEAQAAAAAAAAAAwCFRCAMAAAAAAAAAAIBDohAGAAAAAAAAAAAAh0QhDAAAAAAAAAAAAA6JQhgAAAAAAAAAAAAcEoUwAAAAAAAAAAAAOCQKYQAAAAAAAAAAAHBIFMIAAAAAAAAAAADgkCiEAbjuLBZLSXcBAHCTuZbsIbcAADeL6515ZCoAACgNKITBYXXu3FnBwcF66KGHCpw/cuRIBQcHq1WrVsrNzb3BvStdjhw5ouDgYLs/DRs2VNOmTdW3b1/9/PPPV9Wu1WrVl19+qeeff76YewwAZRsZVTQZGRmaNWuWunfvroiICIWFhenuu+/W22+/rZSUFLtlExMTNXbsWP33v/8t8naOHDmiYcOGKS4urri6bmfp0qUKDg5WaGjoZZeLjY018vj06dPXpS8AcCVkVeEVdD516623KjIyUl27dtWiRYsK1U5hc6Ko2rdvr+DgYH3wwQd2fb6emXcteQzg5kPmFF5BmRMcHKyQkBC1adNGo0ePVnJycon170ady1z4OWzZskWSNGPGDAUHB+vuu+++bttF2UUhDA6re/fukqQtW7bo2LFjdvNycnL0008/SZK6du0qJyenG96/0srX11cBAQHy8vJSUlKSNmzYoMGDB2vBggVFbmvSpEkaPXq0zpw5cx16CgBlFxlVNEOHDtU777yjPXv2yGw2y9nZWQcOHNAHH3ygRx99VNnZ2caytguORb0D/dy5c+rSpYtWrFghq9Va3LsAAGUOWXV1bOdT3t7eSktL0969ezV27Fh9+umnV1zX3d1dgYGBCgoKKtY++fv7KzAwUJ6enpJuTOZdbR4DuDmROVfH19dXgYGBCggIkJubm06ePKkvv/xSTz/9dEl37bpzdnZWYGCgAgMD5erqWtLdQRlAIQwOyxaiVqtV33//vd28devW6dy5c3bLIc+sWbP022+/acOGDfr999/Vvn17SdJbb72lQ4cOFamti+/SBwDkIaMKb9OmTfr9998lSe+99542b96szZs3680335Qkbdu2TStXrjSWv9rsyc7OVmZm5rV3GAAcBFl1dWznU7Gxsfr5559Vq1YtSdJHH310xXU7d+6smJgYu1wrDosWLVJMTIx69+4t6cZkHueCAIqCzLk6s2bNUkxMjH777TfFxcVp1KhRkqT169dr//79Jdy76ysoKEgxMTGKiYlRw4YNS7o7KAMohMFhVa9eXZGRkZKk7777zm7eihUrJEm1a9dWSEiIVq1apd69e6tRo0Zq1KiR+vfvr02bNtmtYxtOYv78+XrwwQfVqFEj4yLcsWPHNHToUEVGRqply5aaMWOG5s2bp+DgYL300ktGG/Hx8Ro2bJhatmypkJAQtWzZUi+88IJOnTplLNO3b18FBwfr448/1pw5c9SuXTuFhYXpscce08GDB+369OOPP6pbt24KDQ1Vjx49tGHDBt17770KDg5WbGyspLyTnHfffVd33XWXwsPD1axZMz3yyCPauHHjFT9Df39/vfXWW/Lw8FBOTo6+/PLLQu/LSy+9ZAwBsmHDBqNPl3pEesCAAXafl225li1bauvWrXrooYcUFham7t27a9OmTdq3b58effRRhYWFqUOHDnZ9A4DSjowqfEadPHnS+Nrf39/4+r777tOQIUP0yCOPyNvbW5IUHBysrKwsSXnDp9hu5pCkTz75RN26dVNERIQiIyN13333admyZZLyhtVo1aqVsewjjzyivn372u3z2LFjjflbtmwxsuzIkSOS8i74vfHGG+rYsaPCwsJ0++23a/Dgwdq1a5cuJycnR1OnTlWrVq0UHh6uIUOG2H3mAFBSyKprP5+qUqWKOnToYOyjZD+U07fffquOHTuqWbNmWrFixSWHRty9e7eGDRum5s2bKywsTD169NCSJUvslnnppZcUHBys8ePH65lnnlGjRo3073//2+6z/+CDDy6bebm5uZoxY4buvPNOhYaGqlGjRurVq5d++eUXu23t27dPgwYNUmRkpCIjI9WvXz/99ddfxvzL5TEAFITMufbMse23TUZGhvF1cnKyxo0bpxYtWig0NFT33nuvvv76a7t1Dx48qGeeeUatW7dWaGio2rVrp7FjxxpFSJt9+/bpqaeeUtOmTRUZGakePXpcchjcI0eOaODAgQoPD1e7du00f/58u3mXykNJ2rx5s/r27auwsDBFRUXpqaeesivuFTQ04oVWrlypu+++W6Ghobr//vuNz1i69PCNF1+bvHAbts8nMjJSLVq00Jtvvmk3TGdmZqYmTpyoFi1aKDIyUs8//7zWr1+v4OBgcrCUcC7pDgDXU/fu3fXHH39o27ZtOnTokGrUqKHc3FytWrXKmL9gwQK99tprkiQ3Nzfl5uZqzZo1io2N1bRp09SxY0e7NidPniyzOa+GHBISopSUFPXt29e4EGY2m/Wf//wn33AWWVlZ6tevn44ePSpXV1d5eXnpzJkz+uabb3Tu3DnNmTPHbvn58+fr6NGj8vDwUGZmptatW6cRI0YYxaXVq1dr2LBhslqtcnZ21v79+zVw4EC5ubnZtTN16lTNnTtXkuTj46O0tDTFxsZqy5YtWrZsmerWrXvZz7B8+fIKDQ011insvlSoUEEeHh5KS0uTi4uLfH195erqapwQFVZKSooeffRRmUwmZWZmas+ePRo6dKikvFC3WCw6cuSIxowZowYNGigkJKRI7QNASSGjCpdRkZGRcnFxUXZ2th544AFFRUWpVatWuv322zVs2DCZTCajvcDAQKNwVqFCBaNw9sUXX+jVV1+VJFWsWFFpaWnauXOnXnrpJdWuXVtBQUHy9/c3ToJ8fHzk4+NTpH/P0aNH64cffpDZbFbFihWVnJysn3/+WX/88Yd++OGHS7Y3YcIEff7555LyhsT65ZdftHbt2iJtGwCuF7Lq2s6nDhw4oB9//FFS3kXei40YMULlypVTRkaGIiIitGbNmnzLbNmyRY888ogyMzPl5OSkcuXKaceOHRo1apT27t2rESNG2C2/ePFi5ebmyt3dXbfccku+9pydnS+ZedOnT9d7770nKW+4rfPnz2vLli166qmntHLlSlWuXFmHDh3SQw89pOTkZLm5ucnZ2Vlr167Vpk2b9Omnnyo0NPSSeQwAl0PmXFvmJCcnG681qV69uoKDg419eeyxx7R9+3Y5OzvLy8tLu3bt0osvvqjz58+rT58+yszM1GOPPabjx4/LxcVF5cuX14kTJ7Ro0SIdOHBAH3/8saS8YlmvXr10/vx5OTk5yd3dXTt27FB0dLSys7PVs2dPuz4NHjxYWVlZys7O1vHjx/X666/rtttuU1RUlN1yF+fhH3/8oUceeUTZ2dny9PRUTk6OVq5cqY0bN2rZsmWqUqXKJT8HKa/YOWzYMLm5uSk7O1tbt27VgAED9Pnnn1/1ezgHDBig06dPy2KxKC0tTR9++KFq1qxpvNcuOjraKOJ5eHjo22+/vW7v4cTV4YkwOLTOnTvL2Tmv3mt7tDo2NlZnz56VJLVq1UqTJk2SJPXq1UtxcXHasGGD7rjjDuXk5Gjs2LH5hoyoWLGicZGqY8eOWrp0qY4cOSInJyfNmzdPmzZt0rx58/K9EPLw4cOqU6eOQkJC9Ntvv2n9+vXG3eV//PFHvr6fOXNGX3zxheLi4owhLLZs2aKkpCRJ0n/+8x9ZrVbddttt+v3337Vp0yZ169Yt350aMTExkqSxY8dq/fr1io2NVZcuXdShQ4dCv7urUqVKRp8Kuy8jR440HlmPjIxUTEyMcXdPUWRkZOi+++7Txo0bNWXKFEnS2bNnVa9ePa1du1YrVqyQs7OzrFYrAQOgTCGjCpdRlStX1iuvvCIXFxdZLBbFxsbq7bffVs+ePXXXXXfp22+/tWvPNj78hU8mnz59WrfeeqtGjhxpPJ1ctWpVo99BQUHG02GSNG3aNE2fPv0K/4L2bPvy3nvvad26dfrtt9/Upk0btWnTxu6ptoI+R0m6//77FRcXp99//101atQo0rYB4Hohq4p+PvXkk0+qTZs2atasme6++24dPnxYkvTEE0/kW7ZZs2aKjY1VTEyMAgMDC/w3ePnll5WZmanw8HCjn88++6wk6cMPP9S2bdvsls/OztbHH3+suLg4DR8+PF97l8u88+fPq169epo+fbrWrVunX3/9Ve7u7srOzja2M2PGDCUnJ6tr167auHGj4uLiNGTIEGVmZmratGnGZ1ZQHgPA5ZA5Rc+cXr16GU8sRUVF6eOPP1alSpU0c+ZM411qX3/9tbZv367atWsbQ/fOmzdPUl4G2G46P378uFxdXbVmzRqtW7dOixcvVuPGjVW7dm1juNsZM2bo/Pnzqlu3rmJiYhQXF2c8VVzQ7/p27dppw4YN+umnn1SxYkVJMt73dqGL83DSpEnKzs5W//79jX/nf/3rXzp37pzef//9fOtfLDMzU88884w2b96slStXKiAgQNnZ2Zo9e/YV172UKlWqaN26dYqJiVHlypUlSb/++qskadeuXUYR7Omnn9bmzZu1atUq3mdXylAIg0Pz9fVVy5YtJf3zaPUPP/wgSYqIiNDevXuVnZ0tV1dXjRw5Ui4uLvLw8NDo0aMlSQkJCdq8ebNdm+3atZOvr6+8vLxUrlw54/HrFi1a6Pbbb5ck3X777WrTpo3denXr1tWcOXO0cOFCHTx4UB999JHRl9TU1Hx9b9GihcLCwmQ2m9WpUydjempqqlJTU7Vz505JUv/+/eXj4yNnZ2dFR0fna+fWW2+VJL399tt69tlntXTpUj311FOaOnWqmjVrVqjP0Xa3ve2R36Luy7Xq1auXzGazXSGtV69e8vDwUNWqVY2TRsahB1CWkFGFz6h//etf+vHHH/X0008rLCzMOEGOj4/Xc889Z9xtfylDhw7VV199pc6dO+uHH37QtGnTdP78eUnFlx22fXnppZf00ksvafXq1Xr55Zc1adIkNWjQoMB1/vrrLyNbhw8fLmdnZ/n6+honkwBQ0siqop9PJSYm6uTJk0pJSVGFChXUtGlTvfvuu7rvvvvyLXvvvffK2dlZfn5++eZJeRdibf0cPny4fH19ZTabNXjwYONueNuTEjY1a9ZUkyZNZDabi/x089ixY/Xtt9+qYcOG+uabbzR9+nQjp2yf8bp16yRJv//+uzp27Ki2bdtq4cKFkvKGxM/JySnSNgHAhswpeub4+voqMDBQAQEBKl++vKS8otyrr75qFBDXr18vSTpx4oTuu+8+tWnTxhj6Lzk5WVu3blWNGjXk6emprKwsPfjgg5o4caKOHz+uWbNm6ZVXXpGXl5ddWw888IAqVaokk8mkZ599VuvWrTNu8LvQo48+KhcXFwUFBRlPqNmKgxe6MA8zMjKMEamWLVumdu3aqUOHDlq9erUkFWr0DE9PTw0cOFAmk0nVq1c3nlQraAjFwurTp488PT3l6+trPNFmOxZsx5WHh4cGDx4sk8mkatWqcV5XyjA0Ihxe9+7d9euvv2rXrl3au3ev3SPVtrsp/P395e7ubqxTtWpVmUwmWa3WfHdcXDysg+1CWkBAgN30ix/TtVgsevvtt/X5558rNTVVgYGBxt3oVqs1X78vPBm68FFpi8WilJQUY50Lt1uxYkVjOEKbcePGyd3dXcuXL9f3339v3FUTGhqqt99+WzVr1sz/oV0kMTHRrk9F3ZdLuXDZC8fVvZjtrhEXFxdjmu0pNUnG3YZF2TYAlAZkVOEyKj09XZ6ennrqqaf01FNPKSUlRb/++qtef/11nT59Wh9//LHuvPPOfP202b59u8aOHatt27bJxcVFt9122zVlR0EX+aZOnao33nhDq1ev1rJly4y77Vu2bKnJkyfL19c33zq2fx+z2WyXaxcPzQIAJYmsKtr51KJFixQREZGvPwW50pCBF352Fw6taDKZVLVqVR07dkwJCQlFavNy1qxZowkTJmj//v1yd3dXaGionJ2dlZWVJYvFIknG0wtJSUn5LmZmZmbq7NmzDIUI4KqROUXLnFmzZtllztatW/XEE09ow4YNmjJlil1BLD09Xenp6fn6fvLkSTVp0kRz587V5MmTtWnTJn300Uf66KOP5OLiol69emnMmDEymUxGBlx4o4WtSFaQCz8X2zU9W55c6MJ/p6SkJOMaoa3vFzpx4sQlt2fj4+Nj9zSW7fzK9u9/ocJem7xwX2zHn21dW7u2IqeN7ckxlA48EQaH17FjR3l4eEiSXnnlFSUkJMjZ2VmdO3c2LjqdPn3a7iWSR44cMX6ZXRyaF4/fa2vj4l/Etpch23zxxReaM2eOPD099d133ykmJkZDhgy5ZL8v/IV94ftPJBl3Al683bNnz9oFqJQXSKNGjdLatWv16aef6vnnn1fNmjW1detWTZgw4ZLbt8nMzNTWrVslyQjXwu7Lxf2WZPRbkt37wgoKo4LWudw0AChryKgrZ9SoUaMUERFhN6SUl5eXunbtagzBe+FFwIv7k5ubqyFDhmjbtm0aPHiw4uLitGjRIlWrVs1uuYIy68LpF2ZWQU+RBQYG6tVXXzWGGnnqqadUqVIlrVmz5pLDLNpu9LBYLHYv3b7UUIoAUBLIqms7n7qciz+Li114k4RtiEUp78Lb0aNHJV358y1IQZmXlJSkoUOHav/+/Xr55Ze1ceNGffzxx/L09LRbzra9sWPHavfu3dq9e7f++usv7dixQ7t37zbmXypXAeByyJxry5zQ0FDjyTHb03G2z+Suu+4yfm/v2LFDf/75p3bv3q2uXbtKynutyfvvv6+1a9dq+vTp6tu3r6xWqz755BOjIFehQgVJ9ucriYmJ+vLLL/Xnn3/mKyQV9trdhf9Ofn5+xuf5/vvvG33esmWLdu3aZVyjvJwzZ87YDZN54XsxL+5XYa9NXljgupjtuEpMTFR2drYx/fjx41fsK24criTD4bm7u6tDhw6S8sYWlvIee/bz81Pr1q3l5OSkrKwsvfbaa8rOzlZaWppef/11SXlh0ahRI7v2Lg60Jk2aSMp7PNg2TERMTIwxrq/N7t27JeXdAREYGKj09HQtXrzYmF/QHRGX4uLiovDwcEl5L+Q8d+6csrOz9dZbb9ktl5aWpjvvvFMRERFasGCBGjdurMcff1wtWrSQpHx3D17s/PnzGj9+vPESzF69ehVpX2whYXtUOCcnR97e3sZytnd62U6aAOBmQ0ZdOaNs32/ZskUffPCB8TTW33//bYzDbhtCRPrnJDQtLU05OTlKSkoyTjgrVaokNzc3xcXFaceOHXb7duHJq21d6Z+TvT///FPZ2dmyWCz66quv7Pbl2LFjatWqlRo3bqyVK1fq9ttv1+DBg40XMduerL5YeHi4cWfkjBkzlJ2drYSEBOMl1wBQGpBVV38+dSVXKhZVr15d9erVk5T35HFiYqKsVqvee+89HTt2TCaT6bJPRF9KQZkXHx9vPCkQGBgoFxcXff/998bFQ9vnaxsO6vPPP9eZM2eUm5url156SRERERo2bFi+bVyYqQBwJWTOtWXO0aNHjQKY7TUitt/bv/76q/766y9J0sKFCxUZGanOnTvr/Pnz+v7779WkSRO1bdtWZ8+e1V133aWnnnrKKBzZzmdsfVm8eLFOnjwpq9Wq2bNna/To0Ro6dGihP5OLXfjv5OzsbLwa5cMPP1RKSooyMzM1YMAANWrUSK+99toV28vIyNA777yjnJwcHT9+XF9++aWkf/79i/vaZKNGjWQymZSenq73339fVqtVhw4d0kcffXRV7eH6oBCGm4LtjvGLvw8ICNAzzzwjKW8IiyZNmqhp06b66aef5OLiookTJxpDJ13KPffco2rVqsliseixxx5T48aNNXDgQOPCme2XuS2Mjx49qpYtW6pZs2bGBTyp4DFyL2fIkCEymUzavn27WrVqpSZNmmj16tXGCYfJZJKHh4fuvPNOWa1WTZkyRU2aNFGTJk2MMdzvv//+fO3aXu7cqlUrNW/eXEuWLJEk4y6UouyLbfiO7du3q3Hjxvrll19Ur14941HwUaNGqWvXrnrwwQft7nYEgJsJGXX5jOrWrZsxZv/bb7+tiIgINW3aVN26ddPRo0fl7e1td9Jly5433njDeCdArVq1JEkTJkxQ06ZN1bt3b+POv+TkZEl5BS/bCdEzzzyjhx56SNI/J3v79+9X27Ztdccdd+QbW75KlSrGCWZ0dLSaNm2qJk2a6Oeff5bJZNK//vWvAj+nihUrqn///pLy7jpt0qSJ2rRpk++l2QBQ0siqwp9PFbexY8fKxcVFf/75p1q1aqVGjRrpnXfekSQNGjToku+hvJyCMq9u3brGk8pDhgxRVFSUnn32WWMdW14OHjxYHh4e+vvvv9WmTRs1bdpU3333nXJycnTPPfcYy1+cxwBQWGRO0a/htWnTRi1atFCHDh108uRJmUwmPfroo8Y+16tXTxkZGXrggQfUtGlTvfLKK7JYLGrXrp3Kly+v1q1by8/PTykpKeratatatGihli1b6vTp06pYsaJRnBw6dKg8PT11+PBhtWvXTlFRUfrwww8lSU8//bTdjRbX4plnnpGzs7NiY2PVvHlzNW/eXJs2bZLFYlG3bt2uuH5QUJDmz5+vJk2aqEOHDjpx4oTc3NyMUUaK+9pknTp11KVLF0l5Nzg2atRId955p92Tiyh5FMJwU2jZsqUxlqu7u7s6duxozBs0aJBmzJihqKgomc1mubi4qFWrVvr444/Vtm3bK7bt5uam+fPnq23btnJzc5Onp6dGjhxpvBzT9nhv9+7d9cwzzygoKEgmk0m1atXSG2+8YfTLdidKYbVp00ZTpkxRnTp1ZDKZ1KBBA82bN894vNe23RdeeEHjx49Xw4YNZbVa5eTkpNDQUE2aNEkPP/xwvnZtL3dOSEiQh4eHWrRooffee08DBgwwlinsvtx7771q3bq13N3d5e7uLmdnZzk5OWnWrFkKDw+Xk5OTcnJyNG7cOHXu3LlI+w8AjoKMunxGmUwmzZgxQ88++6yCg4Pl5OSk9PR0Va1aVf/617+0ZMkS1alTx9j2Cy+8oJo1a8pkMsnHx0c5OTl699131axZM3l4eMjV1VVdunTRk08+Kemfly2bzWaNGjXKGMfddjLcq1cvDRw4UL6+vkpPT1dERITmzp2bb5/feustPf/886pXr56ysrLk7u6uqKgoffDBB5e9ADh8+HANHz5cAQEBMplMatu2rd5///0ifd4AcL2RVYU/nypuzZo10+LFi3XXXXfJ29tbOTk5atiwod58800NHz78qtosKPM8PT01c+ZMhYaGqly5cvLw8FCvXr2MUUFseVmnTh19+umnateunTw8PGSxWBQeHq6ZM2faHRcF5TEAFAaZU/RreCdPntS5c+fk7u6usLAwTZ8+3fg8XF1d9dFHH+nBBx+Uv7+/0tLSVKtWLb344ot68cUXJeUNyfjJJ5/o4YcfVpUqVZSSkqJKlSrp7rvv1meffWbkRZ06dbRo0SLdcccd8vDwUG5urm677TZNmjTJyIvi0LRpU82ZM0dNmzaVi4uLzGazmjVrpnnz5iksLOyK64eHh2vGjBmqVq2anJycFB4ergULFhhPWV+Pa5MTJ05U7969VaFCBf0/e3ceF1XZ/3/8PQs7oogCZu7dSibihmIumGWlZmW0h9/UNPtZWlZopndp2apl6p3dpaTebWBhVrbdZrspikuaiqYproiigrINMPP7g5vJEQTEUYbx9Xw8eMScc51rrhmO593M55zrGI1G3XnnnXr88cclyeGedqg5Blt17hAOwG7VqlVasWKFAgMDNWDAALVo0UI5OTkaMmSItmzZori4OI0YMcLpzzt37lz7DTvvu+8+mUwmrV+/Xvfcc499XPXr13f68wIAag8yCgDg6sgqAMDFQubgQkhPT9fbb7+tevXqKTIyUldffbWsVquee+45ffTRR4qOjtY777xT08O85J39Lm8AqqRu3br68MMPVVxcrLlz56pevXrKyspSYWGhfHx8LtiVTtnZ2VqwYIGkkvnivby8dPz4cUlSdHQ0AQoAIKMAAC6PrAIAXCxkDi6E+vXra/ny5fb7agYFBSkvL0+5ubmSpMGDB9fk8PA/XBEGOMF3332n+fPn688//1Rubq78/f3Vvn17PfLII/YbPDqbxWLRG2+8oRUrVujAgQOy2WwKDg5W37599eijjzrc+BEAcOkiowAAro6sAgBcLGQOLoQ///xTr7/+ujZu3KgTJ07I09NTrVq10pAhQyiEuQgKYQAAAAAAAAAAAHBLxpoeAAAAAAAAAAAAAHAhUAgDAAAAAAAAAACAW6IQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABuyVzTA3AVNptNVqutpocBADiN0WiQwWCo6WG4LLILAFwT+VUx8gsAXA/ZVTGyCwBcU1Xzi0LY/1itNh07llPTwwAAnKZ+fT+ZTHwYOxuyCwBcE/lVMfILAFwP2VUxsgsAXFNV84upEQEAAAAAAAAAAOCWzqsQNnfuXA0ZMsRh2bZt2xQbG6sOHTqoT58+io+Pd1hvtVo1e/Zs9erVSxERERo+fLjS0tKc3gcAAAAAAAAAAAAubdUuhC1cuFCzZ892WHb8+HENGzZMzZs3V1JSksaMGaNZs2YpKSnJ3mbu3LlKSEjQtGnTlJiYKIPBoJEjR8pisTitDwAAAAAAAAAAAOCcC2GHDx/WiBEjNGvWLLVo0cJh3eLFi+Xp6akpU6aoVatWiomJ0dChQzVv3jxJksVi0bvvvqsxY8YoOjpaYWFhmjlzpg4fPqzly5c7rQ8AAAAAAAAAAADgnAthW7ZsUd26dfX5558rIiLCYV1KSooiIyNlNpvty6KiorR7925lZmYqNTVVOTk5ioqKsq8PCAhQ27ZttXbtWqf1AQAAAAAAAAAAAJgrb+Kob9++6tu3b7nr0tPT1bp1a4dlwcHBkqSDBw8qPT1dktSoUaMybQ4dOuS0PqrLbD6vW6YBAHDRkV0AgNqI/AIA1DZkFwDUXudcCKtIfn6+PD09HZZ5eXlJkgoKCpSXlydJ5bbJyspyWh/VYTQaFBjoV+3tAQC42MguAEBtRH4BAGobsgsAajenFsK8vb1lsVgclhUUFEiSfH195e3tLankPl+lv5e28fHxcVof1XJyv6wfRFXerioMzukGlyBbTQ8AcC2G+36TIaBZTQ/DdZFdcAVkF1AG+VUJ8guugPwCHJBdlXBmdgEAnKaq+eXUQlhoaKgyMjIclpU+DgkJUVFRkX1Z06ZNHdqEhYU5rY/qMFgLZcg9WO3tAQAXgLW4pkfg0sguAHBR5FeFyC8AcEFkV4XILgBwUVXML6cWwiIjI5WQkKDi4mKZTCZJ0qpVq9SiRQsFBQWpTp068vf3V3Jysr2IlZ2dra1btyo2NtZpfVSHzeghq+9l5/PyZVDJpdKnci0qtlrPqy9cekxGo/x9PWW12jg5Efgfo9HEid4VILtQ08guoHzkV8XIL9Q08gsoi+yqmDOyCwDgfFXNL6cWwmJiYjR//nxNmjRJI0aM0KZNm7Ro0SJNnTpVUsl9vWJjYzVjxgzVr19fjRs31vTp0xUaGqp+/fo5rY/qsPo11rHbU8/r9ZvNRgUG+unFWV9pz6Hj59UXLj3NGwfqxVEDlHU8R0VFfJgHJKm+n59MNT0IF0Z2oaaRXUD5yK+KkV+oaeQXUBbZVTFnZBcAwPmqml9OLYQFBQVp/vz5euGFFzR48GA1bNhQ48eP1+DBg+1txo4dq6KiIk2ePFn5+fmKjIxUfHy8PD09ndYHAAAAAAAAAAAAcF6FsJdffrnMsvbt2ysxMfGs25hMJsXFxSkuLu6sbZzRBwAAAAAAAAAAAC5txpoeAAAAAAAAAAAAAHAhUAgDAAAAAAAAAACAW3LqPcIAAAAAAAAAAGUZjQYZjYaaHgZqKavVJqvVVtPDAGolCmEAAAAAAAAAcAEZjQbVq+crk4kJulA9xcVWnTiRSzEMqAYKYQAAAAAAAABwARmNBplMRr350UodyMiq6eGglmkcXFcP39NDRqOBQhhQDRTCAAAAAAAAAOAiOJCRpT0Hjtf0MADgksK1uAAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcEoUwAAAAAAAAAAAAuCUKYQAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADckrmmBwAAAAAAAAAAAGoPo9Ego9FQ08NALWa12mS12i7Kc1EIAwAAAAAAAAAAVWI0GhQY6COj0VTTQ0EtZrUW6/jxvItSDKMQBgAAAAAAAAAAqqTkajCTdi+bp7zMQzU9HNRCPkGN1OKmkTIaDRTCAAAAAAAAAACA68nLPKS8w3trehhApYw1PQAAAAAAAAAAAADgQqAQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABuyemFsMLCQs2cOVN9+vRRx44dde+992r9+vX29du2bVNsbKw6dOigPn36KD4+3mF7q9Wq2bNnq1evXoqIiNDw4cOVlpbm0KayPgAAAAAAAAAAAACnF8LeeustJSUladq0aVq6dKlatmypkSNH6vDhwzp+/LiGDRum5s2bKykpSWPGjNGsWbOUlJRk337u3LlKSEjQtGnTlJiYKIPBoJEjR8pisUhSlfoAAAAAAAAAAAAAzM7ucMWKFbrpppvUs2dPSdJTTz2ljz/+WBs3btSePXvk6empKVOmyGw2q1WrVkpLS9O8efMUExMji8Wid999V3FxcYqOjpYkzZw5U7169dLy5cs1cOBALV68uMI+AAAAAAAAAAAAAOkCXBFWr149/fDDD9q/f7+Ki4uVmJgoT09PXXnllUpJSVFkZKTM5r/rb1FRUdq9e7cyMzOVmpqqnJwcRUVF2dcHBASobdu2Wrt2rSRV2gcAAAAAAAAAAAAgXYArwiZNmqRx48bp2muvlclkktFo1KxZs9S0aVOlp6erdevWDu2Dg4MlSQcPHlR6erokqVGjRmXaHDp0SJIq7SMoKKjaYzebz68uaDI5va6ISxD7EYBzQXbBFbAfAThX5BdcAfsRgHNBdsEVuMp+5CrjQO13sfYlpxfCdu3apYCAAL355psKCQnRxx9/rAkTJuj9999Xfn6+PD09Hdp7eXlJkgoKCpSXlydJ5bbJysqSpEr7qC6j0aDAQL9qbw84S0CAT00PAUAtQXbBVZBdAM4F+QVXQX4BqCqyC66C7IK7uVj7tFMLYQcOHFBcXJwWLlyoLl26SJLCw8O1c+dOzZkzR97e3rJYLA7blBavfH195e3tLUmyWCz230vb+PiUvCGV9VFdVqtN2dm51d5eKqlecjDC+crOzlNxsbWmhwG4hIAAH84yqgDZBVdBdgGOyK+KkV9wFeQX8Deyq2JkF1yFq2QX+zOc5Xz36arml1MLYZs2bVJhYaHCw8MdlkdEROjnn3/WZZddpoyMDId1pY9DQkJUVFRkX9a0aVOHNmFhYZKk0NDQCvs4H0VFNX8QAYqLreyLAKqM4wVcAdkF4FxxzIArIL8AnAuOF3AFZBfczcXap516qkfpvb22b9/usHzHjh1q1qyZIiMjtW7dOhUXF9vXrVq1Si1atFBQUJDCwsLk7++v5ORk+/rs7Gxt3brVfoVZZX0AAAAAAAAAAAAAkpMLYe3bt1eXLl00YcIErV69Wnv27NEbb7yhVatW6cEHH1RMTIxOnTqlSZMmaefOnVqyZIkWLVqkUaNGSSq5N1hsbKxmzJihFStWKDU1VePGjVNoaKj69esnSZX2AQAAAAAAAAAAAEhOnhrRaDRq7ty5euONNzRx4kRlZWWpdevWWrhwoTp06CBJmj9/vl544QUNHjxYDRs21Pjx4zV48GB7H2PHjlVRUZEmT56s/Px8RUZGKj4+Xp6enpKkoKCgSvsAAAAAAAAAAAAAnFoIk6S6devq2Wef1bPPPlvu+vbt2ysxMfGs25tMJsXFxSkuLu6sbSrrAwAAAAAAAAAAAHDq1IgAAAAAAAAAAACAq6AQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABuiUIYAAAAAAAAAAAA3BKFMAAAAAAAAAAAALglCmEAAAAAAAAAAABwSxTCAAAAAAAAAAAA4JYohAEAAAAAAAAAAMAtUQgDAAAAAAAAAACAW6IQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABuiUIYAAAAAAAAAAAA3BKFMAAAAAAAAAAAALglCmEAAAAAAAAAAABwSxTCAAAAAAAAAAAA4JYohAEAAAAAAAAAAMAtUQgDAAAAAAAAAACAW6IQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABuiUIYAAAAAAAAAAAA3BKFMAAAAAAAAAAAALglCmEAAAAAAAAAAABwSxTCAAAAAAAAAAAA4JYohAEAAAAAAAAAAMAtUQgDAAAAAAAAAACAW6IQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABu6YIUwpYuXaoBAwYoPDxcAwcO1Ndff21ft23bNsXGxqpDhw7q06eP4uPjHba1Wq2aPXu2evXqpYiICA0fPlxpaWkObSrrAwAAAAAAAAAAAHB6Ieyzzz7T008/rbvuukvLli3TgAED9Pjjj2vDhg06fvy4hg0bpubNmyspKUljxozRrFmzlJSUZN9+7ty5SkhI0LRp05SYmCiDwaCRI0fKYrFIUpX6AAAAAAAAAAAAAMzO7Mxms2nWrFm6//77df/990uSHn74Ya1fv15r1qzRmjVr5OnpqSlTpshsNqtVq1ZKS0vTvHnzFBMTI4vFonfffVdxcXGKjo6WJM2cOVO9evXS8uXLNXDgQC1evLjCPgAAAAAAAAAAAADJyVeE/fXXXzpw4IAGDRrksDw+Pl6jRo1SSkqKIiMjZTb/XX+LiorS7t27lZmZqdTUVOXk5CgqKsq+PiAgQG3bttXatWslqdI+AAAAAAAAAAAAAMnJhbA9e/ZIknJzc/XAAw+oe/fuuuOOO/T9999LktLT0xUaGuqwTXBwsCTp4MGDSk9PlyQ1atSoTJtDhw5VqQ8AAAAAAAAAAABAcvLUiKdOnZIkTZgwQY888oiefPJJffvttxo9erQWLFig/Px8eXp6Omzj5eUlSSooKFBeXp4kldsmKytLkirt43yYzedXFzSZnH7LNVyC2I8AnAuyC66A/QjAuSK/4ArYjwCcC7ILrsBV9iNXGQdqv4u1Lzm1EObh4SFJeuCBBzR48GBJ0pVXXqmtW7dqwYIF8vb2lsVicdimtHjl6+srb29vSZLFYrH/XtrGx8dHkirto7qMRoMCA/2qvT3gLAEBPjU9BAC1BNkFV0F2ATgX5BdcBfkFoKrILrgKsgvu5mLt004thJVOWdi6dWuH5VdccYV+/PFHNW7cWBkZGQ7rSh+HhISoqKjIvqxp06YObcLCwuzPUVEf1WW12pSdnVvt7aWS6iUHI5yv7Ow8FRdba3oYgEsICPDhLKMKkF1wFWQX4Ij8qhj5BVdBfgF/I7sqRnbBVbhKdrE/w1nOd5+uan45tRDWtm1b+fn56ffff1eXLl3sy3fs2KGmTZuqU6dOSkhIUHFxsUwmkyRp1apVatGihYKCglSnTh35+/srOTnZXgjLzs7W1q1bFRsbK0mKjIyssI/zUVRU8wcRoLjYyr4IoMo4XsAVkF0AzhXHDLgC8gvAueB4AVdAdsHdXKx92qmnenh7e2vEiBF68803tWzZMu3du1dvvfWWVq5cqWHDhikmJkanTp3SpEmTtHPnTi1ZskSLFi3SqFGjJJXcGyw2NlYzZszQihUrlJqaqnHjxik0NFT9+vWTpEr7AAAAAAAAAAAAACQnXxEmSaNHj5aPj49mzpypw4cPq1WrVpozZ466desmSZo/f75eeOEFDR48WA0bNtT48ePt9xOTpLFjx6qoqEiTJ09Wfn6+IiMjFR8fL09PT0lSUFBQpX0AAAAAAAAAAAAATi+ESdKwYcM0bNiwcte1b99eiYmJZ93WZDIpLi5OcXFxZ21TWR8AAAAAAAAAAAAAd8EEAAAAAAAAAACAW6IQBgAAAAAAAAAAALdEIQwAAAAAAAAAAABuiUIYAAAAAAAAAAAA3BKFMAAAAAAAAAAAALglCmEAAAAAAAAAAABwSxTCAAAAAAAAAAAA4JYohAEAAAAAAAAAAMAtUQgDAAAAAAAAAACAWzLX9ABQO2Vl7NTBbT8q/+QRmT19Fdyyq0Ku6C5JOrxrtY7sXitLXrY8vPwV1DRCjdpEy2AwqLiwQAe2rtCJQ6kqKspXnaBmahLeX97+9SVJhfmntH/Lf5V9ZLesxYXyrdtIl191nfwCG9fkywUAuAGyCwBQG5FfAAAAwPnhijCcs7zsDO1KTlRhwSmFtIqSh7e/9m9Zrozda5WVvkP7//ivzJ6+CmnVXR7e/jq0/Wcd27dJkrR305c6sidF/g2aq2Gzzjp5NE1//vaerMWFkqS/1n6sY/v/UEBwKzVo2lE5x/bpz1UfqLAgpyZfMgCgliO7AAC1EfkFAAAAnD8KYThn2Uf+ks1arNAreuiyK6/RP7rfJ0k68tda5Z/KlCT5BzVTYOO28g9qKkkymjwkSSfS/5TZ01ctu9ymJuE3qGHzzrLkZelE+g4VFxbIZrMqIPgKteh0q5qE36C6oa1VXJivvKz0mnmxAAC3QHYBAGoj8gsAAAA4f0yNiHPm6VNXknTiUKr8g5roVOY+SVL+qaMKbNxWR9LW6/DO33R452+SpOBW3RTYuK192/yTR3Rs/2Z5+QfpVOZeSVJe9mHVb3yVwno/YH+e4sIC5Zw4KEnyrtPgor0+AID7IbsAALUR+QUAAACcPwphOGf1GoUpsPFVOn5gi7b9+I48ferKaPaStahANptN3n71ZTR5KLhFVx3du14Zu5LlX7+pAi+7Uk3b99eutYu1e92nkiSfgGBJkrWo0OE5iiy52rk6QYV52WrQvLP9AyAAANVBdgEAaiPyCwBQG1V0f8uDqT/p0PafHNrXvzxcLToPtj8uLizQlh/eUrElTx1vmljuc+zZ8Lky925Us443q0HTDhfstQBwDxTCcM4MBoNadolRXuteKsw/Kb/Ay7V5+WzJYNDhnauUdfhP/aP7fQoIbiXfuiHa9tM8ZfyVrMDLrlSdBs0Uft0Y5Rw/KA9vf508ukf7Nn8jk4eXvf+CnGP6c9VHKsjJVP3Lw9U0vH8NvloAgDsguwAAtRH5BQCobUrvb2n28lNIqyhlH/lL+7csl8FkVnCLSOX+7wrky67sK8P/tvH+38kapdvvXr9UhXnZ9ul+z3TswBZl7t14gV8JAHdCIQznzJKbpUM7fpF3nYYKadVNBbknVFyYJ5+6oSrIOSZJKi4q+N9/LZIko7FkVzuyZ51OHt2jJu1ukIe3vw7vXCVJ8q3bSJKUfypT239dpKKCUwr9R09dduU1MhgMZw4BAIBzQnYBAGoj8gsAUNucfn/L4JaRCrmiuzZ+9aqO/LX2f4WwQ/L0DVTDFl1kkGTy8LZvm7lvk/as/0ze/kFn7b8g94T2blwmg9Esm7XoIrwiAO6AQhjOmdnLTycOpcq6f7MK808q6/BOSVJIy24qLipQdsYu7dv8rXJPpOv4wW2SSi5xliRrkUXHD2xRUUGuvP2DlLlvk7z8gxQQcoVsNqt2rVmsooJT8vKrL5PZU4f/XCmpZEoQ5qoHAFQX2QUAqI3ILwBAbVPR/S0Lck+osOCUDEaTfv9quiSb6jRsoRadbpWHdx0ZTR66/Krr1LBFpDYse7FM3zarVbtTlsjk6aOgRm2UsSv5Yr40ALUYhTCcM6PJrFZd79Tezd8o469kefrUVbMONymoacT/Whh0ZPdaHd61Wp4+AWoSfqN9XXDLkrMYj+3/QzknDqheozA1Cb9BRqNJ2Rl/Kf/kEUklU3Qc2Pa9/Tm9/OvzYQwAUG1kFwCgNiK/AAC1TUX3tyzMLzkBw8svUIGXXaVTmWnK3Pe79mz4XP/ofp8CL7uywr4Pbv9ROScOqE2P+5V95K+L9IoAuAMKYagW/6CmatvnwXLXBbeMVHDLyHLXGYxGNW3fX03bl517PiC4pTrf8oxTxwkAQCmyCwBQG5FfAIDapKL7W/rVu0ztrnvE3jaoaYROpG9X9pHdslqLZTSaztrvyaNpSt+xUkFNI2T28leRJV+SVFSQo8KCHHl4+V3w1wag9qIQBgAAAAAAAAA4bxXd3/JkZppOHEpVvdDWCghuJVtxkazWIhmNJhkMxgr7PXl0tySbMvduVObejfblB7auUP7Jo2re6ZYL+8IA1GoUwgAAAAAAAAAA562i+1saTWYd2ZOi4we2qEGzjjp1bJ9sxUUKvuJqGQyGCvsNvOwq+QQE2x8fP7BVxw9uVcMWkQpqElHBlgBAIQwAAAAAAAAA4ASV3d+yVeSdOrj9Jx3elSyzp49CW/fUZWF9Ku3XJ6ChfAIa2h/nZWdIknzrNZJf4GUX5LUAcB8UwgAAAAAAAAAATlHR/S3rNWqjeo3aVNpHZfeyvCysT5UKaAAgUQgDAAAAAAAAAAAo16b9x5W4bo8OnsiVl9mk9o0D9X/dW8rfy0NJ69OUtGGvQ/serRrq4T5hKrba9Mn6NK3claHsvEIF1/HWzRFN1POKkmk+D2Xl6v3k3dp+OEtGg0FdmzdQbLeW8vYw1cTLdGsUwgAAAAAAAAAAAM6QnV+o17/bqgBvD13f9jJlnMzXr7syZDIaNKp3a/119JQMku7s0lyld7q7PNBXkpS0IU2f/b5PV4bWVc8rgvXjjsOa+9N21fXx0JWhdfXyN3/oRJ5F1195mTJzCvT99nTlWIr0aN8ra+z1uisKYQAAAAAAAAAAAGfIPFUgS7FVl9XzVbcWDZSelafk3UflaTZKknZnnlLDOt66LqyRDAbJ19PssG2juj4ad92V8vfyUIC3h/6z+i9tPZSlOl4eOnKqQF2bN9B93VpKktKXrtea3Ud1Iteier6eNfJ63RWFMAAAAAAAAAAAgDM0D/JTl2ZBSknL1KYDxyVJ/wiuo/u6ttSxnAKdyLXIw2TQgx+sks0mtbusnv5fdBsF+nrq/0U73g9v66EsSVLjer4K9POU0SDtzMhWanqWCoutyjiZL5ukfcdzKIQ5mbGmBwAAAAAAAAAAAOCKGtfzVYC3h4ZffYV6/yNEf2acVELKbmXmFCgkwFtXhtbTyJ7/UO9/BOuPgyf0zi87HLa3Wm16d+VOpaRlqll9P0W1aKC6Pp66r2tLZeUX6rkvN+m15VtVx9tDkpRfWFwTL9OtXdBC2O7du9WxY0ctWbLEvmzbtm2KjY1Vhw4d1KdPH8XHxztsY7VaNXv2bPXq1UsREREaPny40tLSHNpU1gcAAAAAAAAAAMD5SEnL1Ge/71OfNqG67spGerDnP+TradbyrYfUIshfM++I1FM3tlOf1qF6sFdr+Xqa9ceBEyoqtkqSCoqK9fqKrfou9ZCa1ffThBvayWwqKcv0b9dYb9wZqQk3tNPrd3RR0/p+khynV4RzXLBCWGFhoZ588knl5ubalx0/flzDhg1T8+bNlZSUpDFjxmjWrFlKSkqyt5k7d64SEhI0bdo0JSYmymAwaOTIkbJYLFXuAwAAAAAAAAAA4HwcysqTJOVZiiRJRVabiq1WmYwGpR7O0sJVO7X5f1MmFhZbVVRsldlkkMloUEFRsV7+5g+t33tM7RsH6pmB7R2mPHxv9V9aunGvIi4PVKCvp9Iyc2QyGOwFMTjPBSstzpkzR35+jn+wxYsXy9PTU1OmTJHZbFarVq2UlpamefPmKSYmRhaLRe+++67i4uIUHR0tSZo5c6Z69eql5cuXa+DAgZX2AQAAAAAAAAAAcL7aXx6oxev26Ift6TIbDdp3PFcFRVb1/keIPE0mfbftkFb9dUTXtGmkHYezZCm2alD7y2UwGPR+8l/afjhbniajWocEaPm2Q5KkFg38Fd44UOnZedqw75isVulEnkUZJ/MV/Y8Q+xSJcJ4LckXY2rVrlZiYqFdeecVheUpKiiIjI2U2/11/i4qK0u7du5WZmanU1FTl5OQoKirKvj4gIEBt27bV2rVrq9QHAAAAAAAAAADA+Woe5K8JN7RTy4Z19P32dB04kavr2zbS0O6t1DokQI9d21ZBfl76+o8DOpydr1sjmuiuzs1VUFSsn3YcliRZiq36ZH2aElL2KCFlj1LSSuoYI3pcoYjLA/XbXxn66+hJDWzXWMN7XFGTL9dtOf2KsOzsbI0fP16TJ09Wo0aNHNalp6erdevWDsuCg4MlSQcPHlR6erokldkuODhYhw4dqlIfQUFBznsxAAAAAAAAAADgkhXeOFDhjQPLXdelWZC6NCtbk/AymvSfYT0r7DfQz0sTbmjnlDGiYk4vhE2ZMkUdOnTQoEGDyqzLz8+Xp6enwzIvLy9JUkFBgfLySubbLK9NVlZWlfo4H2bz+V0gZzJdsFuu4RLCfgTgXJBdcAXsRwDOFfkFV8B+BOBckF1wBa6yH7nKOFD7Xax9yamFsKVLlyolJUVffPFFueu9vb1lsVgclpUWr3x9feXt7S1Jslgs9t9L2/j4+FSpj+oyGg0KDOQmdKh5AQE+NT0EALUE2QVXQXYBOBfkF1wF+QWgqsguuAqyC+7mYu3TTi2EJSUlKTMzU3369HFY/uyzzyo+Pl6XXXaZMjIyHNaVPg4JCVFRUZF9WdOmTR3ahIWFSZJCQ0Mr7KO6rFabsrNzq729VFK95GCE85WdnafiYmtNDwNwCQEBPpxlVAGyC66C7AIckV8VI7/gKsgv4G9kV8XILrgKV8ku9mc4y/nu01XNL6cWwmbMmKH8/HyHZddff73Gjh2rAQMG6Msvv1RCQoKKi4tlMpkkSatWrVKLFi0UFBSkOnXqyN/fX8nJyfZCWHZ2trZu3arY2FhJUmRkZIV9nI+iopo/iADFxVb2RQBVxvECroDsAnCuOGbAFZBfAM4Fxwu4ArIL7uZi7dNOPdUjJCREzZo1c/iRpKCgIDVu3FgxMTE6deqUJk2apJ07d2rJkiVatGiRRo0aJank3mCxsbGaMWOGVqxYodTUVI0bN06hoaHq16+fJFXaBwAAAAAAAAAAACA5+YqwygQFBWn+/Pl64YUXNHjwYDVs2FDjx4/X4MGD7W3Gjh2roqIiTZ48Wfn5+YqMjFR8fLw8PT2r3AcAAAAAAAAAAABwwQth27dvd3jcvn17JSYmnrW9yWRSXFyc4uLiztqmsj4AAAAAAAAAAAAA7oIJAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcEoUwAAAAAAAAAAAAuCUKYQAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcEoUwAAAAAAAAAAAAuCUKYQAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcEoUwAAAAAAAAAAAAuCUKYQAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcEoUwAAAAAAAAAAAAuCWnF8JOnDihZ555Rr1791anTp10zz33KCUlxb5+27Ztio2NVYcOHdSnTx/Fx8c7bG+1WjV79mz16tVLERERGj58uNLS0hzaVNYHAAAAAAAAAAAA4PRC2OOPP67ff/9dr7/+uj755BNdddVVeuCBB7Rr1y4dP35cw4YNU/PmzZWUlKQxY8Zo1qxZSkpKsm8/d+5cJSQkaNq0aUpMTJTBYNDIkSNlsVgkqUp9AAAAAAAAAAAAAGZndpaWlqaVK1fqo48+UqdOnSRJkyZN0s8//6xly5bJ29tbnp6emjJlisxms1q1aqW0tDTNmzdPMTExslgsevfddxUXF6fo6GhJ0syZM9WrVy8tX75cAwcO1OLFiyvsAwAAAAAAAAAAAJCcfEVYYGCg3nnnHbVr186+zGAwyGazKSsrSykpKYqMjJTZ/Hf9LSoqSrt371ZmZqZSU1OVk5OjqKgo+/qAgAC1bdtWa9eulaRK+wAAAAAAAAAAAAAkJxfCAgICFB0dLU9PT/uyr7/+Wnv37lXPnj2Vnp6u0NBQh22Cg4MlSQcPHlR6erokqVGjRmXaHDp0SJIq7QMAAAAAAAAAAACQnDw14pnWrVunp59+Wtdee6369u2rl156yaFIJkleXl6SpIKCAuXl5UlSuW2ysrIkSfn5+RX2cT7M5vOrC5pMTr/lGi5B7EcAzgXZBVfAfgTgXJFfcAXsRwDOBdkFV+Aq+5GrjAO138Xaly5YIey7777Tk08+qYiICL3++uuSJG9vb1ksFod2pcUrX19feXt7S5IsFov999I2Pj4+VeqjuoxGgwID/aq9PeAsAQE+NT0EALUE2QVXQXYBOBfkF1wF+QWgqsguuAqyC+7mYu3TF6QQ9v777+uFF15Qv379NGPGDPsVXKGhocrIyHBoW/o4JCRERUVF9mVNmzZ1aBMWFlalPqrLarUpOzu32ttLJdVLDkY4X9nZeSouttb0MACXEBDgw1lGFSC74CrILsAR+VUx8guugvwC/kZ2VYzsgqtwlexif4aznO8+XdX8cnoh7MMPP9Tzzz+vIUOG6Omnn5bR+PcgIiMjlZCQoOLiYplMJknSqlWr1KJFCwUFBalOnTry9/dXcnKyvRCWnZ2trVu3KjY2tkp9nI+iopo/iADFxVb2RQBVxvECroDsAnCuOGbAFZBfAM4Fxwu4ArIL7uZi7dNOPdVj9+7devHFF9WvXz+NGjVKmZmZOnLkiI4cOaKTJ08qJiZGp06d0qRJk7Rz504tWbJEixYt0qhRoySV3BssNjZWM2bM0IoVK5Samqpx48YpNDRU/fr1k6RK+wAAAAAAAAAAAAAkJ18R9u2336qwsFDLly/X8uXLHdYNHjxYL7/8subPn68XXnhBgwcPVsOGDTV+/HgNHjzY3m7s2LEqKirS5MmTlZ+fr8jISMXHx9unVwwKCqq0DwAAAAAAAAAAAMCphbCHHnpIDz30UIVt2rdvr8TExLOuN5lMiouLU1xcXLX7AAAAAAAAAAAAALgLJgAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWzDU9AACuy2g0yGg01PQwUEtZrTZZrbaaHgYAAAAAAACASxiFMADlMhoNCgz0kdFoqumhoJayWot1/HgexTAAAAAAAAAANYZCGIBylVwNZtLuZfOUl3mopoeDWsYnqJFa3DRSRqOBQhgAAAAAAACAGkMhDECF8jIPKe/w3poeBgAAAAAAAAAA58xY0wMAAAAAAAAAAAAALgQKYQAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt2Su6QEAgCv46o8Dej/5L93btYVuCr/cYd3BE7ma9NkG1fH20Oy7ujqsy7UUacKS9TpVUKgF9/eQJB05ma9HF68t93lG9Wqt6NYhF+ZFAAAAAAAAAAAcUAgDcEkrslr15eYDWrxuT7nrC4utmvNDqgqKrKpzxrp9x3I096ftyswpkJf57wts/bzMurtLc4c+lv6+T/5eZl3ZqK7zXwQAAAAAAAAAoFwUwgBc0sYnrdfhk3kKqeOj9Oy8Mus/XLNbB7PKLv91Z4be+nm7GgX4lFnn62nWzRFN7I/fW/2XrFabxl4TpuA63s59AQAAAAAAAACAs+IeYQAuaW0b1dVzgzro6lYNy6zbsO+Yvt16UPdENi+zztNk1L2RLfTirZ0q7H9P5il9s+WA+rQJ1ZWN6jlp1AAAAAAAAACAqqAQBuCSNqLnP9Sq4ZmTHkrHcy16++cdirg8UDe0vazM+q4tGmhg+OXyNFd8GF26ca9MRoNu69jUaWMGAAAAAAAAAFQNhTAAKMdbP21XQVGxbu3QRIdP5kuSrFab0rPzVGy1VamPrDyL1qZlKuLy+gry87qQwwUAAAAAAAAAlIN7hAFAOf44eEKSNHXZJvuyY7kWPf5ximbdGamGVbjX14Z9x2SzSV2aBV2oYQIAAAAAAAAAKkAhDADK8WjfMIfHs75PVYC3h4Zd3UoBPh5V6mPXkZOSpCuCy069CAAAAAAAAAC48CiEAUA5urVoeMaSVHmajeUsP7tjORZJUgN/pkUEAAAAAAAAgJpAIQwAJN3eqZlu79TsrOs/fKDXOa+Lu/6q8x4XAAAAAAAAAKD6jDU9AAAAAAAAAAAAAOBCoBAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcUq0thFmtVs2ePVu9evVSRESEhg8frrS0tJoeFgAAAOAyEhM/UM+eXfThh+/Zl7377jvq2bOLw89zz/2zBkcJAED5fv75Rz344FBdf320br21v954Y4by8/NrelgAAKCWMdf0AKpr7ty5SkhI0EsvvaSQkBBNnz5dI0eO1LJly+Tp6VnTwwMAAABqTFFRkT766D3Nm/dWmXWpqdtkMBj04IOjJRkkSS1btrrIIwQAoGIHDuzXP/85QQ0aNNStt8Zo69Y/9MknCTKZjBoz5vGaHh4AAKhFamUhzGKx6N1331VcXJyio6MlSTNnzlSvXr20fPlyDRw4sIZHCAAAANSc2Ng7dfDgfl122eXav3+vw7rt27epUaPLdOutt8tgMMjf37+GRgkAwNkFB4fo/fc/lo+Pr/LycmWxWLRx43p5eHDyMwAAODe1cmrE1NRU5eTkKCoqyr4sICBAbdu21dq1a2twZAAAAEDN69Sps95+e4H69bvBYfmRIxnKzDyqo0ePaODAa3XjjX302GOjdfTo0RoaKQAA5fPw8FCTJk3VoEED/b//94A++SRBHTt21vDhD9b00AAAQC1TK68IS09PlyQ1atTIYXlwcLAOHTpUE0MCAACACzAaDTIaDTU9jBr39NMl9/xavXqlJMlkMshsNiozM0OXX95El19+ua677nqtX79eX331hV5++Tm98ca/anLILsNqtclqtdX0MAAA/2O1WvXQQw8rNXWbli5N0vTpL2rSpCk1PSwAAFCLGGw2W637lPfZZ59p/Pjx2rZtm4zGvy9qGz9+vDIyMrRw4cJz7tNmO/8PvAaDZDQalXUqX8XF1vPqC5cek8mouv7eslqtcoV/laX7c2FOtmzW4poeDmoZg9EkD7+A896fjUaDDAa+0D4bsgs1zdWyS+K4caY5c+boX//6l8aPH68HHnigzHqr1apu3bopNzdXGzZs4F67cs6xlf2wYuQXapor5pdUsl/j7Gw2m/r06aOMjAytWbNGderUqekhuQxn7MdkV8XILtQ0V8suvjfE+brY3x3WyivCvL29JZXcK6z0d0kqKCiQj49Ptfo0GAwymZwT+HX9vStvBJzF6cVdV+DhF1DTQ0At5mr7s7shu+Aq+Ldee6xatUrfffed+vbtqx49eqigoEAWi0Wenp7y8PCo6eG5BGceW1E+8guugvxybb/88oumT5+uW2+9VcOHD5fFYlFBQYE8PDzk4+PD3w8XFdkFV+Fqxz6+N8T5ulj7dK0shJVOiZiRkaGmTZval2dkZCgsLKymhgUAAAC4NG9vb3300Uf68ssvdeedd2r9+vXKz8/XyJEjOQscAOBS2rRpo/T0dM2ZM0dHjhzR1q1blZWVpXvvvZcrmAEAwDlxrRJyFYWFhcnf31/Jycn2ZdnZ2dq6dau6dOlSgyMDAAAAXFfHjh01e/ZsNWrUSAsXLlRaWpoeeughjRs3rqaHBgCAg+DgYMXHx6tdu3ZKSEjQvn37NHr0aE2cOLGmhwYAAGqZWnmPMEmaOXOmEhIS9OKLL6px48aaPn269u/fry+++IIzgwAAAAAAAAAAAFA7p0aUpLFjx6qoqEiTJ09Wfn6+IiMjFR8fTxEMAAAAAAAAAAAAkmrxFWEAAAAAAAAAAABARWrlPcIAAAAAAAAAAACAylAIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwi5xffv2VZ8+fXTq1Kky65566ikNGTLkgo9hyJAh6tSpkw4ePFhm3Zw5c9S3b98yy61Wq/r06aN27dopMzPzgo8R6Nu3r+bMmVPTwwAgsguoKrILcC3kF1A15BfgWsgvoHJkl+ujEAYdOnRIL7/8co2OIScnR5MnT65y+99++00nTpxQUFCQkpKSLuDIgBKffPKJhg8fXtPDAPA/ZBdQObILcD3kF1A58gtwPeQXUDGyy/VRCIOaNGmijz/+WL/88kuNjmHlypVKTEysUvukpCR17txZ1157rRITE2W1Wi/wCHGpq1+/vvz8/Gp6GAD+h+wCKkd2Aa6H/AIqR34Brof8AipGdrk+CmHQzTffrO7du+uf//xnuZc5lzpx4oSmTp2q6OhotW/fXvfcc49SUlLs6+fMmaMhQ4Zo3rx56t27t8LDw/V///d/+uuvvyodQ5cuXRQTE6NXXnml3MucT5eVlaXvvvtOPXr00I033qj9+/fXaBDD9bVp00ZLlixxWHb6JctLlixR37599emnn6pfv35q166dYmJitGHDhnLbS9LHH3+s66+/XhERERo5cqTi4+MdLsWv7Dklaf369brvvvvUvn179enTR1OnTq3w3yCAv5FdcHdkF+CeyC+4O/ILcE/kF9wZ2XVpoBAGGQwGvfDCC8rOztZLL71Ubpvi4mINHz5cKSkpeuWVV/Tpp58qLCxMQ4cO1ebNm+3tNmzYoLVr1+qdd97RwoULdfDgQU2dOrVK45g4caLq1KmjSZMmVdhu2bJlslgsuv7669WlSxcFBwcrISGh6i8YKEdGRoYSEhI0ffp0JSYmymg0asKECbLZbGXafvHFF3r22Wc1ZMgQLV26VB07dtSsWbPO6flSU1M1dOhQ9ejRQ59//rlmzJihLVu2aPjw4eU+JwBHZBdAdgG1EfkFkF9AbUR+4VJHdtV+FMIgSWrcuLHi4uL0ySeflHuGxK+//qotW7botddeU1RUlFq1aqVnnnlGrVu3Vnx8vL1dUVGRXn31VYWFhalz584aMmSI1q1bV6Ux1KlTR88//7x+++23CsMpKSlJHTp00OWXXy6j0agBAwbop59+0qFDh879hQP/U1hYqClTpqhDhw666qqrNGrUKKWlpenIkSNl2i5atEgDBgzQkCFD1KJFC40ePVo9e/Y8p+eLj49X9+7dNXr0aDVv3lxdunTRa6+9pt9//11r1qxx1ssC3BrZhUsd2QXUTuQXLnXkF1A7kV+4lJFdtR+FMNjdfffdZ73MeceOHapTp45at25tX2YwGNSlSxdt377dvqxBgwaqV6+e/XGdOnVUWFgoSfr3v/+tjh072n+eeeaZMmPo3bu3YmJi9Oqrr+rAgQNl1m/fvl1btmxR//797csGDhyo4uJiLV68uNqvHZCkVq1a2X+vU6eOJNn339Pt3LlT7du3d1jWtWvXc3qurVu3auXKlQ7/Jm6++WZJ0q5du8516MAli+zCpY7sAmon8guXOvILqJ3IL1zKyK7azVzTA4DrKL3MedCgQWUuc7bZbDIYDGW2sVqtMpv/3o08PT3P2v/dd9/tEEL+/v7ltps4caJWrlypyZMnq1OnTg7rkpKSJEmvvPKKXn31VYd1n3zyiR5++GGH8QClzrxsuLygKm//Pdvlxmcur8q2pz+n1WrVoEGD9NBDD5XZrn79+uU+J4CyyC64M7ILcF/kF9wZ+QW4L/IL7orscn9cEQYHjRs31vjx4/XJJ5843MyyTZs2ys7O1o4dOxzar1u3TldccUWV+q5Xr56aNWtm/wkKCiq33emXOX/++ef25YWFhfriiy/Us2dPffbZZ1q6dKn9Z/To0crIyND3339fjVcNd+fh4aGTJ0/aH586dUrHjh2rdn9t27Ytc9n+6fNdV+U5//GPf+jPP/90+DdRXFysl156iUv1gXNEdsEdkV2A+yO/4I7IL8D9kV9wN2TXpYFCGMq4++67dfXVV2vfvn32ZT169FCbNm30xBNPKDk5Wbt27dLUqVO1Y8cO3X///U4fQ+/evXX77bdr79699mU//PCDjh07pmHDhql169YOPw888IDq1Kmjjz76yOljQe3XsWNHJSYmasuWLdqxY4fGjx9/Xmf/jBo1SsuXL9e8efO0Z88effDBBw7/41WV5xw+fLi2bdumZ555Rjt37tTvv/+uJ598Urt371bz5s2rPTbgUkV2wd2QXcClgfyCuyG/gEsD+QV3QnZdGiiEoVzTpk2Tn5+f/bHZbNaCBQt05ZVXasyYMYqJidGOHTu0cOFCdejQ4YKMYeLEiWrUqJH98ZIlS9S8eXP16NGjTFt/f3/deeedWrVqldLS0i7IeFB7TZkyRQ0bNtTdd9+tkSNHqmvXrurYsWO1+4uOjtYbb7yhJUuW6KabbtJ3332nmJiYc3rODh06aP78+dqxY4duu+02Pfjgg2rSpIkWLFhQ4TQBAM6O7II7IbuASwf5BXdCfgGXDvIL7oLsujQYbGebyBIAUGVz5szRp59+yiX2AIBag+wCANRG5BcAoLYhu2oeV4QBAAAAAAAAAADALVEIAwAAAAAAAAAAgFtiakQAAAAAAAAAAAC4Ja4IAwAAAAAAAAAAgFuiEHYJeemll7Rw4cIyy9euXasrr7yyzPLjx4/riSeeUGRkpCIjI/XPf/5Tubm5Dm2+/vprDRgwQOHh4Ro0aJB+/vnnCsdgtVo1e/Zs9erVSxERERo+fLjS0tIc2mzbtk2xsbHq0KGD+vTpo/j4+Ar73Ldvn+666y517NhRDz30kLKzsx2e75ZbbtFPP/3ksE1OTo5uvPFGHTx4sMK+AQA1j/z6G/kFALUD2fU3sgsAaq/T88xms+m9995T//791aFDB91111367bffHNoXFhbqtddeU69evdShQwfFxsZq27ZtVXquY8eOqWfPnkpOTi7T58yZM9WnTx917NhR9957r9avX19hX++88466deumPn366Msvv3RY9+233+qOO+4os82CBQv0wgsvVGmsAGofCmGXiA0bNuiHH37Qfffd57A8OTlZo0ePltVqLbPN2LFjtW/fPi1cuFCzZ8/WypUrNXXqVPv61atXKy4uTvfee6+WLl2qnj176uGHH9auXbvOOo65c+cqISFB06ZNU2JiogwGg0aOHCmLxSKp5APgsGHD1Lx5cyUlJWnMmDGaNWuWkpKSztrn9OnT1apVKy1dulRFRUV6++237es+++wz1a1bV9HR0Q7b+Pn5acSIEZo8eXLFbxwAoEaRX+QXANQ2ZBfZBQDu4Mw8mzdvnl555RXdd999Wrp0qW666SY99NBDWrNmjX2bKVOm6JNPPtHzzz+vpKQk1atXTyNHjtTJkycrfK6DBw9q6NChOnLkSJl1b731lpKSkjRt2jQtXbpULVu21MiRI3X48OFy+9qxY4feeust/fvf/9YzzzyjSZMm6cSJE5KkoqIivf766xo/fnyZ7WJjY/Xzzz8rJSWlqm8RgNrEhkvCfffdZ1u4cKH9cWFhoe3555+3tW3b1jZ48GBb69atHdqvX7/e1rp1a9vOnTvty3755RdbmzZtbOnp6TabzWYbPny47bHHHnPY7q677rL985//LHcMBQUFto4dO9o+/PBD+7KsrCxb+/btbcuWLbPZbDbbv//9b1uvXr1shYWF9javvfaa7YYbbjjra+vfv7/t559/ttlsNtuHH35oGzlypM1ms9ny8/Nt11xzjW3Tpk3lbldYWGiLioqyrVy58qx9AwBqFvlVFvkFAK6N7CqL7AKA2ufMPIuMjLS98sorDm0mTZpk+7//+z+bzWaz7d2719a6dWvbDz/8YF+flZVlu+aaa2y//fbbWZ9n8eLFtsjISHtGrl692mH9zTffbHvppZfsj0+ePGlr3bq17Ztvvim3vy+//NJ255132h9fffXVtt9//91ms9ls77//vm3UqFFnHcuiRYtsd99991nXA6i9uCLsErB582atW7dOAwYMsC/Lzc3VH3/8oXfffVexsbFltklJSVHDhg3VqlUr+7KuXbvKYDBo3bp1slqtWr9+vaKiohy269at21nPnEhNTVVOTo7DNgEBAWrbtq3Wrl1rf97IyEiZzWZ7m6ioKO3evVuZmZnl9tukSRP7mDZs2KAmTZpIkhYtWqSIiAiFh4eXu53ZbFa/fv0qnf4DAFAzyC/yCwBqG7KL7AIAd3Bmnh07dkxZWVmKjIx0aHfllVdq3bp1Ki4u1q+//qqAgAD17t3bvj4gIEDff/+9unfvftbn+uGHHxQXF6dZs2aVu75evXr64YcftH//fhUXFysxMVGenp7lTjUslWTVnj17dPToUe3atUvZ2dm67LLLlJOTo7feektPPPHEWcdy4403auPGjdq4ceNZ2wConSiEXQK+++47tWvXTg0bNrQvCwgIUEJCgrp161buNocPH1ajRo0clnl6eqpevXo6dOiQsrOzlZubq9DQUIc2wcHBOnToULl9pqenS1KZfk/fJj09vdw+JZ11TvlHH31USUlJateunbZt26YHH3xQJ06c0MKFC/X444+Xu02pvn37Kjk5WTk5ORW2AwBcfOTX2ZFfAOCayK6zI7sAoPY4M8/q1q0rT0/PMrlz4MABFRYWKjs7W3v27FGTJk303//+V7fddpt69OihkSNHVjiNr1Qyle8dd9whg8FQ7vpJkybJbDbr2muvVXh4uGbOnKk33nhDTZs2Lbd9eHi4brzxRvXq1Uu33HKLxo0bpwYNGmjevHmKjo7WP/7xj7OOJTg4WG3bttX3339f4ZgB1D4Uwi4BGzduVOvWrc9pm7y8PHl6epZZ7uXlpYKCAuXn50tSmTal68/WZ2Xb5Ofnl7te0ln7bdu2rX788Uf99NNP+uKLLxQSEqK5c+dqwIABCg4O1sSJExUdHa2xY8c63MxZktq0aaPCwsIq37gTAHDxkF/kFwDUNmQX2QUA7uDMPDOZTLrlllv01ltvaePGjbJarVq1apX9vpIWi0WnTp3S3r17NXfuXD3++ON66623ZDabde+99571SuOq2LVrlwICAvTmm28qMTFRt912myZMmKDU1NSzbjN16lQlJydr7dq1Gj58uDIyMpSQkKCxY8fqt99+08CBA3XDDTfom2++KbNtmzZt9Pvvv1d7vABcE4WwS8DRo0dVv379c9rG29vbfhPl0xUUFMjX19f+AenMNgUFBfLx8Tlrn5VtU97zln4I8/X1Pet4TSaT/SyVffv26fPPP9fo0aP10Ucf6dixY1q+fLnq1aunf/3rXw7blb4v5d2MEwBQs8gv8gsAahuyi+wCAHdQXp499dRTioqK0r333qt27drp5Zdf1siRIyVJderUkYeHh06ePKmZM2eqZ8+eat++vWbOnClJ+vTTT6s1jgMHDiguLk5PPPGErrvuOoWHh+u5555T69atNWfOnAq3DQgIsGfe7NmzdeeddyowMFBPPvmknn/+eb3zzjt65plnyuRS/fr1dfTo0WqNF4DrohB2CTAYDLJaree0TWhoqDIyMhyWWSwWnThxQiEhIapXr558fX3LtMnIyCgzvUap0mk5KtqmvOctfRwSElKlsc+cOVP333+/6tevr+TkZEVHR8vT01PXXnttmTn0S98Xk8lUpb4BABcP+UV+AUBtQ3aRXQDgDsrLM39/f02fPl0bNmzQTz/9pM8++0w+Pj5q2LChfH19FRoaKrPZ7HDPS29vbzVp0kT79++v1jg2bdqkwsLCMvegjIiI0J49e6rUx65du/TDDz9o5MiR2rlzpySpU6dOatasmZo1a6bNmzc7tC8uLpbRyFfmgLvhX/UlICQkRMeOHTunbSIjI5Wenq60tDT7suTkZEklYWEwGNSpUyetWbPGYbvk5GR17ty53D7DwsLk7+9v70eSsrOztXXrVnXp0sX+vKU32Sy1atUqtWjRQkFBQZWO+48//lBKSoqGDh0qSTIajfa+CgsLy4R46aXZp8/hDwBwDeQX+QUAtQ3ZRXYBgDsoL88mTZqkxYsXy8vLy34s/+abb9SrVy9JUpcuXVRUVORQWMrPz9e+ffvUrFmzao2j9MSO7du3OyzfsWNHlfucPn26HnzwQdWpU8chq6Ty8+r48eP2e2YCcB8Uwi4B7du315YtW85pm4iICHXq1Enjxo3Tpk2btHr1aj377LO69dZb7WcHDhs2TF9++aUWLFigXbt26dVXX9W2bdt0//332/s5duyYTp48KalkfvrY2FjNmDFDK1asUGpqqsaNG6fQ0FD169dPkhQTE6NTp05p0qRJ2rlzp5YsWaJFixZp1KhRVRr3q6++qjFjxtgvfY6IiNDnn3+uXbt2KSkpSZ06dXJov3XrVnl5eSksLOyc3h8AwIVHfpFfAFDbkF1kFwC4g/LyrFGjRpo1a5ZWrVqlvXv3aurUqdq6daseeughSSWFsKuvvloTJkxQSkqKdu7cqfHjx9vvLyaVFMaOHDniUIyqbBxdunTRhAkTtHr1au3Zs0dvvPGGVq1apQcffLDS7deuXas///xT99xzjySpWbNmstls+vTTT/Xrr79qz549Za4227JliyIiIqo0PgC1iA1u748//rCFhYXZMjMzy12flJRka926dZnlR48etY0ZM8bWoUMHW7du3WzPPvusLT8/36HNp59+auvXr58tPDzcNnjwYNtvv/3msP6aa66xTZgwwf64qKjI9uqrr9qioqJsHTp0sI0cOdK2b98+h21+//1325133mlr166d7ZprrrG99957VXqdP/74o61///62oqIi+7JTp07ZHnnkEVvHjh1tI0aMKPMeTJ061TZq1Kgq9Q8AuLjIL/ILAGobsovsAgB3UF6eFRYW2l555RVbjx49bB06dLANHTrUtmXLFoftTp48aXv22Wdt3bp1s0VERNiGDRtm+/PPP+3rS3PwzDyy2Wy2ffv22Vq3bm1bvXq1w/ITJ07YpkyZYuvTp4+tY8eOtrvuusuWnJxcpddx++2327744guHZcuXL7dFR0fbevToYfv0008d1h09etTWpk0b2x9//FGl/gHUHgabzWar6WIcLrz77rtPffv21QMPPFDTQ3EZBQUF6t27t9544w117969pocDACgH+VUW+QUAro3sKovsAoDa51LMs3nz5unHH3/UBx98UNNDAeBkTI14iXjsscf00UcfyWKx1PRQXMann36qsLAwPogBgAsjv8oivwDAtZFdZZFdAFD7XGp5ZrFYlJCQoMcee6ymhwLgAqAQdomIjIxUnz599N5779X0UFxCTk6O3n33XU2bNq2mhwIAqAD55Yj8AgDXR3Y5IrsAoHa61PLsP//5j6KjoxUZGVnTQwFwATA1IgAAAAAAAAAAANwSV4QBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIA+BSrFZrTQ8BAHCJcYXscYUxAAAuHeQOAMCVuUJOucIY4DwUwoDT9O/fX23atNHdd99d7vqJEyeqTZs26tmzp4qLiy/y6FxTXl6e5s+fr9tvv12dO3dWeHi4+vXrp2effVb79u07p76+++47DRs27AKNFABcF/lTPYWFherRo4fatGmjjh076tSpU+fcx5nZ07dvX7Vp06bCn6eeesqZL4P8A+CyhgwZUukxcf/+/RX2Udruyy+/PO/xzJkzR23atNGNN95oX1Z63H7nnXfOu39XsmTJkjLvdbt27dSzZ0899thj2rFjR7X6zcnJ0Wuvvab58+c7ecQAULPILNewfft2+/t43333nfP2FotF8fHxevHFFyVJ+/fvr/Tv2qZNGy1ZssRpr+HMMcA9UAgDTjNo0CBJ0saNG3Xw4EGHdUVFRfr+++8lSQMHDpTJZLro43M1x44d05133qnp06dr8+bNKioqkq+vr/bu3auEhATdfPPN+vHHH6vU1wcffKCHH374nItnAOAOyJ/q+fHHH3X06FFJUm5urr744otz2r687GnYsKFCQkIUEhKiunXr2peXLjtz+fki/wDUBr6+vg7HwdN/zGZzjY6t9Ljt5+dXo+O4kEJCQtSwYUN5eHjoyJEj+vrrr3XXXXdpw4YN59zX/fffr3feeUcFBQUXYKQAUPPIrJr18ccf239PSUnRrl27zmn7uLg4vfrqq/aTHM1ms8Pf0MfHR5Lk6elZ7nJnOHMMcA81+68fcDGDBg3SrFmzZLPZ9PXXX+uBBx6wr1u1apVOnDhhb4eSYNixY4d8fHw0depUDRw4UGazWbt27dJTTz2lTZs2ady4cfriiy90+eWXV9hXTk7ORRo1ALge8qd6PvnkE0mSl5eXCgoKtHjxYt1zzz1V3r687ElMTLT/vmTJEk2cOFGenp76+eefz3/AVRwDALiaQYMG6bnnnqvpYZTr9OO2Ozozg1JTU/Xoo49qz549Gj9+vL755ptzOkmGL/UAuDsyq+ZYLBb7yYmnf0abOHFilfs4M6dCQ0MdcvCpp57Sp59+qq5duyo+Pt45A69kDHAPXBEGnKZJkybq2LGjJOmrr75yWPftt99Kklq0aKF27drpu+++03333adOnTqpU6dOGj58uNatW+ewTeklzwsXLtSdd96pTp066ZVXXpEkHTx4UA8//LA6duyoHj16aM6cOVqwYEGZKZfS0tI0duxY9ejRQ+3atVOPHj305JNPKiMjw96m9PLv9957T/Pnz1efPn3Uvn17DR06VHv27HEY03//+1/ddNNNCg8P1+DBg7VmzRrdcsstatOmjZKTkyWVTDX15ptv6oYbblBERIS6deum//u//9PatWvt/WzZskW//vqrpJKC2C233GI/s6ZVq1Z6++235evrq9zcXC1cuFCSlJycrDZt2qhbt25avHixevXqpR49euiBBx7Qa6+9Jkk6cOCA0y9pBgBXR/5UPX9KHT58WL/88oskafLkyZKkrVu3avPmzQ7tLlT2ZGdn69lnn1X37t0VHh6uW265RZ999pl9/XvvvWefpuO///2vJGnbtm266qqr1KZNG/3rX//SnDlzyD8AbqE0D2bPnq3hw4erY8eOevzxx8/afteuXRo1apQ6duyojh07atiwYdq0aZNDm8zMTD3xxBPq3LmzunXrppdeeklFRUVl+ipvmqmqZN3pUy1t3LjRvu0zzzyjNm3aaMiQIfZlpe3Wr1+vf/7zn4qMjFTnzp01ceJE5ebm2ttZrVa9+eabio6OVkREhB588EGlpqbaty+VkZGhSZMm6ZprrlF4eLh69uypJ554QgcOHKj0vQ4LC9OUKVMkSXv37tWqVavs61auXKl7771XkZGRCg8P13XXXafXX39dhYWF9vdq9+7dkqR//etf9jGVN32XJIWHhztkU2m7cePG6bPPPtP111+v9u3b64EHHlBGRoZWrFihm266Se3bt1dMTIzD+woAroLMKnEhMuu7777TiRMnFBAQoDFjxkiSli5dKovF4tCuNE8eeeQRTZkyRZGRkbrhhht0xx132L9r/PTTT6s0neXpKvtbjR071j6tfulMLO+//77atGmjsLAwrV69WkOGDDmvMcB1cUUYcIZBgwZpw4YN+uOPP7R37141bdpUxcXF+u677+zrFy1aZJ8n1tvbW8XFxVq5cqWSk5M1a9YsXXfddQ59zpgxQ0ZjSd25Xbt2OnXqlIYMGWI/kBqNRv3rX/9SaGiow3YWi0XDhg3TgQMH5OnpKX9/fx09elRffPGFTpw4UWZe94ULF+rAgQPy9fVVQUGBVq1apQkTJtjPOFmxYoXGjh0rm80ms9msv/76SyNHjpS3t7dDPzNnzrSfVREYGKjc3FwlJydr48aN+vTTT9WqVSutXLnSPvZbbrmlzPtYv3599e7dW9988409QEqdOnVKzz77rPz8/GQwGNStWzdt3LhRp06dkslkUoMGDZx6STMA1AbkT9Xyp9Snn36q4uJitWzZUnfeeacSEhK0ZcsWLV68WOHh4WXeX2dmj8Vi0dChQ7VlyxaZzWb5+/srNTVV48eP18mTJxUbG6vY2FitWLFCq1at0rRp09StWzdNmjRJRUVFuuqqq/TQQw/pvffek7+/P/kHwG2UfrHn4eGhsLCwctvs3btXd999t7Kzs+Xt7S2z2azffvtN69at0wcffKDw8HAVFhZq+PDhSk1NlST5+/tr4cKFVTpGVjXrqiMuLk6HDx+WyWRSfn6+lixZogYNGuiJJ56QJE2fPl3vvvuuJMnHx0e//vqrtm/fXqaf0aNHa/PmzTKbzQoICNCxY8e0bNkybd68WV9++aU8PDwqHEeXLl3k4eGhwsJCbdy4UT179tSOHTs0atQoFRYWys/PTx4eHtq3b5/efvtt+fv768EHH1TDhg11+PBhFRUVyc/PT/7+/tV6H5KTk/XVV1/J399fBQUF+vXXXzVkyBDt3btXvr6+slgs+uOPP/T//t//008//SRPT89qPQ8AXEhklvMzq3TGjgEDBuj222/XrFmzdOLECX377bflzm7y448/qqioSP7+/rr88svl5+en1NRUWSwW+fj4KCAgoMrTWVblbzVlyhStW7dOR48e1fPPP6/JkyfbT0wcMmSIoqKi9OGHH8rT07NaY4Br44ow4Az9+/e3H+C+/vprSSX/o3/8+HFJUs+ePTV9+nRJ0l133aWUlBStWbNG11xzjYqKivTMM8+UmW+9Xr16+vHHH/Xbb7/puuuu05IlS7R//36ZTCYtWLBA69at04IFC3TkyBGH7fbt26eWLVuqXbt2+uWXX7R69Wo988wzklTufPBHjx7V4sWLlZKSYr8h5caNG5WVlSWp5Kw/m82mq666Sr/++qvWrVunm266yT7lVqnSS46feeYZrV69WsnJyRowYICuvfZa+71Y0tPTJUlBQUFn/QDVtGlTh7alioqKFBMTo5SUFH3zzTd68MEHNWrUKEl/X/Lcv3//cvsEAHdF/lQtfyTJZrPZz04fPHiwJCkmJkaStGzZsnKnG3Rm9nz22WfasmWLWrRooV9++UXJyclasGCBJGnWrFkqKCiQwWDQSy+9pDp16ujw4cO6/fbbtWXLFnl5eenVV1+V2WzWsGHDyD8AtUJiYmK5N6Y//UpiqeQLvC+//FLJyclnnap2zpw5ys7O1sCBA7V27VqlpKRo9OjRKigo0KxZsySVnEBR+oXiSy+9pHXr1unTTz+t0lirmnXV4e3trZ9++kmrV6/WVVddJUn66aefJJXcP/m9996TJN1+++1KSUnRypUrFRQU5NDHsWPH7Fcvf/bZZ1q1apX++9//KjIyUl26dHHIu7Px8PBQvXr1JMnePi0tTe3bt9dNN91kf19LM6U0uxMTE9WkSRNJ0rBhw6o97W9mZqZmzpypdevW6e6775Yk7dmzR8OGDVNKSor9/1eOHTumnTt3Vus5AKC6yKwSFzuzDhw4YL9K+bbbblNgYKD69u0rSVq8eHG5YywsLNQrr7yilJQUvfrqq5o9e7a6du0qSbrxxhv1888/V7koWJW/Vf369e3TZn7//fcaOnSocnNz1aJFC3uB8HzGANdGIQw4Q/369dWjRw9Jf09P9c0330iSOnTooJ07d6qwsFCenp6aOHGiPDw85Ovrq0mTJkkq+VCwfv16hz779Omj+vXry9/fX15eXvYprLp3766rr75aknT11Verd+/eDtu1atVK8+fPV0JCgvbs2aP//Oc/9rGU9yVf9+7d1b59exmNRvXr18++PCcnRzk5Odq2bZskafjw4QoMDJTZbFZcXFyZfq688kpJ0muvvabHHntMS5Ys0SOPPKKZM2eqW7dukmS/xDs/P/+s76XNZnP47+lKv7g8M2QB4FJF/lQtfyRpzZo1SktLc7gq+aabbpKXl5dyc3O1bNmyct9jZ2XP6tWrJZWc6HHrrbeqd+/e9g/W2dnZ9g+LjRo1sv999u7dK0l6/PHHdcUVV5zX8wPAxebr6+twQ/rSn7p16zq069y5s5o1ayZPT0/VqVOn3L5KvyT79ddfdd111yk6OloJCQmSSo7vRUVF9mmfWrZsqdtuu02S1LZtW4eMOZuqZl11xMTEKCgoSD4+Pvb+SnNx8+bN9ikIH330UZnNZgUGBuqhhx5y6KNu3bpq3LixJGnEiBF65plntGHDBr3xxht68cUX1ahRo3Mak9VqlST169dPH374oaZOnapVq1bprbfesuevs+9HWbduXQ0YMECS7FM7S9L9998vg8HgsIx7YQK42MisEhc7s5YsWSKr1aqWLVsqIiLCPgap5L3666+/yozRy8tLN910k6Tz/4xWlb+VJF177bX2v9PevXtlNpv16quvlpmtBO6H6/qAcgwaNEg//fSTUlNTtXPnTodpqUrPdmjYsKHDZc6NGzeWwWCQzWYrcxZfw4YNHR6fPHlSkhQcHOyw/LLLLnN4bLVa9dprr+mjjz5STk6OQkJC7AFUXnHp9NA4/QButVp16tQp+zanP2+9evXs9/Iq9eyzz8rHx0fLli3T119/bb8yITw8XK+99pqaNWtmPxvi5MmTOnbsmOrXr19mPKX3hynvzIkzXzsAgPypSv5If0+5YbVay/2QmJiYqLvuuqvMcmdlT+lVenl5ecrLyyuz/vDhw/bfBwwYoJdfflknTpyQ0WjUtdde65QxAMDFNGjQIPsZ1BU5M3fKU3o1cFZWlv3K4VIFBQU6fvy4Pa/O7K8qZ2RXNetOd3q2FRcXn7Xd6XlXmsWl22ZnZ0squcLg9HGfWdgymUyaN2+eXnnlFa1cuVKJiYlKTEyU0WjUjTfeqJdfflleXl4Vvsbi4mL7e1f6OezYsWOaMmWKvvvuO/sXkaXTVZWX3eU5s11pke1MpVejSXKYEqtBgwaS5DD+s/UBABcKmVXiYmaW1Wq1XwX3119/OdxjrNTHH3+sCRMmOCyrX7++TCbTWV/DuajK36r0td5zzz32GUYaN25sPyET7o0rwoByXHfddfL19ZUkPffcc8rMzJTZbFb//v3t/3N/5MgRh6uh9u/fbw+UM8PvzLMKSvs4c8rA0hs1llq8eLHmz58vPz8/ffXVV/r55581evTos4779PAwGAwO6+rXr2+/T8zpz3v8+HGHLyGlkvmMn376af3222/64IMP9MQTT6hZs2bavHmzpk2bJkn2M1WkkhtLnunw4cP65ZdfyrQtVdmHOwC4FJE/lefPyZMn9d///vesY5GkLVu2aMuWLWWWOyt7St/nG264Qdu3b9f27du1detW/f7779q+fbsGDhxobztz5kz7hzKr1apJkyZV+QtJAKhtqnI2dekx9JlnnrEfQzdt2qStW7dq+/btatiwof2s/dNPLCjvcXmqmnWl2SSV3PuxVOmXkuU5/R4hZ+Zd6fNarVZlZGTYlx86dKhMP61atdLrr7+u1atX69///rdGjhwpHx8fffXVV/rPf/5z1ucvtXnzZvuYS6++mjZtmr799lt1795dv/32m7766itdc801ZbY9c9ynLyu9OkCScnNz7WfPn+n09+50zvoyEwAuBjLLeZn122+/6cCBA2cdi1Ryj+fTxy6V//msvJyqiqr8raSS4uHzzz9v3y4tLU3//ve/nTIGuDYKYUA5fHx87GdsJycnSyop5gQFBalXr14ymUyyWCx68cUXVVhYqNzcXL300kuSSg68nTp1cujvzANoly5dJJVMrVR66e7PP/9cZo720ptUenh4KCQkRHl5efr444/t68/l7DoPDw/7pckLFy7UiRMnVFhYqFdffdWhXW5urq6//np16NBBixYtUufOnTVixAh1795dUsnUW1LJNF2ly+bNm6ePP/7Y/sFp+/btGjVqlPLz8+Xt7a2hQ4eWGc+Z70lpQOfl5clqtZ71QxcAuDPyp/L8+eKLL5Sfny8vLy+tXLlS69evt/+sW7fOfjZlYmJimbE4K3siIyMllcyxv2nTJklSQkKCOnbsqP79+9s/kK5bt06LFi2S9Pe0IMnJyfrggw/OewwAUFuVHkM/+ugjHT16VMXFxXrqqafUoUMHjR07VpLs9+bYs2eP/QzzP/74o9ITIaSqZ11AQID995SUFEklXzyW5u+5uuqqq+xn3M+ePVvFxcXKzMzUW2+95dBuw4YNioqKUmRkpFJTU3XNNdfo4Ycftl/1fOzYsQqfJy0tTS+88IIkqUmTJurZs6ekv7Pbz89P9erVU3p6uv39Oj23S3Pn9EJX6Ze4GRkZ2rdvnyTZz5QHgEsZmVW1zCqdsaNjx44On8/Wr1+vzz77TFLJiZDLly936L+8gtPpOWWz2ar82bMqfytJmj9/vjZt2iRPT0/7tIxvv/22tm7det5jgGujEAacxaBBg8p9HBwcrEcffVRSyZdsXbp0UdeuXfX999/Lw8NDL7zwgjw9PSvs++abb9bll18uq9WqoUOHqnPnzho5cqT9A0hpEJR+oXngwAH16NFD3bp107fffmvv58xLfSszevRoGQwGbdmyRT179lSXLl20YsUK+5l7BoNBvr6+uv7662Wz2fT666+rS5cu6tKli31e3dtvv93e34wZM9SmTRtZLBZNnjxZXbp0Ubdu3XTzzTdr27Zt8vLy0vTp0+0BWZHSmzYfO3ZMkZGRDl8SAsClhPypOH9KP2T16tVLDRo0kJ+fn/3H39/ffs+SZcuWlbni7EzVzZ6bb75ZV1xxhfLz83XHHXeoa9eueu6552S1WtWnTx/VqVNHeXl5mjhxoqxWq66++mq9+OKL9r/ljBkz7PcMI/8A1AZffPGFevfuXe5P6SwQVfXQQw/J19dXf/75p3r37q2uXbvqq6++UlFRkW6++WZJUu/eve1Z9NRTT6lTp06KiYk56z1cTlfVrPP391f79u0llXwJeOONN2rAgAEO0w+fi4CAAA0ZMkRSSVZ17txZvXr1KnOWf/v27dWiRQtZrVbFxsYqKipKXbt21datW+Xl5VXm/wMsFov9ve7evbtuuOEGbdq0SV5eXnr55ZftWVr6fn377bfq2rWr+vbta5+qvnQKLEm6/PLLJZWcnBIZGans7Gx169ZNRqNRhYWFGjRokPr3769XX31VgYGB1XovAKAmkVmVc2ZmHT9+XCtWrJAk9e/f3+HzmZ+fn8LCwtS2bVtJ5Z+seKbSnPr222/VuXNn+4kelanK32rHjh2aM2eOpJLPqC+++KKaNWumwsJCTZgwwX7FWnXHANdGIQw4ix49etjn0/Xx8dF1111nXzdq1CjNmTNHkZGRMhqN8vDwUM+ePfXee+8pOjq60r69vb21cOFCRUdHy9vbW35+fpo4caL9Rpqll2cPGjRIjz76qEJDQ2UwGNS8eXO9/PLL9nGVni1SVb1799brr7+uli1bymAwKCwsTAsWLLBfYl36vE8++aSmTp2qtm3bymazyWQyKTw8XNOnT9e9995r769BgwZavHixJkyYoPDwcBmNRuXk5Khx48a64447tHTpUl1//fVVHtvAgQPl5+cns9lsnxoMAC415M/Z8yc1NdU+5eGNN95Y7nOVTkuYk5OjL7/8stJxVSd7PD099Z///Ed33nmnGjZsqNzcXDVv3lzjx4/X+PHjJUmvvfaa0tLS5O3tbb9HwdNPP6169eopLy9PTz31lP0eZ+QfAFeXm5urw4cPl/tTUFBwTn21bNlSH3zwgfr06SNfX19ZrVZFRERo7ty59swzGo16++23ddttt8nf318eHh4aOnSonnzyyUr7r2rWSSXH6quvvlre3t4qKCjQ6NGjNXz48HN6Pad77LHHNHr0aPv0S/369bNP7Vv6ZWXp/VYefPBBNWvWTLm5uapbt6569+6t//znP/YvC09X+l5nZ2erQYMGuummm/TJJ5/YrySQpPHjx+vWW29VvXr1ZDAY1LlzZ/uVYzt37rRP0fXwww+rTZs2MpvNCg4OVl5enlq3bq2XX35ZTZs2ldVqVd26dbVgwYIK71EDAK6KzKoaZ2XW559/LovFIoPBoBtuuKHc5yr9jLZmzRr7SRpnc//996tjx47y8vJS3bp1q3w1VmV/q6KiIj311FMqLCxU69atNWLECHl5eWnq1KmSSopkb7755nmNAa7NYOMmBcBFt2rVKq1YsUKBgYEaMGCAWrRooZycHA0ZMkRbtmxRXFycRowY4fTnnTt3rnJychQSEqL77rtPJpNJ69ev1z333GMfV+nNlgEA7of8AQC4u5rKuoKCAr344ouqV6+e2rZta/8y8J133tFrr72mK664otITNAAAlxYyC7h4zJU3AeBsdevW1Ycffqji4mLNnTtX9erVU1ZWlgoLC+Xj46P+/ftfkOfNzs7WggULJEkzZ86Ul5eXjh8/LkmKjo7mS0gAcHPkDwDA3dVU1nl5eWnz5s32K5fr1aunoqIinTp1SpI0ePDgC/K8AIDai8wCLh6uCANqyHfffaf58+frzz//VG5urn2+30ceeUQdO3a8IM9psVj0xhtvaMWKFTpw4IBsNpuCg4PVt29fPfroow433wQAuCfyBwDg7moi6yQpPT1d06dP15o1a3Ts2DGZTCY1bdpUMTExuv/+++1TAgMAUIrMAi4OCmEAAAAAAAAAAABwS5R2AQAAAAAAAAAA4JYohAEAAAAAAAAAAMAtUQgDAAAAAAAAAACAW6IQBgAAAAAAAAAAALdkrukBuAqbzSar1VbTwwAAnMZoNMhgMNT0MFwW2QUAron8qhj5BQCuh+yqGNkFAK6pqvlFIex/rFabjh3LqelhAABOU7++n0wmPoydDdkFAK6J/KoY+QUArofsqhjZBQCuqar5xdSIAAAAAAAAAAAAcEvnVQibO3euhgwZ4rBs27Ztio2NVYcOHdSnTx/Fx8c7rLdarZo9e7Z69eqliIgIDR8+XGlpaU7vAwAAAAAAAAAAAJe2ahfCFi5cqNmzZzssO378uIYNG6bmzZsrKSlJY8aM0axZs5SUlGRvM3fuXCUkJGjatGlKTEyUwWDQyJEjZbFYnNYHAAAAAAAAAAAAcM6FsMOHD2vEiBGaNWuWWrRo4bBu8eLF8vT01JQpU9SqVSvFxMRo6NChmjdvniTJYrHo3Xff1ZgxYxQdHa2wsDDNnDlThw8f1vLly53WBwAAAAAAAAAAAHDOhbAtW7aobt26+vzzzxUREeGwLiUlRZGRkTKbzfZlUVFR2r17tzIzM5WamqqcnBxFRUXZ1wcEBKht27Zau3at0/oAAAAAAAAAAAAAzJU3cdS3b1/17du33HXp6elq3bq1w7Lg4GBJ0sGDB5Weni5JatSoUZk2hw4dclof1WU2n9ct0wAAuOjILgBAbUR+AQBqG7ILAGqvcy6EVSQ/P1+enp4Oy7y8vCRJBQUFysvLk6Ry22RlZTmtj+owGg0KDPSr9vYAAFxsZBcAoDYivwAAtQ3ZBQC1m1MLYd7e3rJYLA7LCgoKJEm+vr7y9vaWVHKfr9LfS9v4+Pg4rY9qOblf1g+iKm8HALhoDPf9JkNAs5oehutyZnYZnNMNLkG2mh4A4HrIr0qQX3AF5BfggOyqBN8bAoBLqmp+ObUQFhoaqoyMDIdlpY9DQkJUVFRkX9a0aVOHNmFhYU7rozoM1kIZcg9We3sAwAVgLa7pEbg0sgsAXBT5VSHyCwBcENlVIbILAFxUFfPLqYWwyMhIJSQkqLi4WCaTSZK0atUqtWjRQkFBQapTp478/f2VnJxsL2JlZ2dr69atio2NdVof1WEzesjqe9n5vHwAgJMZjSZO9K6AM7LLoJJpPk7lWlRstTpnYLhkmIxG+ft6ymq1cWI9cBryq2LkF2oa+QWURXZVjO8NAcA1VTW/nFoIi4mJ0fz58zVp0iSNGDFCmzZt0qJFizR16lRJJff1io2N1YwZM1S/fn01btxY06dPV2hoqPr16+e0PqrD6tdYx25PPf83AQDgNPX9/GSq6UG4MGdkl9lsVGCgn16c9ZX2HDrupJHhUtG8caBeHDVAWcdzVFTEF9FAKfKrYuQXahr5BZRFdlWM7w0BwDVVNb+cWggLCgrS/Pnz9cILL2jw4MFq2LChxo8fr8GDB9vbjB07VkVFRZo8ebLy8/MVGRmp+Ph4eXp6Oq0PAAAAAAAAAAAAwGCz2ZgJQFJxsVXHjuXU9DAAAKepX99PJpOxpofhspyRXaVn1D896yvtOcAZ9Tg3zRsH6sVHB+g4Z9QDDsivipFfqGnkF1AW2VUxvjcEANdU1fwi4QAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC35PRCWGFhoWbOnKk+ffqoY8eOuvfee7V+/Xr7+m3btik2NlYdOnRQnz59FB8f77C91WrV7Nmz1atXL0VERGj48OFKS0tzaFNZHwAAAAAAAAAAAIDTC2FvvfWWkpKSNG3aNC1dulQtW7bUyJEjdfjwYR0/flzDhg1T8+bNlZSUpDFjxmjWrFlKSkqybz937lwlJCRo2rRpSkxMlMFg0MiRI2WxWCSpSn0AAAAAAAAAAAAAZmd3uGLFCt10003q2bOnJOmpp57Sxx9/rI0bN2rPnj3y9PTUlClTZDab1apVK6WlpWnevHmKiYmRxWLRu+++q7i4OEVHR0uSZs6cqV69emn58uUaOHCgFi9eXGEfAAAAAAAAAOBqjEaDjEZDTQ8DtZTVapPVaqvpYQC1ktMLYfXq1dMPP/yg2NhYNWrUSImJifL09NSVV16pTz75RJGRkTKb/37aqKgovf3228rMzNSBAweUk5OjqKgo+/qAgAC1bdtWa9eu1cCBA5WSklJhH0FBQc5+SQAAAAAAAABQbUajQfXq+cpkcvoEXbhEFBdbdeJELsUwoBqcXgibNGmSxo0bp2uvvVYmk0lGo1GzZs1S06ZNlZ6ertatWzu0Dw4OliQdPHhQ6enpkqRGjRqVaXPo0CFJqrSP8ymEmc0EEQCgdjnf7OJDGJyB/QjAuSK/4ArYjwCcC2dkl8lk1JsfrdSBjCwnjQqXisbBdfXwPT3k4WFScbG1pocD1DpOL4Tt2rVLAQEBevPNNxUSEqKPP/5YEyZM0Pvvv6/8/Hx5eno6tPfy8pIkFRQUKC8vT5LKbZOVVRIQlfVRXUajQYGBftXeHgCAi43sgqsICPCp6SEAqEXIL7gK8gtAVTkzuw5kZGnPgeNO6QuXHrILqB6nFsIOHDiguLg4LVy4UF26dJEkhYeHa+fOnZozZ468vb1lsVgctiktXvn6+srb21uSZLFY7L+XtvHxKflHXlkf1WW12pSdnVvt7QEAzhcQ4MOZuhVwRnaZTEb+RxrnLTs7j7MSgdOQXxUjv+AqyC/gb2RXxcguuAqyC3BU1fxyaiFs06ZNKiwsVHh4uMPyiIgI/fzzz7rsssuUkZHhsK70cUhIiIqKiuzLmjZt6tAmLCxMkhQaGlphH+ejqIiDCACgdiG74AqKi63siwDOCccMuALyC8C54HgBV0B2AdXj1FM9Su/ttX37doflO3bsULNmzRQZGal169apuLjYvm7VqlVq0aKFgoKCFBYWJn9/fyUnJ9vXZ2dna+vWrfYrzCrrAwAAAAAAAAAAAJCcXAhr3769unTpogkTJmj16tXas2eP3njjDa1atUoPPvigYmJidOrUKU2aNEk7d+7UkiVLtGjRIo0aNUpSyb3BYmNjNWPGDK1YsUKpqakaN26cQkND1a9fP0mqtA8AAAAAAAAAAABAcvLUiEajUXPnztUbb7yhiRMnKisrS61bt9bChQvVoUMHSdL8+fP1wgsvaPDgwWrYsKHGjx+vwYMH2/sYO3asioqKNHnyZOXn5ysyMlLx8fHy9PSUJAUFBVXaBwAAAAAAAAAAAODUQpgk1a1bV88++6yeffbZcte3b99eiYmJZ93eZDIpLi5OcXFxZ21TWR8AAAAAAAAAAACAU6dGBAAAAAAAAAAAAFwFhTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsUwgAAAAAAAAAAAOCWKIQBAAAAAAAAAADALVEIAwAAAAAAAAAAgFuiEAYAAAAAAAAAAAC3RCEMAAAAAAAAAAAAbolCGAAAAAAAAAAAANwShTAAAAAAAAAAAAC4JQphAAAAAAAAAAAAcEsXpBC2dOlSDRgwQOHh4Ro4cKC+/vpr+7pt27YpNjZWHTp0UJ8+fRQfH++wrdVq1ezZs9WrVy9FRERo+PDhSktLc2hTWR8AAAAAAAAAAACA0wthn332mZ5++mndddddWrZsmQYMGKDHH39cGzZs0PHjxzVs2DA1b95cSUlJGjNmjGbNmqWkpCT79nPnzlVCQoKmTZumxMREGQwGjRw5UhaLRZKq1AcAAAAAAAAAAABgdmZnNptNs2bN0v3336/7779fkvTwww9r/fr1WrNmjdasWSNPT09NmTJFZrNZrVq1UlpamubNm6eYmBhZLBa9++67iouLU3R0tCRp5syZ6tWrl5YvX66BAwdq8eLFFfYBAAAAAAAAAAAASE6+Iuyvv/7SgQMHNGjQIIfl8fHxGjVqlFJSUhQZGSmz+e/6W1RUlHbv3q3MzEylpqYqJydHUVFR9vUBAQFq27at1q5dK0mV9gEAAAAAAAAAAABITi6E7dmzR5KUm5urBx54QN27d9cdd9yh77//XpKUnp6u0NBQh22Cg4MlSQcPHlR6erokqVGjRmXaHDp0qEp9AAAAAAAAAAAAAJKTp0Y8deqUJGnChAl65JFH9OSTT+rbb7/V6NGjtWDBAuXn58vT09NhGy8vL0lSQUGB8vLyJKncNllZWZJUaR/nw2x2+i3TAAC4oM43u0wmsg/nj/0IwLkiv+AK2I8AnAuyC66A/QioHqcWwjw8PCRJDzzwgAYPHixJuvLKK7V161YtWLBA3t7eslgsDtuUFq98fX3l7e0tSbJYLPbfS9v4+PhIUqV9VJfRaFBgoF+1twcA4GIju+AqAgJ8anoIAGoR8guugvwCUFVkF1wF2QVUj1MLYaVTFrZu3dph+RVXXKEff/xRjRs3VkZGhsO60schISEqKiqyL2vatKlDm7CwMPtzVNRHdVmtNmVn51Z7ewCA8wUE+HC2UwWckV0mk5H/kcZ5y87OU3GxtaaHAbgM8qti5BdcBfkF/I3sqhjZBVdBdgGOqppfTi2EtW3bVn5+fvr999/VpUsX+/IdO3aoadOm6tSpkxISElRcXCyTySRJWrVqlVq0aKGgoCDVqVNH/v7+Sk5OthfCsrOztXXrVsXGxkqSIiMjK+zjfBQVcRABANQuZBdcQXGxlX0RwDnhmAFXQH4BOBccL+AKyC6gepx6qoe3t7dGjBihN998U8uWLdPevXv11ltvaeXKlRo2bJhiYmJ06tQpTZo0STt37tSSJUu0aNEijRo1SlLJvcFiY2M1Y8YMrVixQqmpqRo3bpxCQ0PVr18/Saq0DwAAAAAAAAAAAEBy8hVhkjR69Gj5+Pho5syZOnz4sFq1aqU5c+aoW7dukqT58+frhRde0ODBg9WwYUONHz/efj8xSRo7dqyKioo0efJk5efnKzIyUvHx8fL09JQkBQUFVdoHAAAAAAAAAAAA4PRCmCQNGzZMw4YNK3dd+/btlZiYeNZtTSaT4uLiFBcXd9Y2lfUBAAAAAAAAAAAAcBdMAAAAAAAAAAAAuCUKYQAAAAAAAAAAAHBLFMIAAAAAAAAAAADgliiEAQAAAAAAAAAAwC1RCAMAAAAAAAAAAIBbohAGAAAAAAAAAAAAt0QhDAAAAAAAAAAAAG6JQhgAAAAAAAAAAADcEoUwAAAAAAAAAAAAuCVzTQ8AAADgYsjK2KmD235U/skjMnv6KrhlV4Vc0V2SdHjXah3ZvVaWvGx5ePkrqGmEGrWJlsFgUHFhgQ5sXaETh1JVVJSvOkHN1CS8v7z960uSCvNPaf+W/yr7yG5ZiwvlW7eRLr/qOvkFNq7JlwsA+P/s3XdcleX/x/H3OQxZMkTAkbvUTARU3CvNr+WozIYlVlqmWdrU9KtfrV9qQ8vUsuFsWGI5Kpu2NBeCK3OmiRMcoCDzAOf8/iDuPDJVFDi+no8Hj+S+r/s613043Z9z359rOIgrFb/ypJ45rj2/z5NP4PW6vs39ZXGKAAAAwBXFiDAAAODw0pNP6kBUpLIyUxTUoI1c3Lx0dOcqnTwYraT4fTr6549ydvVQUIO2cnHzUtzeNUo88ock6fAf3+hUbIy8qtZVQJ0WOnf6kP5a/7GsOVmSpL+jP1fi0T/lHdhAVWuHKTXxiP7asEhZmallecoAAAdwJeOXJJ2N26u/NiySbLayOkUAAADgiiMRBgAAHF7yqb9ls+ao2vXtVePGm3VD2wGSpFN/RysjJUGS5OVfR341m8jLv7YkyezkIkk6G/+XnF09VL/lXaoV3EMBdVvIkp6ks/H7lJOVKZvNKu/A61Wv+Z2qFdxDPtUaKicrQ+lJ8WVzsgAAh3Gl4pckHdq2Ugc2RcqlkmcZnBkAAABw9TA1IgAAcHiu7j6SpLNxe+TlX0spCUckSRkpp+VXs4lOHdqiE/vX68T+9ZKkwAat5VeziXFsxrlTSjy6Q5W8/JWScFiSlJ58QlVq3qTGnR4xXicnK1OpZ49LktwqV71q5wcAcExXKn6p5k1y9fBV/ZZ3y7mSh/at+6gMzg4AAAC4OkiEAQAAh+dbvbH8at6kM8d2avdvH8jV3Udm50qyZmfKZrPJzbOKzE4uCqzXSqcPb9HJA1HyqlJbfjVuVO1mt+lA9BId3LxckuTuHShJsmZn2b1GtiVN+zcuVlZ6sqrWbWE8vAQA4FJdyfhVvWEHSdK507Flcm4AAADA1UIiDAAAODyTyaT6LfspvWFHZWWck6ffddqxaqZkMunE/g1KOvGXbmg7QN6BDeThE6Tdq+fo5N9R8qtxoypXraPgW0Yo9cxxubh56dzpWB3Z8b2cXCoZ9WemJuqvDZ8pMzVBVa4LVu3g28rwbAEAjuJKxy8AAADgWsAaYQAAwOFZ0pJ0aNtKJZ86KO/ABsrOSldOVrrcvYOUmZooScrJzvznvxZJktmc21/oVOxmHdr+jdy9A+XuHai0s3GSJA+f6pKkjJQE7fl9oTJTE1Tthg6q2/xOmcx8xQIAXL4rGb8AAACAawUjwgAAgMNzruSps3F7ZD26Q1kZ55R0Yr8kKah+a+VkZyr55AEd2fGD0s7G68zx3ZKkKtcFS5Ks2RadObZT2ZlpcvPyV8KRP1TJy1/eQdfLZrPqwKYlys5MUSXPKnJydtWJv9ZJyp3OinXCAACX40rFLwAAAOBaQiIMAAA4PLOTsxq0uleHd3yvk39HydXdR3VCe8u/dsg/JUw6dTBaJw5slKu7t2oF32rsC6zfWplpZ5V49E+lnj0m3+qNVSu4h8xmJyWf/FsZ505Jyp0e8djuX4zXrORVhUQYAOCyXKn4BQAAAFxLSIQBAIBrgpd/bTXp8liB+wLrhyuwfniB+0xms2o3u021m+Vf98s7sL5a3DGhVNsJAMD5rkT8Ol/lqnWJZQAAAHBoLGABAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDci7rBgAAAAAAAAAAHEPyyQM6tusXZaScltnJRd6BDVQr+FY5u7or9cwxHdnxvdKTT8rVw1c1GneWX40mkiRrdpaO7PxRZ+P2Kic7Q26e/qresKP8ajYx6j51MEYnDmyUJT1JlTz9dd1N3eQTdENZnSqACuKKjgg7ePCgwsLCtGzZMmPb7t27FRERodDQUHXp0kXz5s2zO8ZqtWrmzJnq2LGjQkJCNHjwYB06dMiuTHF1AAAAAAAAAACuruzMNO3fFKlsS5oC6oWrctW6Sjy6Q0d3rlJ2Zpr2rf9EGedOq2rdFrLmZOvv6C+UknhEknR87286HbtZXv61FFivlXKyMvR3zFJlpp2VlJsEO/zHt3Jx81Jg/VbKykjWgU1LlJWRUoZnDKAiuGKJsKysLD3//PNKS0sztp05c0aDBg1S3bp1tXTpUo0YMUIzZszQ0qVLjTKzZ8/W4sWLNWnSJEVGRspkMmnIkCGyWCwlrgMAAAAAAAAAcHVZ0pNky8mWW+Wq8qvZRL7VG0uSzGZnnYnbLWt2pgLqhatW0//ouptukSQlHN4uScpISZAk+dVoIr8aTeTm5S+T2SyTKfcR9okDG2V2ctH1bR5Q0PXt1KjjIN3Y5TE5ubqXwZkCqEiu2NSIs2bNkqenp922JUuWyNXVVS+++KKcnZ3VoEEDHTp0SHPmzFG/fv1ksVg0f/58jRo1Sp07d5YkTZ8+XR07dtSqVavUq1evYusAAAAAAAAAAFx97j7V5Futkc7G71XyyQOSJE+/63Rd0//o2K6fJEluXv7//LeqJCn93ClJUlCDNko5fUgHY/4Z8GAyqX7Lu+Xq7q2crExlpibKuZKn/lr/sVLPHJOTi5tqBd8m98oBV/ksAVQ0V2REWHR0tCIjI/Xaa6/ZbY+JiVF4eLicnf/Nv7Vp00YHDx5UQkKC9uzZo9TUVLVp08bY7+3trSZNmig6OrpEdQAAAAAAAAAAyoZb5QA5u3qodrOe8q8VotQzR3Vs18/Kyc6d8cvklPtc1/zPf63/bHdycZeLu7f8ajRR7ZDecnb11KFtXysz9YxysjMlSdmZqark5a/aIb1lNjvr0NYvlZ58qgzOEkBFUuqJsOTkZI0ePVrjx49X9erV7fbFx8erWrVqdtsCAwMlScePH1d8fLwk5TsuMDBQcXFxJaoDAAAAAAAAAHD1JcXvVfxfa1W1TpgC6rVUnbA+cnJx08mD0TKbcxNfNmuOJMmakyVJMju7SpJit6xQRspp1Q27QwF1m6va9W2Vk5WhhCPbZXZykSSZTGbVDb1dAXWbK+j6trLZrDp36u8yOFMAFUmpT4344osvKjQ0VH369Mm3LyMjQ66urnbbKlWqJEnKzMxUenq6JBVYJikpqUR1XA5n5yu2ZBoAAFfE5cYuJydiHy4fnyMAF4v4hfKAzxGAi0HsKpm8db7yRn/ZrFbZrDkymc1y+2cKw8zUxH/K5v7X3Tvw32NtNuXkWGR2dlFOzj8jyMzOcnbNHS2WlZ6s7Kx0uVTylM1mlfRvIu1acK18joDSVqqJsBUrVigmJkZff/11gfvd3NxksVjstuUlrzw8POTm5iZJslgsxr/zyri7u5eojktlNpvk5+dZfEEAAMoJYhfKC29vFqcGUHLEL5QXxC8AJUXsKjnvwAY6tvsXnT60RSaTWennTsqakyX/WiHyq9FYx3b9rJN/b5I1J0tn4/ZKkvxrhUiSfIKu19m4Pdq/8TNVrlpXp2JjZDI7ya96Y0lSYL1wHdv1s/7asEg+gQ106tAWOTlXknfg9WV2vlcbsQu4NKWaCFu6dKkSEhLUpUsXu+0TJ07UvHnzVKNGDZ08edJuX97vQUFBys7ONrbVrl3brkzjxrkXvGrVqhVZx6WyWm1KTk675OMBAKXP29ud3k5FKI3Y5eRk5os0Lltycrpycqxl3Qyg3CB+FY34hfKC+AX8i9hVNGJXyXn4VNMNbQbo+N7VOn1oi5xc3BRQL1w1m3STk7OrGrZ/UEf+/F6nDsbI1d1H9VveLa8q10mS6ja/U8f3/Kozx3br1MFouVUOUM0mXeVWuaokKej6drLZrDp1MEYn/94kd59qqnVTd7m6Vy7LU76qiF2AvZLGr1JNhE2bNk0ZGRl22/7zn/9o5MiR6tmzp7755hstXrxYOTk5cnJykiRt2LBB9erVk7+/vypXriwvLy9FRUUZibDk5GTt2rVLERERkqTw8PAi67gc2dlcRAAAFQuxC+VBTo6VzyKAi8I1A+UB8QvAxeB6UXLegfXlHVi/wH2efjXUuOPgAvc5ObuqVtMeqtW0R4H7TSaTqjfsqOoNO5ZaWysaYhdwaUq1q0dQUJDq1Klj9yNJ/v7+qlmzpvr166eUlBSNGzdO+/fv17Jly/Thhx9q6NChknLXBouIiNC0adP0888/a8+ePXrmmWdUrVo1de/eXZKKrQMAAAAAAAAAAACQSnlEWHH8/f01d+5cTZ48WX379lVAQIBGjx6tvn37GmVGjhyp7OxsjR8/XhkZGQoPD9e8efPk6upa4joAAAAAAAAAAACAK54I27t3r93vzZo1U2RkZKHlnZycNGrUKI0aNarQMsXVAQAAAAAAAAAAALAKJgAAAAAAAAAAABwSiTAAAAAAAAAAAAA4JBJhAAAAAAAAAAAAcEgkwgAAAAAAAAAAAOCQSIQBAAAAAAAAAADAIZEIAwAAAAAAAAAAgEMiEQYAAAAAAAAAAACHRCIMAAAAAAAAAAAADolEGAAAAAAAAAAAABwSiTAAAAAAAAAAAAA4JBJhAAAAAAAAAAAAcEgkwgAAAAAAAAAAAOCQSIQBAAAAAAAAAADAIZEIAwAAAAAAAAAAgEMiEQYAAAAAAAAAAACHRCIMAAAAAAAAAAAADolEGAAAAAAAAAAAABwSiTAAAAAAAAAAAAA4JBJhAAAAAAAAAAAAcEgkwgAAAAAAAAAAAOCQSIQBAAAAAAAAAADAIZEIAwAAAAAAAAAAgEMiEQYAAAAAAAAAAACHRCIMAAAAAAAAAAAADolEGAAAAAAAAAAAABwSiTAAAAAAAAAAAAA4JBJhAAAAAAAAAAAAcEgkwgAAAAAAAAAAAOCQSj0RdvbsWU2YMEGdOnVS8+bNdf/99ysmJsbYv3v3bkVERCg0NFRdunTRvHnz7I63Wq2aOXOmOnbsqJCQEA0ePFiHDh2yK1NcHQAAAAAAAAAAAECpJ8KeffZZbd++XW+++aa++OIL3XTTTXrkkUd04MABnTlzRoMGDVLdunW1dOlSjRgxQjNmzNDSpUuN42fPnq3Fixdr0qRJioyMlMlk0pAhQ2SxWCSpRHUAAAAAAAAAAAAAzqVZ2aFDh7Ru3Tp99tlnat68uSRp3LhxWrNmjVauXCk3Nze5urrqxRdflLOzsxo0aKBDhw5pzpw56tevnywWi+bPn69Ro0apc+fOkqTp06erY8eOWrVqlXr16qUlS5YUWQcAAAAAAAAAAAAglfKIMD8/P33wwQdq2rSpsc1kMslmsykpKUkxMTEKDw+Xs/O/+bc2bdro4MGDSkhI0J49e5Samqo2bdoY+729vdWkSRNFR0dLUrF1AAAAAAAAAAAAAFIpJ8K8vb3VuXNnubq6Gtu+++47HT58WB06dFB8fLyqVatmd0xgYKAk6fjx44qPj5ckVa9ePV+ZuLg4SSq2DgAAAAAAAAAAAEAq5akRL7R582b997//Vbdu3dS1a1e98sordkkySapUqZIkKTMzU+np6ZJUYJmkpCRJUkZGRpF1XA5n51JfMg0AgCvqcmOXkxOxD5ePzxGAi0X8QnnA5wjAxSB2oTzgcwRcmiuWCPvpp5/0/PPPKyQkRG+++aYkyc3NTRaLxa5cXvLKw8NDbm5ukiSLxWL8O6+Mu7t7ieq4VGazSX5+npd8PAAAVxuxC+WFt7d7WTcBQAVC/EJ5QfwCUFLELpQXxC7g0lyRRNgnn3yiyZMnq3v37po2bZoxgqtatWo6efKkXdm834OCgpSdnW1sq127tl2Zxo0bl6iOS2W12pScnHbJxwMASp+3tzu9nYpQGrHLycnMF2lctuTkdOXkWMu6GUC5QfwqGvEL5QXxC/gXsatoxC6UF8QuwF5J41epJ8I+/fRTvfzyyxo4cKD++9//ymz+txHh4eFavHixcnJy5OTkJEnasGGD6tWrJ39/f1WuXFleXl6KiooyEmHJycnatWuXIiIiSlTH5cjO5iICAKhYiF0oD3JyrHwWAVwUrhkoD4hfAC4G1wuUB8Qu4NKUalePgwcPasqUKerevbuGDh2qhIQEnTp1SqdOndK5c+fUr18/paSkaNy4cdq/f7+WLVumDz/8UEOHDpWUuzZYRESEpk2bpp9//ll79uzRM888o2rVqql79+6SVGwdHhjTIAAA5V1JREFUAAAAAAAAAAAAgFTKI8J++OEHZWVladWqVVq1apXdvr59++rVV1/V3LlzNXnyZPXt21cBAQEaPXq0+vbta5QbOXKksrOzNX78eGVkZCg8PFzz5s0zplf09/cvtg4AAAAAAAAAAACgVBNhw4YN07Bhw4os06xZM0VGRha638nJSaNGjdKoUaMuuQ4AAAAAAAAAAACAVTABAAAAAAAAAADgkEp1RBgAAABQlsxmk8xmU1k3AxWY1WqT1Wor62YAAAAAAEoJiTAAAAA4BLPZJD8/d5nNTmXdFFRgVmuOzpxJJxkGAAAAAA6CRBgAAAAcQu5oMCcdXDlH6QlxZd0cVEDu/tVVr/cQmc0mEmEAAAAA4CBIhAEAAMChpCfEKf3E4bJuBgAAAAAAKAfMZd0AAAAAAAAAAAAA4EogEQYAAAAAAAAAAACHRCIMAAAAAAAAAAAADolEGAAAAAAAAAAAABySc1k3AAAAAAAA4FpmNptkNpvKuhmooKxWm6xWW1k3AwCAcotEGAAAAAAAQBkxm03y83OX2exU1k1BBWW15ujMmXSSYQAAFIJEGAAAAAAAQBnJHQ3mpIMr5yg9Ia6sm4MKxt2/uur1HiKz2UQiDACAQpAIAwAAACqob/88pk+i/tYDreqpd/B1kqRT5zL0SdTf2nH8rJxMJrWoU0WD2l2vSs65Iw3W/HVCX24/ojNpFtWt4qmH212v2lU8JUlHElP1afRBHTydIqvNpkZBPopoXU9B3u5ldo4AcK1IT4hT+onDZd0MAAAAh2Mu6wYAAAAAuDjZVqu+3H5Eizb9bbc9MztHk77boT+OnVG3RtVUv6qX1vx1UoujYyVJO46d0Xtr9kmSbm5YTQcTUjTlux1Kt2TLZrPpzZ92aXdcktrWD1BorSrafDhBM37ZfbVPDwAAAACAUsOIMAAAAKCCGb10i06cS1dQZXfFJ6cb26NjE3TqXIbuCqut25vVUqolWwmpmQrwqiRJWr3vhCTp4bYNFFzTT1abTT/sOq6tRxLVtn6A/ntbsLKtNrm7OOmPY2e0dv9JOZvpOwcAAAAAqLhIhAEAAAAVTJPqPnqiSyNtPZKoZVv/nUYrNiFFknTg1DkN+WS9snJsalbTT090aSRJOno2TZJU3Sd3qsMa//z36Jk0mUwmBVR2kyTN+GW3og6eVhVPV+NYAAAAAAAqIhJhAAAAQAXzaIcbJElbjyTabU+zZEvKTYg92KaB9p88p9V/ndCHGw/oyS6NlZGVI0lyccod5eXinPvfjOwcu3raNwhUg4DKWhITq6k/7tSUO8Pk+s8aYwAAXK6C1rgsbPt7a/ZqzV8n89VR1auSZt7Xym7b2v0nNXv1XnW6IVDDOtGRAwAA5CIRBgAAADiISv8kq7rfWF3dGlfXzY2qKfrQaW0/cuaf/bmJr+wcmyTJkm2VJLldkORqWcdfknTwdIo2/H1KO46dVYt/tgEAcKmyrVZ9s+OYlmyOLdF2SWpdN0A1fDyM3/84dka74pLUtl6AXbn45HQtWL//SjQbAABUcCTCAAAAAAdRx99TkpSUniVJstlyf9xccxNgNXw9dORMmuKT0+XvVUlxSbnri13n56GzaRZNW7VTAZXd9FTXGyX9O8LM3ZXRYACAy1fYGpeFbZeksNpVFFa7iiQpISVTX/1xVDfV8FX/8LpGmWyrVW//ukfZVttVOQ8AAFCxkAgDAAAAHESrulW1JCZWv+yNl8kknU7JVHpWjro1ri5J6nh9oKIOntbCDfsVel0Vrf7rhLzdXBRWq4rcXZ1lNpkUdfC03luzV2aTSX8cPaM6VTzVMNC7jM8MAOAIClvjsrDtF/po4wFZsnP0WIcbZDKZjO1LYg7pUGKq+resq0WbDl7RcwAAABWPuawbAAAAAKB0eLg667+3BatxNR/9uveEYhNS1KfZdbqnRR1JUvPa/nq8U0PZbNLPe+NVp4qnxt7aVO6uuf3jnr2lido3CNCWw4nafDhB7RoE6IUeTeXsxG0DAODyPdrhBjUIqFzi7ec7nJiqmEMJurlRNQVUdjO27zh2Rt/sOKp7mtdRvapepd5mAABQ8TEiDAAAAKig7m5eR3c3r2O37To/T427LbjQYzreEKSONwQVuM/Xw1VPdGlcqm0EAKA0/LwnTjZJNzeqZmxLzsjSu6v36jo/D4XX9deBUymSpPSsHJ06l2GXMAMAANcuEmEAAAAAAAAo17YeTlRVr0qq6//vqK+jZ1J1Nj1LZ9Oz9NwXm43t0bEJOng6RTPva1UWTQUAAOUMibBSZjabZDabii/ogDIzMzVoUIT+/vuAli1bqblz39e3336dr1y1atW1YsU3Sk1N0ezZs7R69a86dy5FYWHN9dxzo1WrVu0yaH35YLXaZGVxXwAAAAAADGfTLDqdmqk29arabb/O10NPdf13JPPRM2lauvWwmlT3Ue/g6652MwEAQDlFIqwUmc0m+fp6yOkaXUNh4sTX9fffByRJPj7uuuOO3rrxxobG/rVr1yoqKkq9e/eSn5+nJk2aoJUrV6p3797y9/fX4sWL9fTTT+jbb7+Vm9u1OX1BTo5VZ8+mkQwDAAAAAOAfiWmZkqSqXvbPCrzdXdW6XoDxe2W3s9JWqapXJYXWqnI1mwgAAMoxEmGlyGw2ycnJrHc+W6djJ5PKujlX1bG/d2jj94tldnKRNSdLUxf8Jk/vKpJye2ClnTujLdv+UMB1NyjRpYn+O+Nbff/jT3J181Sl2t2UIqlWo4Pa/8caPTbqDV13fViZnk9ZqBnooyfuby+z2UQirIytWfObPvlkoWJjD8rDw0NdunTTsGFPys3NTbt2/akZM97Q33/vV1BQdT3yyGO6+eZbJEnZ2dmaN+99rVr1vc6cSVSNGjUVEfGwevToWcZnBAAAAADlR0FrXBa1vX7Vyvr0kY7F1tukum+JygEAgGsLibAr4NjJJMUeO1PWzbhqLOnJ2vXrZ/Kt3ljZlnSlJBzS0RNJqnTu3ykiD2xaouwsi4JuvE2Hjp+VJDlX8lbGuVPaErVGlbz8dfzQX5KkQ7F/K9u9bhmcCSAdO3ZU//vfC6paNUB33tlPu3b9qS++WCwnJ7MGDhysZ555QiaTSbfffpd+//03TZgwVu++G6imTZtpwYI5+vjjBQoNba4ePXpq5cov9fLLE1SlShWFh7cp61MDAAAAAAAAgGsOiTBcFpvNpoObl8vs5Kw6oX10YNOSfGXSk0/obNweBdRtqUoevsb22s1u04HoJTq4ebkkyd07UJJkzc66Km1H8a7FNe9q1Kiuzz5bKg8Pd6WlpSs7O0vbtm1RpUqVtHbtr0pNTdVDDw3W448/qdDQUI0dO0rff79SoaGhOnXqhGrXrqPXX39T3t7eqlKliqZPn6pt27aobdt2ZX1qVx1r3gEAAAAAAMCRFTWz1JIln2rp0iU6deqkqlTx12239dbgwY/JZLq2nreWBxU2EWa1WvX222/r888/V3Jyslq0aKGJEyeqTp38Q+hx5cTvW6uUhEOqHdJL2ZZ0WXNyk1iWtLNydnGXk0slnYrdIkmqWre53bGVq9ZR8C0jlHrmuFzcvHTudKyO7PheTi6Vrvp5ID+z2SQ/P3eZzU5l3ZSrLjDQV5LUtm1bJSYmqlWrVho16lm9/vrrkqQmTRrJz89TzZo1kSQdPhwrPz9PTZ/+hl09O3ZslSTddFNj+fl5Xr0TKCes1hydOZNOMgwAAAAAAAAOp6iZpVq0aKWZM9/UTTcFq2vX7tqyJUYLFsxRjRo1ddttvcu66decCpsImz17thYvXqxXXnlFQUFBmjp1qoYMGaKVK1fK1dW1rJt3zUg+9bck6fD2b+y271v3keqE3a6qtUOVFL9Pru4+8vCpZlfmVOxmnTsdq1pNe8jFzUsn9m+QJHn4VL86jUeRckeDOengyjlKT4gr6+ZcdVabTfe3uUH74xL1w6ZNGvnAHcbouFMbvtaupD8Uf+acJCnx6EHt+vD/jGNzrFbN/TFGP235S3UD/VQ3YYt2fbi9TM6jrLj7V1e93kNY8w4AAAAAAAAOKTAwSJ988rnc3T2Unp4mi8Wibdu2yMXFVYcPx0qSQkObq2vXW5Sdna2dO3eoUiW3sm30NapCJsIsFovmz5+vUaNGqXPnzpKk6dOnq2PHjlq1apV69epVxi28dtRo3FnZljTj9+N7Vivj3CnVbtZTlavWVVZGiizpSfKreVO+Y63ZFp05tlPZmWly8/JXwpE/VMnLX95B11/NU0Ax0hPilH7icFk3o0y0r+6qdtWCtGnvIf264291uiFIkpSaeFLpJ0w6dyZVkuRqyjHeo8zsHM36dY+2HE5UnSqeGt2tobJPH1N2mZ0FAAAAAAAAgNLm4uKiWrVqS5J69+6us2fPKCyshQYPfkznziXrq6+Wa9GiD7Vo0YeSpPvue0Bdu95Slk2+ZpnLugGXYs+ePUpNTVWbNm2Mbd7e3mrSpImio6PLsGXXnspV68qvRhPjx9nVQ5LkHXS9Knn4ypKRLElydffOd2xg/dYKqBeutKR4JRz9Q77VG6thu4HX5FR8KD+2Hz2jMcu36JsdRyVJ2VabLNlWOZtNqlMld3rDE+cyJElxSemSpFp+uZ/7zOwcvfr9n9pyOFHNavppQq9m8vVghCoAAAAAAADgqKxWq4YNe0J33tlPW7du1tSpU1Spkpuuu66WGjZspLFjJyg4uJmWLPlMq1f/UtbNvSZVyBFh8fHxkqTq1e2n0AsMDFRc3LU3hVt50qjDQ3a/e/rWUIs7JhRY1mQ2q3az21S72W1Xo2lAidSu4qmElEx9seWQzqZbFHs6RamWbHW/sbra1A/Q51sO6fudx5WZnaOYQwkyScZIsU+i/tbeE8lydTKrYZC3Vu3OvR7Vq+ql4Jp+ZXhWAAAAAAAAQOnJXVbFVNbNKCfMuvPOu2Sz2bRu3Rp9991Kmc0mrV+/VjNmvKPWrduqUaNGevjhAfrii8Xq1o1RYZJktdqu2pIqFTIRlp6eOwrjwrXAKlWqpKSkpEuq02w2qco/oz0ulemf/+9feKSrcnKsl1UXrj1OTrkDNH183GUrB0sq5X2eb7j7admsOWXbmKts3m279caMWfp19x75+nhr6KP9NPSRQXJxcdHC23br1Wlv6pe/9qt6tWqa+t8h6nFLN6VnZGjNR90lSZYcq77Ycsior/89d+uBx58vq9MpE6Z/RnZe7ueZL1RFI3ahrBG74GiIX1cH8QtljfgFR0LsujqIXShr5S12Sbn/X5hM1/a14/fff9fUqVN15513avDgwbJYLLJYLHJxcVFy8tl/SmXLz89Tzs65fzhPTw/5+V3e9cRR2GyXnwgrafyqkIkwN7fcBeUsFovxb0nKzMyUu7v7JdVpMpnk5FQ6/+P6eLHgHS6d2Vy+Zix18cw/raWjC2vdTp982q7QfZGf59/nWln6888/r3TTKpzy9nl2NMQulBfl7f/1azF2oXSVt8+0oyF+obwob/+vE79wOcrb59nRELtQXvD/evnSqFEjxcfHa9asWTp16pR27dqlpKQkPfDAA6pfv75+//13TZ48Wbt379b3338vSerdu3cZt7r8KM1ra3EqZCIsb0rEkydPqnbt2sb2kydPqnHjxmXVLAAAAAAAAAAAcA0IDAzUvHnz9Prrr2vx4sXy8/PT8OHD9fjjj8vV1VVms1mffPKJFixYoOrVq2v8+PHq27dvWTf7mmSy2crLYMqSs1gsatu2rcaMGaN77rlHkpScnKyOHTtqypQp6tWrVxm3EAAAAAAAAAAAAGWtQo4Ic3V1VUREhKZNm6YqVaqoZs2amjp1qqpVq6bu3buXdfMAAAAAAAAAAABQDlTIRJgkjRw5UtnZ2Ro/frwyMjIUHh6uefPmydXVtaybBgAAAAAAAAAAgHKgQk6NCAAAAAAAAAAAABTHXNYNAAAAAAAAAAAAAK4EEmEAAAAAAAAAAABwSCTCAAAAAAAAAAAA4JBIhAEAAAAAAAAAAMAhkQgDAAAAAAAAAACAQyIRBgAAAAAAAAAAAIdEIgwAAAAAAAAAAAAOiUTYNa5r167q0qWLUlJS8u0bM2aMBg4ceMXbMHDgQDVv3lzHjx/Pt2/WrFnq2rVrvu1Wq1VdunRR06ZNlZCQcMXbCHTt2lWzZs0q62YAELELKCliF1C+EL+AkiF+AeUL8QsoHrGr/CMRBsXFxenVV18t0zakpqZq/PjxJS6/fv16nT17Vv7+/lq6dOkVbBmQ64svvtDgwYPLuhkA/kHsAopH7ALKH+IXUDziF1D+EL+AohG7yj8SYVCtWrX0+eef6/fffy/TNqxbt06RkZElKr906VK1aNFC3bp1U2RkpKxW6xVuIa51VapUkaenZ1k3A8A/iF1A8YhdQPlD/AKKR/wCyh/iF1A0Ylf5RyIMuv3229W2bVv973//K3CYc56zZ8/qpZdeUufOndWsWTPdf//9iomJMfbPmjVLAwcO1Jw5c9SpUycFBwfrwQcf1N9//11sG1q2bKl+/frptddeK3CY8/mSkpL0008/qX379rr11lt19OjRMg3EKP8aNWqkZcuW2W07f8jysmXL1LVrVy1fvlzdu3dX06ZN1a9fP23durXA8pL0+eef6z//+Y9CQkI0ZMgQzZs3z24ofnGvKUlbtmzRgAED1KxZM3Xp0kUvvfRSkf8PAvgXsQuOjtgFOCbiFxwd8QtwTMQvODJi17WBRBhkMpk0efJkJScn65VXXimwTE5OjgYPHqyYmBi99tprWr58uRo3bqyHH35YO3bsMMpt3bpV0dHR+uCDD7Rw4UIdP35cL730UonaMXbsWFWuXFnjxo0rstzKlStlsVj0n//8Ry1btlRgYKAWL15c8hMGCnDy5EktXrxYU6dOVWRkpMxms1544QXZbLZ8Zb/++mtNnDhRAwcO1IoVKxQWFqYZM2Zc1Ovt2bNHDz/8sNq3b6+vvvpK06ZN086dOzV48OACXxOAPWIXQOwCKiLiF0D8Aioi4heudcSuio9EGCRJNWvW1KhRo/TFF18U2ENi7dq12rlzp9544w21adNGDRo00IQJE9SwYUPNmzfPKJedna3XX39djRs3VosWLTRw4EBt3ry5RG2oXLmyXn75Za1fv77I4LR06VKFhobquuuuk9lsVs+ePbV69WrFxcVd/IkD/8jKytKLL76o0NBQ3XTTTRo6dKgOHTqkU6dO5Sv74YcfqmfPnho4cKDq1aun4cOHq0OHDhf1evPmzVPbtm01fPhw1a1bVy1bttQbb7yh7du3a9OmTaV1WoBDI3bhWkfsAiom4heudcQvoGIifuFaRuyq+EiEwdC/f/9Chznv27dPlStXVsOGDY1tJpNJLVu21N69e41tVatWla+vr/F75cqVlZWVJUl67733FBYWZvxMmDAhXxs6deqkfv366fXXX9exY8fy7d+7d6927typ2267zdjWq1cv5eTkaMmSJZd87oAkNWjQwPh35cqVJcn4/J5v//79atasmd22Vq1aXdRr7dq1S+vWrbP7f+L222+XJB04cOBimw5cs4hduNYRu4CKifiFax3xC6iYiF+4lhG7Kjbnsm4Ayo+8Yc59+vTJN8zZZrPJZDLlO8ZqtcrZ+d+Pkaura6H19+/f3y4IeXl5FVhu7NixWrduncaPH6/mzZvb7Vu6dKkk6bXXXtPrr79ut++LL77QE088YdceIM+Fw4YLClQFfX4LG2584faSHHv+a1qtVvXp00fDhg3Ld1yVKlUKfE0A+RG74MiIXYDjIn7BkRG/AMdF/IKjInY5PkaEwU7NmjU1evRoffHFF3aLWTZq1EjJycnat2+fXfnNmzfr+uuvL1Hdvr6+qlOnjvHj7+9fYLnzhzl/9dVXxvasrCx9/fXX6tChg7788kutWLHC+Bk+fLhOnjypX3755RLOGo7OxcVF586dM35PSUlRYmLiJdfXpEmTfMP2z5/vuiSvecMNN+ivv/6y+38iJydHr7zyCkP1gYtE7IIjInYBjo/4BUdE/AIcH/ELjobYdW0gEYZ8+vfvr3bt2unIkSPGtvbt26tRo0Z67rnnFBUVpQMHDuill17Svn379NBDD5V6Gzp16qS7775bhw8fNrb9+uuvSkxM1KBBg9SwYUO7n0ceeUSVK1fWZ599VuptQcUXFhamyMhI7dy5U/v27dPo0aMvq/fP0KFDtWrVKs2ZM0exsbFatGiR3Revkrzm4MGDtXv3bk2YMEH79+/X9u3b9fzzz+vgwYOqW7fuJbcNuFYRu+BoiF3AtYH4BUdD/AKuDcQvOBJi17WBRBgKNGnSJHl6ehq/Ozs7a8GCBbrxxhs1YsQI9evXT/v27dPChQsVGhp6RdowduxYVa9e3fh92bJlqlu3rtq3b5+vrJeXl+69915t2LBBhw4duiLtQcX14osvKiAgQP3799eQIUPUqlUrhYWFXXJ9nTt31ltvvaVly5apd+/e+umnn9SvX7+Les3Q0FDNnTtX+/bt01133aXHHntMtWrV0oIFC4qcJgBA4YhdcCTELuDaQfyCIyF+AdcO4hccBbHr2mCyFTaRJQCgxGbNmqXly5czxB4AUGEQuwAAFRHxCwBQ0RC7yh4jwgAAAAAAAAAAAOCQSIQBAAAAAAAAAADAITE1IgAAAAAAAAAAABwSI8IAAAAAAAAAAADgkEiEwc4rr7yihQsX5ttusVjUp08fjRkzpsjjs7KyNH36dHXp0kVhYWF64IEHtGXLlkLLjx8/Xl27di2yziNHjui+++5TWFiYhg0bpuTkZGOf1WrVHXfcodWrV9sdk5qaqltvvVXHjx8vsm4AQPlXWGyKjo7WjTfemG/7mTNn9Nxzzyk8PFzh4eH63//+p7S0NLsy3333nXr27Kng4GD16dNHa9asKbINVqtVM2fOVMeOHRUSEqLBgwfr0KFDdmV2796tiIgIhYaGqkuXLpo3b16RdRLfAODacn48s9ls+vjjj3XbbbcpNDRU9913n9avX29X/siRIxo2bJhatWql9u3ba9KkSUpPTy/yNTZs2KB77rlHYWFh6tGjhz755BO7/ampqXr55ZfVuXNntWjRQsOHD9fhw4eLrPODDz5Q69at1aVLF33zzTd2+3744Qfdc889+Y5ZsGCBJk+eXGS9AIDy78J7sa+//lq9evVSSEiIevbsqaVLlxZ4nNVq1SOPPKJZs2YVWf/AgQPVqFGjAn9WrFiRr/zBgwcVFhamZcuWFVkvsQvAhUiEwbB161b9+uuvGjBgQL59r7/+uvbt21dsHe+++66WLl2qSZMmacWKFapfv76GDBmiEydO5Cv7008/6fPPPy+2zqlTp6pBgwZasWKFsrOz9f777xv7vvzyS/n4+Khz5852x3h6eurRRx/V+PHji60fAFB+FRaboqKiNHz4cFmt1nzHjBw5UkeOHNHChQs1c+ZMrVu3Ti+99JKxf+PGjRo1apQeeOABrVixQh06dNATTzyhAwcOFNqO2bNna/HixZo0aZIiIyNlMpk0ZMgQWSwWSbnJt0GDBqlu3bpaunSpRowYoRkzZhR6YygR3wDgWnJhPJszZ45ee+01DRgwQCtWrFDv3r01bNgwbdq0SZJ07tw53X///UpKStLcuXP13nvv6c8//9QTTzxR6Gts27ZNgwcPVpMmTfTFF1/ohRde0Hvvvad3333XKPP0009r1apVevHFF7VkyRL5+/vr/vvv15kzZwqsc9++fXr33Xf13nvvacKECRo3bpzOnj0rScrOztabb76p0aNH5zsuIiJCa9asUUxMzKW+ZQCAMnZh7NqwYYPGjBmjgQMHauXKlRowYIDGjx+vX3/91e64jIwMjRo1SmvXri32NWbNmqW1a9fa/XTp0kX169fXLbfcYlc2KytLzz//fL5OjhcidgEoCIkwGN544w0NGDBALi4udtt///13fffdd7rhhhuKrePnn39W79691aFDB9WpU0djxoxRSkqKtm3bZlfu5MmT+t///qdWrVoVW+f+/ft12223qU6dOurWrZv++usvSVJmZqZmzZqlUaNGFXjcnXfeqd27d+frWQkAqDgujE3Z2dmaNGmSBg8erFq1auUrv3XrVm3atEmvvPKKbrrpJrVt21b/93//py+//NLolDFnzhx1795dERERatCggV544QXddNNN+vDDDwtsg8Vi0fz58zVixAh17txZjRs31vTp03XixAmtWrVKkrRkyRK5urrqxRdfVIMGDdSvXz89/PDDmjNnTqHnRnwDgGvHhfFs7ty5evDBBxUREaG6detq4MCBuv322/XOO+9IkpYvX66UlBS98847atasmYKDgzV9+nStX7++0Ad0c+fOVdOmTfXSSy+pQYMG6tq1q0aPHq33339fFotFe/bs0Zo1a/Tyyy/r5ptvVoMGDfTSSy/Jy8tLn376aYF17t+/Xw0bNlRYWJi6du0qT09PYwRZZGSk6tWrp/Dw8HzHubi4aMCAAXrjjTdK4+0DAJSBC2PXL7/8okaNGql///6qVauWBgwYoMaNG9slvLZs2aK+fftq+/bt8vb2LvY1fH19FRAQYPxERUVp7dq1euutt+Tl5WVXdtasWfL09Cy2TmIXgIKQCIMkaceOHdq8ebN69uxptz0xMVFjx47Vyy+/LD8/v2Lr8fX11a+//qqjR48qJydHkZGRcnV1tZu6ymazacyYMbrjjjtKlAirVauWNm/eLKvVqq1btxoPPj/88EOFhIQoODi4wOOcnZ3VvXv3YqemAgCUTwXFprS0NP3555+aP3++IiIi8h0TExOjgIAANWjQwNjWqlUrmUwmI5Zs2bJFbdq0sTuudevWhT5Y3LNnj1JTU+2O8fb2VpMmTRQdHW28bnh4uJydnY0ybdq00cGDB5WQkFBgvcQ3ALg2XBjPEhMTlZSUlO8h3I033qjNmzcrJydHBw8eVP369VWlShVjf/Xq1eXn52eMGrvQwYMH1bJlS7ttTZo0UXp6uv744w8dPHhQkuzKmM1mNW7c2IhnF6pVq5ZiY2N1+vRpHThwQMnJyapRo4ZSU1P17rvv6rnnniv0vG+99VZt27YtX6dIAED5V9C9mK+vr/bv36+NGzfKZrMpKipKBw4cUEhIiFHm999/V/fu3bVixQpVrlz5ol4zLS1Nr7/+uh566CE1atTIbl90dLQiIyP12muvFVsPsQtAQUiEQVLuNIVNmzZVQECA3fZx48bp5ptvLnYdr/PLOzs7q1u3bkavxbfeeku1a9c2yixcuFCnTp3Ss88+W6I6n3rqKS1dulRNmzbV7t279dhjj+ns2bNauHBhsXV07dpVUVFRSk1NLdFrAQDKj4Jik7e3txYvXqzWrVsXeMyJEydUvXp1u22urq7y9fVVXFyckpOTlZaWpmrVqtmVCQwMVFxcXIF1xsfHS1K+es8/Jj4+vsA6JRW6nhfxDQCuDRfGMx8fH7m6uuaLO8eOHVNWVpaSk5MVEBCgU6dOKScnx9ifkpKipKSkQjtYBAQEFFinJCUkJBivnxfXzi9TWJ3BwcG69dZb1bFjR91xxx165plnVLVqVc2ZM0edO3cuctaQwMBANWnSRL/88kuhZQAA5VNB92IPPvig2rVrp4ceekg33XSTHnzwQT344IO6/fbbjTJPPfWUnn322XyjuUpi8eLFSk1N1eOPP263PTk5WaNHj9b48ePz3ZMVhNgFoCAkwiApdz75hg0b2m1bvHixDhw4oLFjx5a4ngMHDsjb21vvvPOOIiMjddddd+mFF17Qnj17JOX2qn/77bc1depUubq6lqjOJk2a6LffftPq1av19ddfKygoSLNnz1bPnj0VGBiosWPHqnPnzho5cqSSk5Ptjm3UqJGysrK0e/fuEp8DAKB8KCg2FSc9Pb3A+FKpUiVlZmYqIyNDkvKVydtfWJ3FHZORkVHgfkmF1kt8A4Brw4XxzMnJSXfccYfeffddbdu2TVarVRs2bDDWlbRYLOrVq5eSkpI0ZcoUpaamKjk5WRMnTpTJZDLWp7zQXXfdpR9++EErVqxQVlaWDh06pLfeess4JiQkRA0aNNDEiRMVFxcni8WihQsXavfu3YXWKUkvvfSSoqKiFB0drcGDB+vkyZNavHixRo4cqfXr16tXr17q0aOHvv/++3zHNmrUSNu3b7/MdxAAcLUVdC8WFxens2fPasKECVq6dKnGjBmjjz76SMuWLbvs18vJydHHH3+sBx54IN9IshdffFGhoaHq06dPiesjdgG4EIkwSJJOnz5tN+3G33//ralTp+r111+Xh4dHieo4duyYRo0apeeee0633HKLgoOD9X//939q2LChZs2apczMTD3//PN6/PHH1bhx44tqn5OTk9EL5ciRI/rqq680fPhwffbZZ0pMTNSqVavk6+urt99+2+64vHM6derURb0eAKDsXRibSsLNza3Ah3mZmZny8PAwklMXlsnMzJS7u3uhdRZ3TEGvm5cAKyqOEt8AwPEVFM/GjBmjNm3a6IEHHlDTpk316quvasiQIZKkypUrq06dOpo1a5Z++ukntWjRQp06dVKNGjXUtGnTQnvZ33777XrmmWf00ksvKSQkRA888IAeeugho04XFxe98847ysrKUpcuXRQWFqbo6Gjdfffdxfbc9/b2NmLezJkzde+998rPz0/PP/+8Xn75ZX3wwQeaMGFCvrhUpUoVnT59+pLeNwBA2Skodo0cOVIdO3bUgAEDdOONN2rQoEEaPHiwXnvtNVmt1st6vU2bNun48eO699577bavWLFCMTExevHFFy+6TmIXgPORCIMkyWQy2QWtb7/9VqmpqRo0aJDCwsIUFhammJgYff311woLCytwmqc//vhDWVlZ+dY0CQkJUWxsrLZv366//vpLb7/9tlHn+++/r+PHjyssLExfffVVido6ffp0PfTQQ6pSpYqioqLUuXNnubq6qlu3bvnWd8k7Jycnp4t9SwAAZezC2FQS1apV08mTJ+22WSwWnT17VkFBQfL19ZWHh0e+MidPnsw3tWGevOk3ijqmoNfN+z0oKKhEbSe+AYBjKiieeXl5aerUqdq6datWr16tL7/8Uu7u7goICDA6UHTu3FmrV6/W77//ro0bN+q5557TkSNHVLdu3UJf67HHHtPmzZv166+/as2aNWratKlsNpvq1KkjSapXr54iIyO1adMmbdiwQe+8847Onj1bZJ3nO3DggH799VcNGTJE+/fvlyQ1b95cderUUZ06dbRjxw678jk5OTKbeewAABXNhbErMTFRBw8ezPfMLzQ0VGfPntXZs2cv6/V++uknNWvWzFg3Oc/SpUuVkJBgdOAICwuTJE2cOFG9evUqUd3ELgASiTD8IygoSImJicbvERERxrQaeT9NmzZV165dtWLFCmPdk/PlPSjcu3ev3fZ9+/apTp06atasmX788Ud9+eWXRp39+/dXYGCgVqxYUaJ1yP7880/FxMTo4YcflpS7uHPevPlZWVn5bjDz5rq/cO0zAED5d2FsKonw8HDFx8fr0KFDxraoqChJuTc7JpNJzZs316ZNm+yOi4qKUosWLQqss3HjxvLy8jLqkXLnqd+1a5datmxpvO7mzZvt1nLZsGGD6tWrJ39//2LbTXwDAMdVUDwbN26clixZokqVKhnX8u+//14dO3aUJG3evFkRERGyWCwKCAiQm5ubNm3apDNnzqhdu3YFvs6iRYs0ceJEmc1mBQUFycnJSd9//72uu+461atXTykpKYqIiNCff/4pHx8feXt769y5c1q/fr3xusWZOnWqHnvsMVWuXNkuVkkFx6szZ84UeO8IACjfLoxdvr6+cnd3L/CZn7e390XP5HGhzZs3q02bNvm2T5s2Td9++63d80kpd3TaBx98UKK6iV0AJBJh+EezZs20c+dO43dfX1+jZ0Tej5ubmzw9PVWnTh05OztLyu0Rcu7cOaOOli1b6oUXXtDGjRsVGxurt956Sxs2bNBjjz0mNze3fHX6+PjI2dlZderUKdFCmq+//rpGjBhhDG0OCQnRV199pQMHDmjp0qVq3ry5Xfldu3apUqVKFz0VIwCg7F0Ym0oiJCREzZs31zPPPKM//vhDGzdu1MSJE3XnnXcaI7MGDRqkb775RgsWLNCBAwf0+uuva/fu3cb0UZJ9fHN1dVVERISmTZumn3/+WXv27NEzzzyjatWqqXv37pKkfv36KSUlRePGjdP+/fu1bNkyffjhhxo6dGiJ2k18AwDHVVA8q169umbMmKENGzbo8OHDeumll7Rr1y4NGzZMktSgQQP99ddfmjJlio4cOaL169fr2WefVf/+/Y3e8hkZGTp16pTxQO/666/X559/rs8//1zHjh1TZGSk3nvvPT333HOSckehmUwmTZkyRXv37tWePXs0bNgw1ahRQ7179y72PKKjo/XXX3/p/vvvlyTVqVNHNptNy5cv19q1axUbG5tvpMDOnTsVEhJyeW8gAOCquzB2mc1mPfTQQ3r33Xe1YsUKHTlyRCtWrNB7771X4nseKX/sknJHYO3fv7/A9aGDgoLyPUuUJH9/f9WsWbPY1yN2AchDIgySpFtuuUV//fXXRfe8v/vuuzV58mRJuUFx9uzZatOmjcaOHau77rpLGzdu1MKFCxUaGnrZbVy9erVOnz6tu+66y9g2YMAAVatWTffcc4+ys7P15JNP2h2zceNGtWvXrtB1XwAA5delxCaTyaS3335b1113nR566CE9/fTT6tSpk92c8h06dNCUKVP02WefqW/fvtq4caPee+89NWjQwChzfnyTcnsc3n333Ro/frzuv/9+OTk5ad68eXJ1dZWUeyM2d+5cHTx4UH379tXbb7+t0aNHq2/fvsW2mfgGAI6toHg2bNgw3XHHHRo1apTuuOMOxcbG6uOPPzYe8Pn6+uqDDz7Qnj171KdPH40bN079+/fX+PHjjTq+/fZbdejQQXFxcZKk1q1ba/LkyZo7d6569uypRYsWaerUqerZs6dxzBtvvKGqVasqIiJCDz30kGrVqqUFCxYYHR2L8vrrr+uZZ54xYp+7u7umTJmiGTNmaMyYMXrxxRftpgNOSEjQX3/9pW7dul3eGwgAuOoKil0jR47UiBEj9P7776tPnz6aO3euRo0apUceeaTE9V4YuyTp7NmzysrKkq+vb2megiRiF4B/mWw2m62sG4HyYcCAAeratetFBbDyLDMzU506ddJbb72ltm3blnVzAACXwNFiU2kgvgFAxXMtxrM5c+bot99+06JFi8q6KQCAS0DsAuBIGBEGw9NPP63PPvtMFoulrJtSKpYvX67GjRvzkBAAKjBHi02lgfgGABXPtRbPLBaLFi9erKeffrqsmwIAuETELgCOhEQYDOHh4erSpYs+/vjjsm7KZUtNTdX8+fM1adKksm4KAOAyOFJsKg3ENwComK61ePbRRx+pc+fOCg8PL+umAAAuEbELgCNhakQAAAAAAAAAAAA4JEaEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAKYLVay7oJhSrPbQOAgnDdAgDgyiLWAoUjEYZLNnDgQDVq1KjIn6NHjxZZR165b7755rLbM2vWLDVq1Ei33nqrsa1r165q1KiRPvjgg8uuvzxZtmxZvve6cePGCgkJUY8ePfTee+/JZrOVWfsK+ltcCXnvQ3BwsLEt73M5YcKEK/raAK5debGlUaNGuuWWW+z2xcXF2V2bx4wZI0n5rtk33nijQkJC1L17d7333nt2Nyznl3vooYfs6o+OjrbbP2vWrEtqe3FxccyYMWrUqJEeeeSRi6q/JLKystS+fXs1atRIYWFhSklJuajjS7ttBX0X2bt3rx588EEdP368VF7jQlFRUcbrnjp16qKOPXr0qEaOHKmYmJgr0jYA5duVjkFSya7TF3MdS01N1RtvvKG5c+de1LkePXrUeI1t27ZJKvj7f1k5/z04/54sODhYXbt21WuvvSaLxVLmbbuYOHM58QkAHNkrr7xiXB+/+OKLizq2tK+tBd0PXWqsLavr/tV6bgicj0QYLpuHh4eCgoIK/HF2di7TtgUEBCgoKEienp5l2o4rKe+9rlq1qkwmk2JjYzV9+nTNnj27rJt2xbm7uysoKEjVqlUr66YAuEYdOXLErtPHhg0biizv6+uroKAg+fj4yGKx6PDhw5o+fbqmTZtWYPktW7YoMzPT+H3jxo2l0/Ay9Ntvv+n06dOSpLS0NH399ddl2p68OOrm5iYpNwnWt29fRUVFlWm7CnL27Fn17NlTP/zwQ5l2eAFQPlypGFTa1+mHHnpIH3zwgV08KwlnZ2fjGu3q6npZbbjS8u47q1atKhcXFx07dkzz58/Xiy++WCbtcXV1Nd47JyenMmkDADiKrKwsffXVV8bvS5YsKcPWSD4+PgoKClKVKlWMbZcaa8uKl5eXgoKCFBAQUNZNwTWERBguW58+fbRmzZoCf8o6QREZGak1a9ZowIABZdqOK8XV1dV4r9euXavo6GijN8Vnn31Wxq278m677TatWbNGq1atKuumALgGubi4SLJ/8JiXqMrbd6EJEyZozZo12rhxo9avX6/mzZtLkj755BPl5OTkq99isWjz5s0lrr8iyOtBWalSJUllfyOZF0e7desmSUpPT8/3tygvsrKyKszNLYAr60rGoNK+Tl/syN881apVM67RTZo0uaw2XGnLly837sliYmI0aNAgSdKXX36ptLS0q96esLAw4707/0EpAODi/fzzz0pMTDTi4vbt27Vnz54ya8/YsWO1Zs0aTZ061dh2qbG2rAwaNEhr1qzRxx9/XNZNwTWERBiuuLyp6mbOnKnBgwcrLCxMzz77bKHlDxw4oKFDhyosLExhYWEaNGiQ/vjjD7syCQkJeu6559SiRQu1bt1ar7zyirKzs/PVVdAUUMePH9cTTzyhsLAwtW/fXrNmzdKCBQvspg8paBoOKffmsVGjRho4cKCxLa/cli1b9L///U/h4eFq0aKFxo4da3fTY7Va9c4776hz584KCQnRY489pj179hjH5zl58qTGjRunm2++WcHBwerQoYOee+45HTt2rNj32sXFRR07dpSkfDdcJXlf161bp4iICLVu3VqhoaG69dZb9cEHH+Trdb569Wr1799fISEhatWqlQYPHqzt27cX2KYNGzbojjvuUHBwsPr06aP169cb+/KmNrnrrrv09ttvq02bNurcubMxFdWyZcvUq1cvNW3aVB07dtTLL79sF9yLmxrl7bffVvv27RUWFqbhw4fbvYeFDcMODg5Wo0aNtGzZsnxt3L59u/r3769mzZrplltu0fLly+2OLclnC4DjyLv2FPQQslmzZsUe7+fnp969e0uSMjMzlZiYWGT96enp2r59u1xcXHTjjTfmqy8+Pl7PPfecwsPDFRISov79+2vNmjXFtuPw4cMaOnSoQkND1aFDB73//vsFlktOTtbEiRPVtm1bBQcH64477tCXX35pVyYv7i5cuFD33nuvmjdvrtdee83Yf+LECf3++++SpPHjx0uSdu3apR07dtjVkzdFR+vWrbVkyRJ17NhR7du3t4vJUm6nj65du6pZs2Z68MEH892QliT2nT81YlRUlO677z5jX7du3Yzrd2xsrJ566il17NhRwcHB6tKliyZMmKCzZ88a5fOmKZk8ebIWLlyom2++Wc2aNdPgwYN14MCBwv4Ehk8++US9e/dWaGiowsLCdOeddxqx5ujRo+rQoYNR9sEHH9TAgQMLnJor76dr167FviaAiulKxaCSXqfPt3//fg0YMEDBwcHq3r27Fi1aZOzr2rWrDh48KCn3u/n59z1btmzRwIED1axZM4WHh+vJJ5/U33//bewv7J7sQgVNjb5t27Z80/XnXaNfe+01LVu2TD169FBwcLDuueeefLEhOjpa99xzj4KDg3Xrrbfq+++/1/Dhw+3uEwpjNpvVuXNnSVJ2drbd9IjFxeq8e5SCfs6/n/j111911113KTg4WG3bttULL7ygkydPGvsLm+rqwIEDevLJJ9WqVSuFhYWpb9++dqMcznf06FENGTJEISEh6tKlixYuXGi3L6/+vPgYFhamtm3b6rXXXrNLrBY0BfEHH3yQL07lfYf48ccfNW3aNLVr106hoaEaMWKEMUIxz2effabu3burWbNmeuCBB7R37161bNmyRMszAMDFyusg0rdvX6NjRkGdRIq7F5KKjpmSZLFYNG3aNHXu3FlNmzbVrbfeqoULF9o9l7twasTCYm1WVpbeeecd9ejRQyEhIWrdurUefPBBRUdHF3iepdE2qWTX6KKWtykuDuTF/Y8//lhz585Vly5d1KxZMz388MOKjY0t8NwASSrbeetwTclLRrm4uKhx48YFljl8+LD69++v5ORkubm5ydnZWevXr9fmzZu1aNEiBQcHKysrS4MHDzYednl5eWnhwoVyd3cvtg0pKSkaOHCgceE1m816++23S2Xk2qhRo3TixAk5OTkpIyNDy5YtU9WqVfXcc89JkqZOnar58+dLyp3Sb+3atdq7d2++eoYPH64dO3bI2dlZ3t7eSkxM1MqVK7Vjxw598803hfbwtNlsio+PN27M/vOf/xj7SvK+7tmzR0OHDlVWVpY8PDzk6uqqgwcP6o033lBmZqZGjBghSfr222/17LPPymazyc3NTRkZGVq3bp22bt2qyMhINWzY0HjdEydOaMiQIXJzc5PFYtG+ffs0YsQIrV69Wl5eXka5ffv2aefOnfL29pa7u7tq1KihBQsW6NVXX5WUO43LmTNn9Mknn+jPP//UokWLip1286uvvlJ6erq8vLyUlpamn3/+WXv27NFXX31l99olFR8fr4cfflgmk0mZmZk6cuSIxo4dq2bNmqlBgwZX9LMFoHxq1aqVtmzZoo0bN8pms+ngwYM6ceKEqlWrptq1a9uN5CrIqVOnjCSHl5eX/Pz8Cqx//fr1eu655xQTE6OsrCy1aNEi3zRHZ8+e1QMPPKBjx47JxcVFHh4e2rp1q4YOHaq3337bGO10oaSkJEVEROjEiROSJCcnJ7355pv5YqrFYtHDDz+snTt3ytnZWV5eXtqzZ49Gjx6tc+fOKSIiwq78tGnTZDbn9rdq2rSpsX358uXKyclR/fr1de+992rx4sXauXOnlixZUmCnhpSUFE2cOFGenp4ymUx2IwK2bNmitWvXysvLS5mZmYqKilJERIS++uor1ahRo0Sx70Kurq6qUqWK8UA4ICBAPj4+yszM1MMPP6y4uDi5uLiocuXKio+PV2RkpA4ePJivJ+O3336r06dPy9PTU5mZmVq3bp0GDhyor776SlWrVi3wb7FkyRK9/PLLknLjXlpamnbv3q0xY8aoXr16qlatmgICAowHmn5+fvLz8zOmv8qTnZ2thIQESXLoqaGBa92VikEXe52WpMcff1w5OTmy2Ww6fPiw/u///k85OTl68MEHFRAQoBMnTig7O1uenp7G9/CtW7fqwQcfVFZWljw9PZWdna1Vq1YpOjpay5cvV40aNUrx3bL3448/av78+fLy8pLFYtEff/yhkSNHatWqVXJxcdGff/6pQYMGKSsrS2azWSdOnNAzzzxT6PX7fDabTYmJicbsHK1atZKvr6+kksXqvKmi8qSlpencuXOSZLx333//vZ5++mnZbDZ5e3srJSVFK1as0ObNm7VixYpC73ViY2N133336dy5c3JycpK7u7t27dqlUaNGKSsrS/369bMrP2zYMFksFmVlZSkuLk6vvPKKbrrpJoWHh9uVe+SRR3Tq1ClZrValpaVp/vz5qlOnjvr371+yP8gFXnvtNcXFxalSpUpKT0/Xjz/+KBcXF7355puScjuN5MVLV1dX/fHHH3r44YcZMQ3gioiPj9e6deskSXfddZeuv/567dq1S1999ZVGjRpV4LPIwu6FpKJjpiSNHDlSv/76q8xms7y9vRUbG6tXXnlFJ06c0AsvvFBgGwuLtdOnT9e8efMk5d47pKWlKSoqStu2bdPy5cvVoEGDUm9baVyji4sDeRYuXKhjx47Jw8NDmZmZ2rBhg1544QVFRkaW+LVwbWFEGC5bZGRksT3WpNzEQF5v6/vvv7/AumbNmqXk5GT16tVL0dHRiomJ0fDhw5WZmakZM2ZIkpHQkHIXq9y8eXO+kTmFWbZsmY4ePSonJyctWLBAmzdv1oIFC0plQUg3NzetXr1aGzdu1E033SQpd+SUJCUmJhoPye6++27FxMRo3bp18vf3t6sjMTHR6G355ZdfasOGDfrxxx8VHh6uli1b5usJZ7FY7BZm7tKlizZv3qywsDCNGzfOKFeS93XdunXKyspSaGioYmJitGnTJr344ovq0KGDkXyz2Wx67bXXZLPZjLo2btyokJAQZWRkaMWKFXbtS0tL0//+9z/FxMQYidCUlJR8vU+ysrL01FNPKTo6WosWLVJKSopmzpwpSZo9e7aioqK0du1aNWzYUNu2bdOPP/5Y7N8jKytLH3/8sTZv3qw5c+bIZDLp2LFj+dpYUgkJCXrggQcUExOjyMhImc1m2Ww2o8fslfxsASif6tSpo6CgICUkJGjv3r1Gr/wLHxCd7//+7//UqVMntWnTRh07djSu+YMGDcqX4G/evLlcXFy0a9cuJSUlFVl/3k1AeHi4oqKitGnTJk2aNElWq7XQ9cek3N6NeZ048q5dc+bMUUZGhl25L7/8Ujt37lS9evX0+++/KyoqSgsWLJAkzZgxI9+Nja+vr3777TetX79et9xyi6TcGJLXWaNv376SZDx0W7lypVJTU/O1Lzs7W/369VNMTIy+//57uzVi0tLSNHXqVON7gLu7u86dO2fE25LEvguFhYXp3XffNX5fvHixxo4dq3379ikuLk6urq5at26dNmzYoM8//1wtWrRQvXr18k1Fcvr0aU2ZMkVbtmzRF198ITc3NyUkJOijjz4q9G9x6tQp3XjjjRo7dqyioqIUFRWlmjVrSsod2VCtWjW77zszZszQzJkz7aa/Wr16tVq0aCEp98Zz0qRJhb4egIrtSsSgS7lOS1Lbtm0VHR2tTZs2qV27dpKkd999V1arVZGRkapVq5bxOnmjn6ZOnWp0cMy797jrrrt09uzZQkcml5Zjx47p3Xff1ebNm/X8889LkuLi4vTXX39Jkt577z1lZWWpRo0a+umnn7RlyxY98cQTdiOuLtShQwfjnqxdu3b64YcfVK9ePbtpq0oSq/PeozVr1ujLL780EpS1atXSk08+aXc/Nn78eON9b9++vY4cOaJPP/200DbOmjVL586dU4MGDbRmzRrFxMQYM50U9NCwS5cu2rRpk3755RcjmffLL7/kK1ejRg1t2LBBa9asUfXq1SX9ex98KTIyMvTdd99p06ZNxoixvPpycnL0zjvvSJI6deqkTZs2KTo6Wk2bNrUbeQcApWXp0qWyWq2qX7++QkJC1KdPH7m6uurcuXP67rvvCjymoHuhPEXFzA0bNujXX3+Vn5+ffvzxR0VFRenLL79UpUqV9OGHHxqdFy9UWKzN+++ECRO0ceNGRUVFqWfPnurWrVu+54ul0bbSukYXFQfOd/r0aS1ZskQxMTHGkjjbtm1TUlJSiV8L1xYSYbhsHh4exkK85//4+PjYlWvRooXq1KkjV1dXVa5cucC68m7g1q5dq1tuuUWdO3fW4sWLJUmbNm1Sdna2MS1G/fr1ddddd0mSmjRpou7duxfb1ryekW3btjUu6u3atVOnTp0u/sQv0K9fP/n7+8vd3d2oL+9mcceOHcrKypIkPfXUU3J2dpafn5+GDRtmV4ePj4/x0OvRRx/VhAkTtHXrVr311luaMmWKcWNxvrz3OyAgwOiJsn37dk2fPl1Wq1VSyd7XvGm2tm3bpoiICM2cOVN169bVu+++a7Tz77//Vnx8vKTcnn+urq7y8PDQ7NmztXnzZo0ePdqubZUrV9a9994rKTcI5vWIKSgo5d1k+/v7a9u2bcbUji+99JI6deqk22+/XUeOHJEkozdOUdq3b69WrVoZr523BkJR06oU59FHH5XZbFZoaKgCAwMl/TsP85X8bAEov/IeOObdWEhS69atCy1/9uxZnThxQsnJyfL09FSzZs00ZcoUPfnkk/nKurm5qWnTprJardq0aZMx5VVB9eft27Vrl2677TZ16tTJSPacf+2+UN41sV27dsa16/xr5oX1x8fH684771SnTp2MDi/Jycn5pszq0qWLqlSpIi8vL2Mu/U2bNunQoUMym8264447JEm9e/dWpUqVlJaWppUrVxbYxryHsRd2Hrn++ut1++23S7L/HpB3TiWJfSVVu3ZteXp6ymKx6N5779XkyZMVFxend999V//3f/+Xr/d9vXr1jLgWHBxsjNKOiYkp9DWeeOIJrVixQrfddpu+//57zZgxwxgFUNI5/2fOnGl0Fpk4caJCQkJKfI4AKp7SjkGXep1+/PHH5ebmJg8PDz322GOScjv45X13v1BGRoZxrV6+fLm6dOmibt266eeff5Yku6nUr4QbbrjBeLDWo0cPY3vevVve9/r+/furZs2aMplMGjZsWL772/MFBAQoKChIgYGBxmjcgwcPasqUKUZnkYuJ1dnZ2Xrqqad0+PBheXh46J133pGvr69iY2ONaeTff/99derUST169DCmqS/qvct7/XvuuUdVq1aVyWTS008/rQ0bNhQ4xddDDz0kFxcXVatWzZhmq6D7uIiICHl6eqpKlSrGZ7KwpGlJ3HrrrapTp45cXFyMv1NefQcPHjRGbQ8fPlzu7u5yd3fX008/fcmvBwCFKaiDiK+vrzHbRmFraBZ0L5SnqJiZd/+SkpKiAQMGqFOnThoyZIiys7OVk5NjXMdLKu853xtvvKGnn35ay5Yt05NPPqnp06cX+H3hcttWWtfoouLA+dq2batmzZrJbDbbPRO+nBgEx8bUiLhsffr00f/93/8VWy4gIKDYMnnrbCQlJeX7kp2ZmakzZ84YD4UurK8kU9DlHZuXxMhT1NQb5891e/5c5xc6/wFdXkIq79jk5GRJuaPizm/3hYktJycnzZkzR6+99prWrVunyMhIY/TRrbfeqldffdUuiLq6uuZb/2XFihV64YUXtGjRIoWFhalPnz4lel/btWunV155Re+//762bNmiLVu2SMoN8qNHj1a/fv3s1kE5fwqvwqYJ8ff3l8lkkiSZTCY5OzvLYrEYCbrznf++nDlzxvh3QT1eCnuge+Frny/v83Hhw8QL5zIuqG1S7t/m/HN2c3OzO/5SPlsAKr5WrVpp5cqVWrdunbG+SHh4eKFTUr355pvq1avXRdW/detWff/999q9e7dcXFwUFhaWr1zedTM1NbXAL/7x8fEFxsmSxtS8+tPT05Wenp6vnguv1QXF/Ly59a1Wa4GdBCIjI+3W58pz4XU1T3HX+ZLEvpJ8N5FyO6rMmzdP06ZN0+bNm/XRRx/po48+kouLi+677z6NHz/eiHdS4e9n3vtdkJ07d2rChAn6888/5eLioptuuskYAXdhrCrId999p9mzZ0uSBgwYoLvvvrtE5wag4irtGHSp1+nz7wXOn9avsGteUlKScV91/vf+PCX5rl+cojo7nB8/8r7TS//eBxT0vd7Z2VmBgYGF9jJfvny53bV/7dq1evzxx/XDDz+oSZMmGjZs2EXF6smTJxvJzSlTphiJqPPfr4JmnijqvcuLi+ff0xQ1Zfz571PeDCEF3SsVdR98vvO3lfTvU9h9tWT/9ymowygAXK6NGzcay1+88cYbeuONN+z2b926Vfv27bNbIkQq+vlnUTEz7xqflZVV4LOwwkaEFWbixIlyd3fXypUr9d133xkj2IKDg/XGG2+oTp06pdq2vFFp0uVdo0saV4qL58CFSIThqjn/olSYgIAAHT9+XBMmTDCGtWZmZsrZ2dlYDyWvJ96FF96SBIS8i/qFNwh5very5I1ckmQ3fLeoB1jnT2l1/sOw81/XarXq5MmTRkCJi4vLV0+DBg305ptvymazKSYmRps3b9ann36qb7/9Vk2aNNGQIUOKPMc777xTr7/+uhISErRlyxb16dOnRO9r3rG33nqrTp06pejoaP3666/66aef9L///U8dOnQwpsSQct/vvCTPrl27FBsbq0aNGtnNMXzh+1AYFxcXu/f8/C8NW7ZsMXpVpqamlni9k2PHjtn9nnejmHcOeW3LG6kn5U6zVdhN2YXr8RT2Ny7uswXAseSNPF27dq2sVqsCAwNVt27dUq3//fff17fffiur1aqQkJAC56EPCAhQbGysBg8ebMzPnhe/zp9O8EJ5MfXC6Z4KS2z16NHDmLo2JydHWVlZBcb3C7edO3eu2Gltd+7cqZ07dxrTC+e5sBdlnuKu8yWNfRcqLHaFhYXp/fffl8ViUXR0tKKjo/XZZ5/pk08+UYsWLdSzZ89C25b3/p4fR8+Xk5Oj4cOHKz4+XsOGDTN6Y953331205YU1rZdu3Zp7NixknIfguf9G4BjK80YdDnX6WPHjhn3BecnZy783p3H399fTk5OysnJ0fvvv68uXbpIyu1s4ebmVuJ7iDx55c+/bytqJO35MaCg16patari4uLyjdAqamrEC3Xo0EGNGzfWH3/8YXQwLGmsjoyMNKY4HDp0qG677TZj3/n3SStXrtQNN9wgKfc+xsPDo8g2+fj4KCEhwS7GJyYm6pdfftENN9yQbx2b8+/PilLc2s0mk0k2m61U7qvPP//4+HhjNpWC7qsB4HLldRApypIlSzR+/Hi7bUU9/ywqZuZd45o2baqlS5ca+0ryLKygeObl5aX//ve/+u9//6s///zTmLZ9x44dmjRpkubMmVOqbTt/JPjlXKOLigPnKy6eAxdiakSUK3lTKXz22Wc6ffq0cnJyNGbMGIWGhmrkyJGS/r3hi42NNdbK+PPPP0u0blTLli0l5fbqyBvWmzcH+/m8vb2Nf+dNY3T8+HGjV97Fuummm4wHlzNnzlROTo4SEhLs1iGRcnuTtGnTRuHh4dqzZ49uvvlmPfHEE0YvjbwhxkVZu3atUS4v4VaS9/XVV19VaGioBg4cqCpVqujuu+/Wo48+Kin3AV1SUpLq1atn1DlnzhxZLBalp6dr8uTJeuaZZzRr1qxLen8uDFg33XSTEUhnz54tq9WquLg43XzzzWrTpo2++eabYuuMjo42PhMbNmww/o55n4HzH/7mBeu8Ie+XoqSfLQCOpV69egoICDB6neXFqNLSvHlzOTs7F1t/3nX+66+/1qFDhyTlLo4cFham+++/v9ARzXn1RUVFGdPOrl69Ot9ogrz6V69ebYw6WLx4scLCwnTbbbfle6B14XX966+/VkZGhipVqqR169YZI4+3bNmizZs3Gz0GC1qjpLCbmqNHj+qjjz6SzWbT3r179cMPP0j693pckthXkPNvqPI6SHz33Xdq2bKlOnfurDNnzqhHjx568sknjV71F8bnY8eOGWuV7d2714hHhf39kpKSjAeuVatWlZubm2JiYrRr1y5J//ZqLKhtCQkJGj58uNLT01W7dm3NnDnT6LkPwLGVZgy6nOt03lSumZmZxrrA1atX13XXXSfp3wdaedctZ2dnY3Tz/PnzlZKSoszMTD3yyCNq3ry5pkyZclFtz/tev337dmVlZclqtV7yusCSjLUWlyxZomPHjslqtertt9++qDVH9uzZo/3790vKf09WVKyOjo7Wyy+/LEnq3r27nnnmGbt6a9asaTxYfO+992SxWJScnKw777xTLVu21Pz58wttU9u2bSVJn3/+uU6cOCGbzaY5c+Zo3LhxeuKJJ0p8bhcr7++Tdz+WlJRU4FpjJVGjRg1jZMF7772njIwMpaam6s033yydxgLAP5KSkrRq1SpJuWtsnR8Xt2zZosGDB0vKXUv5wvWVi0rKFBUz8+LEzp07jevkb7/9phYtWqhr165G7CjIhbE2LS1N//nPfxQaGqoPP/xQLVq00KOPPmrEgoSEhFJvG9dolHeMCMNl+/rrr/Xbb78VuG/y5MkXVdewYcO0atUq/fXXX+rUqZPc3d2VkpIis9lsrAOSt3bJli1bNGbMGL388stKTU1VYGBggdM1ne/222/X+++/r6NHj+rhhx+Wl5eXUlJSVKVKFSUmJhrBysvLS82aNdMff/yhmTNn6uuvv1Z8fLx8fX3tpgcsKW9vbw0cOFAffPCBvvjiC33zzTeyWCz55plv1qyZ6tWrpy1btigiIkJ+fn5KTU2VxWJRpUqV1KdPH7vyFovFmLbEZrMpMzPTuEHz9vY21lAryfvau3dvLV68WH/++afatm0rLy8v41xDQ0N1/fXXy2w2a9SoUXr++ef1888/q2XLljKZTMrIyJC7u7uGDh160e9NQSpXrqwhQ4borbfe0ty5c/Xpp58qKytLWVlZqlWrVonW3apevbpGjBghT09PY+qR+vXrq3fv3pJy108wm83KyspSnz59VL16dR07dkx+fn4FTtFSnJJ+tgA4nlatWhkJ+tJOhHl4eKhp06bGWiqF1f/ggw/q888/16lTp9SjRw9VrlzZmD6oZ8+ehY6A6tu3rz788EMdOnRIgwcPNq6ZgYGBdj3fb7/9di1YsED79+/XPffcIx8fHyPedOnSpdC1P/Pk9abs2LFjgdPp9uzZUwsXLtTKlSuNtceKU7NmTU2ePFnTp09Xenq6bDab/P39jdFfJYl9BalRo4bMZrOsVqvuu+8+dezYUVOmTJG/v79iY2PVq1cv+fn5KTk5WdnZ2XbrBOTx8PDQpEmTNH36dKWlpclmsykgIMBo24WqVKmiunXrKjY2VpMmTdKsWbPsHrjm/S19fHzk7e2t5ORkPfXUU2rYsKGaNm1q9LJMTEzUnXfeaVf3kiVLSjR9NICKqbRi0KVep93c3HTgwAG1adNGTk5OxnpYI0aMMMpcd9112rdvnxYuXKjFixdr9erVeuqppzRo0CBFRUWpTZs2cnFxUVpamtzc3Izv6yXVtm1b/fjjj/r777/VuXNnubi4XNZ37yFDhujHH3/U8ePHdcstt8jNzU3Z2dlGjCyo7r59+xojqDIzM437KBcXF+PaX5JYPXHiRGPGis2bN6tz587Ga1SvXl2RkZF6+umnNWrUKK1cuVI//fSTcR/o6+trrElZkCeeeEK//vqrjhw5oi5dusjT09PoyDJixIgiR0tfjrZt2+q7777T0qVLFR0drTNnzhQ5JWNRnJycNGzYME2cOFFr1qxRq1atZLVa7b6HcN8FoDR8/fXXxmwSt912W74RWXfccYfmz5+v5ORkff/99/m+gxekuJjZtm1btW/fXuvWrdPjjz8uHx8fJScny2azqWnTpvmmMjxfQbH2P//5j+bMmaM333xTH3zwgWw2m/F87MJp1EurbVyjUZ4xIgyXLS0tTSdOnCjwJ+/CWVL169fXokWL1KVLF3l4eBjTQM2ePVu33HKLpNwpGt5//33ddddd8vLykouLix5++GE9//zzxdbv5uamhQsXqnPnznJzc5Onp6fGjh1rLKp4/vDlN954Q+3atZObm5syMzM1fPhwo8fHpXj66ac1fPhwYzhx9+7dNWnSJEn/znmbt0bYY489pjp16igtLU0+Pj7q1KmTPvroIzVp0iRfvXnv9cmTJ5WSkiIfHx917txZH3/8sdFzsyTva9OmTbVo0SJ169ZNvr6+SktLU61atTRo0CC9//77xo1dnz59NHv2bIWEhBjvWYcOHfThhx8aC3GWhscff1wTJ05Uw4YNlZ2dLW9vb/Xp00effPJJsQ9cJenhhx/WM888Iw8PD3l4eKhHjx5auHCh8Tdu2LChXn31VdWuXVtWq1U+Pj5asGDBJa/pdTGfLQCOJa933IX/Lu36z+9BfyE/Pz999tln6tmzp3x8fJSZmalGjRrp1Vdf1cCBAwut28PDQx999JFuueUWubu7y9PTU0899ZQefPBBu3Kurq766KOPdO+99yogIEBpaWmqW7euRo8erdGjRxfZ/j179mjnzp2Schc+LkjemjWpqaklGvUr5U7TOGnSJPn7+8vV1VXt2rXTxx9/bDzALUnsK0iVKlX09NNPG3POV65cWV5eXvrkk0/0wAMPqEaNGkpJSVHVqlV166236tNPP803733z5s01adIk+fj4yNXVVR06dNCiRYtUpUqVQl/3nXfeUevWreXh4SFXV1f17NlTjz/+uCRp/fr1knK/A/33v/81Xs/Hx8euB2pKSkq+72JFrcMCoOIrjRh0OddpNzc3ffzxx8Yoqtq1a2vKlCnq16+fUeaJJ55Qo0aNjHW20tPT1apVK82dO1etWrUypklv3bq1FixYoGbNml1U+++77z4NGTJEVapUUXp6ukJDQzVv3ryLquN8jRs31gcffKAmTZrI2dlZ1113nd577z3jPq6g7/WnTp0yrrvnzp2Tl5eXWrVqpfnz56tx48aSSharz7+mJyYm2l3P86apuv322/XWW28pODjYaM/NN9+sRYsWGaPwClK/fn1FRkbq5ptvloeHh3JycnTTTTdp6tSpBa79VlomTJigHj16yMPDQ2lpabr33ntL3OmlIP3799f48eONkXGtWrXS22+/bewvaAppALhYeR1EWrduXeB3+MaNGxvT0xY0WrogJYmZs2bN0uDBg1WjRg2lpaWpRo0aGjZsmKZNm1Zk3QXF2ueff14vvfSSmjRpIpvNJicnJwUHB2vq1Kl64IEHrkjbuEajPDPZSrL6NuAgNmzYoJ9//ll+fn7q2bOn6tWrp9TUVA0cOFA7d+7UqFGjjOkAS1NmZqamTJkiX19fNWnSRD169JAkffDBB3rjjTd0/fXXl/jBH8qnsvpsAQDKjzFjxmj58uXq0KHDZT2EBQCUnU8//VRHjhyRn5+fIiIi5OHhodjYWPXt21dpaWn6/PPPLzpZh9LzyiuvyNXVVXXq1DFGNKxcuVLPPfecPDw8tHnz5hKvbwYAKF1co1GeMTUirik+Pj769NNPlZOTo9mzZ8vX11dJSUnKysqSu7u73ULEpalSpUrasWOH0dPS19dX2dnZxiLOffv2vSKvi6unrD5bAAAAAEpPTk6OsdbWO++8I09PTyUmJspmsxlT0qLsHD9+3Fh787XXXpPJZDKmE77zzjt5wAoAZYhrNMozPn24pjRp0kQzZ85UWFiY3NzclJiYKHd3d3Xo0EELFiwwhu5eCbNnz1bv3r0VGBiolJQUZWVl6YYbbtCYMWMua8pFlA9l+dkCAAAAUDoiIiL03HPPqWHDhrLZbDp79qyqVq2qO+64Q3PnzuUhXhmbPHmy7rvvPtWsWVPp6elKS0tTnTp19Pjjj2vs2LFl3TwAuKZxjUZ5xtSIAAAAAAAAAAAAcEh0ZQIAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcknNZN6C8sNlsslptZd0MAMB5zGaTTCZTWTej3CJ2AUD5RPwqGvELAMofYlfRiF0AUD6VNH6RCPuH1WpTYmJqWTcDAHCeKlU85eTEzVhhiF0AUD4Rv4pG/AKA8ofYVTRiFwCUTyWNX0yNCAAAAAAAAAAAAId0WYmw2bNna+DAgXbbdu/erYiICIWGhqpLly6aN2+e3X6r1aqZM2eqY8eOCgkJ0eDBg3Xo0KFSrwMAAAAAAAAAAADXtktOhC1cuFAzZ86023bmzBkNGjRIdevW1dKlSzVixAjNmDFDS5cuNcrMnj1bixcv1qRJkxQZGSmTyaQhQ4bIYrGUWh0AAAAAAAAAAADARSfCTpw4oUcffVQzZsxQvXr17PYtWbJErq6uevHFF9WgQQP169dPDz/8sObMmSNJslgsmj9/vkaMGKHOnTurcePGmj59uk6cOKFVq1aVWh0AAAAAAAAAAADARSfCdu7cKR8fH3311VcKCQmx2xcTE6Pw8HA5Ozsb29q0aaODBw8qISFBe/bsUWpqqtq0aWPs9/b2VpMmTRQdHV1qdQAAAAAAAAAAAADOxRex17VrV3Xt2rXAffHx8WrYsKHdtsDAQEnS8ePHFR8fL0mqXr16vjJxcXGlVselcna+rCXTAAC46ohdAICKiPgFAKhoiF0AUHFddCKsKBkZGXJ1dbXbVqlSJUlSZmam0tPTJanAMklJSaVWx6Uwm03y8/O85OMBALjaiF0AgIqI+AUAqGiIXQBQsZVqIszNzU0Wi8VuW2ZmpiTJw8NDbm5uknLX+cr7d14Zd3f3Uqvjkpw7KuuiNsWXAwBcNaYB62XyrlPWzSi/iF0AUC4Rv4pB/AKAcofYVQxiFwCUSyWNX6WaCKtWrZpOnjxpty3v96CgIGVnZxvbateubVemcePGpVbHpTBZs2RKO37JxwMArgBrTlm3oFwjdgFAOUX8KhLxCwDKIWJXkYhdAFBOlTB+lWoiLDw8XIsXL1ZOTo6cnJwkSRs2bFC9evXk7++vypUry8vLS1FRUUYSKzk5Wbt27VJERESp1XEpbGYXWT1qXM7pAwBKmdnsJFNZN6IcI3YBQPlE/Coa8QsAyh9iV9GIXQBQPpU0fpVqIqxfv36aO3euxo0bp0cffVR//PGHPvzwQ7300kuSctf1ioiI0LRp01SlShXVrFlTU6dOVbVq1dS9e/dSq+NSWD1rKvHuPZf/JgAASk0VT085lXUjyjFiFwCUT8SvohG/AKD8IXYVjdgFAOVTSeNXqSbC/P39NXfuXE2ePFl9+/ZVQECARo8erb59+xplRo4cqezsbI0fP14ZGRkKDw/XvHnz5OrqWmp1AAAAAAAAAAAAACabzWYr60aUBzk5ViUmppZ1MwAA56lSxVNOTuaybka5RewCgPKJ+FU04hcAlD/ErqIRuwCgfCpp/CLCAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6p1BNhWVlZmj59urp06aKwsDA98MAD2rJli7F/9+7dioiIUGhoqLp06aJ58+bZHW+1WjVz5kx17NhRISEhGjx4sA4dOmRXprg6AAAAAAAAAAAAgFJPhL377rtaunSpJk2apBUrVqh+/foaMmSITpw4oTNnzmjQoEGqW7euli5dqhEjRmjGjBlaunSpcfzs2bO1ePFiTZo0SZGRkTKZTBoyZIgsFosklagOAAAAAAAAAAAAwLm0K/z555/Vu3dvdejQQZI0ZswYff7559q2bZtiY2Pl6uqqF198Uc7OzmrQoIEOHTqkOXPmqF+/frJYLJo/f75GjRqlzp07S5KmT5+ujh07atWqVerVq5eWLFlSZB0AAAAAAAAAAACAdAVGhPn6+urXX3/V0aNHlZOTo8jISLm6uurGG29UTEyMwsPD5ez8b/6tTZs2OnjwoBISErRnzx6lpqaqTZs2xn5vb281adJE0dHRklRsHQAAAAAAAAAAAIB0BUaEjRs3Ts8884y6desmJycnmc1mzZgxQ7Vr11Z8fLwaNmxoVz4wMFCSdPz4ccXHx0uSqlevnq9MXFycJBVbh7+//yW33dm51POCAABcUcQuAEBFRPwCAFQ0xC4AqLhKPRF24MABeXt765133lFQUJA+//xzvfDCC/rkk0+UkZEhV1dXu/KVKlWSJGVmZio9PV2SCiyTlJQkScXWcanMZpP8/Dwv+XgAAK42YhcAoCIifgEAKhpiFwBUbKWaCDt27JhGjRqlhQsXqmXLlpKk4OBg7d+/X7NmzZKbm5ssFovdMXnJKw8PD7m5uUmSLBaL8e+8Mu7u7pJUbB2Xymq1KTk57ZKPBwCUPm9vdzk50euuMMQuACifiF9FI34BQPlD7CoasQsAyqeSxq9STYT98ccfysrKUnBwsN32kJAQrVmzRjVq1NDJkyft9uX9HhQUpOzsbGNb7dq17co0btxYklStWrUi67gc2dnWyzoeAICrjdgFAKiIiF8AgIqG2AUAFVepdvXIW9tr7969dtv37dunOnXqKDw8XJs3b1ZOTo6xb8OGDapXr578/f3VuHFjeXl5KSoqytifnJysXbt2GSPMiqsDAAAAAAAAAAAAkEo5EdasWTO1bNlSL7zwgjZu3KjY2Fi99dZb2rBhgx577DH169dPKSkpGjdunPbv369ly5bpww8/1NChQyXlrg0WERGhadOm6eeff9aePXv0zDPPqFq1aurevbskFVsHAAAAAAAAAAAAIEkmm81mK80Kk5KS9NZbb+m3335TUlKSGjZsqGeffVatWrWSlDt94uTJk7Vr1y4FBARo8ODBioiIMI7PycnRm2++qWXLlikjI0Ph4eGaMGGCrrvuOqNMcXVcipwcqxITUy+rDgBA6apSxZN56otA7AKA8on4VTTiFwCUP8SuohG7AKB8Kmn8KvVEWEVFQAOA8oebsaIRuwCgfCJ+FY34BQDlD7GraMQuACifShq/iHAAAAAAAAAAAABwSCTCAAAAAAAAAAAA4JBIhAEAAAAAAAAAAMAhkQgDAAAAAAAAAACAQyIRBgAAAAAAAAAAAIdEIgwAAAAAAAAAAAAOiUQYAAAAAAAAAAAAHBKJMAAAAAAAAAAAADgkEmEAAAAAAAAAAABwSCTCAAAAAAAAAAAA4JBIhAEAAAAAAAAAAMAhOZd1AwAAAAAAuFhms0lms6msm4EKymq1yWq1lXUzAAAAcBWQCAMAAAAAVChms0m+vh5ycmKSE1yanByrzp5NIxkGAABwDSARBgAAAACoUMxmk5yczHrns3U6djKprJuDCqZmoI+euL+9zGYTiTAAAIBrAIkwAAAAAECFdOxkkmKPnSnrZgAAAAAox5hHAgAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIJMIAAAAAAAAAAADgkEiEAQAAAAAAAAAAwCGRCAMAAAAAAAAAAIBDIhEGAAAAAAAAAAAAh0QiDAAAAAAAAAAAAA6JRBgAAAAAAAAAAAAcEokwAAAAAAAAAAAAOCQSYQAAAAAAAAAAAHBIVyQRtmLFCvXs2VPBwcHq1auXvvvuO2Pf7t27FRERodDQUHXp0kXz5s2zO9ZqtWrmzJnq2LGjQkJCNHjwYB06dMiuTHF1AAAAAAAAAAAAAKWeCPvyyy/13//+V/fdd59Wrlypnj176tlnn9XWrVt15swZDRo0SHXr1tXSpUs1YsQIzZgxQ0uXLjWOnz17thYvXqxJkyYpMjJSJpNJQ4YMkcVikaQS1QEAAAAAAAAAAAA4l2ZlNptNM2bM0EMPPaSHHnpIkvTEE09oy5Yt2rRpkzZt2iRXV1e9+OKLcnZ2VoMGDXTo0CHNmTNH/fr1k8Vi0fz58zVq1Ch17txZkjR9+nR17NhRq1atUq9evbRkyZIi6wAAAAAAAAAAAACkUh4R9vfff+vYsWPq06eP3fZ58+Zp6NChiomJUXh4uJyd/82/tWnTRgcPHlRCQoL27Nmj1NRUtWnTxtjv7e2tJk2aKDo6WpKKrQMAAAAAAAAAAACQSnlEWGxsrCQpLS1NjzzyiHbt2qXrrrtOjz/+uLp27ar4+Hg1bNjQ7pjAwEBJ0vHjxxUfHy9Jql69er4ycXFxklRsHf7+/qV5ShfNbDbJbDaVaRtQcVmtNlmttrJuBgAAAAAAAAAADqFUE2EpKSmSpBdeeEFPPvmknn/+ef3www8aPny4FixYoIyMDLm6utodU6lSJUlSZmam0tPTJanAMklJSZJUbB2Xw9n58gbImUwmVa7sJienUl96DdeInByrzp3LkM1GMgxAyVxu7AIAoCxcbvzingulgc8RgIvBvRcAVFylmghzcXGRJD3yyCPq27evJOnGG2/Url27tGDBArm5uclisdgdk5e88vDwkJubmyTJYrEY/84r4+7uLknF1nGpzGaT/Pw8L/n4873z2TodO5lUKnXh2lEz0EdP3N9evr6X/jkGcG0pzdgFAMDVQvxCeeHt7V7WTQBQQRC7AKBiK9VEWLVq1SQp39SF119/vX777TfVrFlTJ0+etNuX93tQUJCys7ONbbVr17Yr07hxY+M1iqrjUlmtNiUnp13y8VJubzJvb3cdO5mk2GNnLqsuXLuSk9OVk2Mt62YA5YK3tzs9dYtQGrELAFD6iF9FK817L+BycO8F/IvYVTTuvQCgfCpp/CrVRFiTJk3k6emp7du3q2XLlsb2ffv2qXbt2mrevLkWL16snJwcOTk5SZI2bNigevXqyd/fX5UrV5aXl5eioqKMRFhycrJ27dqliIgISVJ4eHiRdVyO7Gy+AKPs5eRY+SwCKDGuFwCAioj4hfKAey8AF4PrBQBUXKXa1cPNzU2PPvqo3nnnHa1cuVKHDx/Wu+++q3Xr1mnQoEHq16+fUlJSNG7cOO3fv1/Lli3Thx9+qKFDh0rKXRssIiJC06ZN088//6w9e/bomWeeUbVq1dS9e3dJKrYOAAAAAAAAAAAAQCrlEWGSNHz4cLm7u2v69Ok6ceKEGjRooFmzZql169aSpLlz52ry5Mnq27evAgICNHr0aGM9MUkaOXKksrOzNX78eGVkZCg8PFzz5s2Tq6urJMnf37/YOgAAAAAAAAAAAIBST4RJ0qBBgzRo0KAC9zVr1kyRkZGFHuvk5KRRo0Zp1KhRhZYprg4AAAAAAAAAAACAVTABAAAAAAAAAADgkEiEAQAAAAAAAAAAwCFdkakRAQAAAAAAAAD/MptNMptNZd0MVFBWq01Wq62smwFUSCTCAAAAAAAAAOAKMptN8vX1kJMTE3Th0uTkWHX2bBrJMOASkAgDAAAAAAAAgCvIbDbJycmsdz5bp2Mnk8q6Oahgagb66In728tsNpEIAy4BiTAAAAAAAAAAuAqOnUxS7LEzZd0MALimMBYXAAAAAAAAAAAADolEGAAAAAAAAAAAABwSiTAAAAAAAAAAAAA4JNYIA1Aos9kks9lU1s1ABWW12ljAFQAAAAAAAECZIhEGoEBms0l+fu4ym53KuimooKzWHJ05k04yDAAAAAAAAECZIREGoEC5o8GcdHDlHKUnxJV1c1DBuPtXV73eQ2Q2m0iEAQAAAAAAACgzJMIAFCk9IU7pJw6XdTMAXEFMg4rLwTSoAAAAAACgPCMRBgDANcxsNsnX10NOTuaybgoqqJwcq86eTSMZBgAAAAAAyiUSYQAAXMPMZpOcnMx657N1OnYyqaybgwqmZqCPnri/PdOgAgAAAACAcotEGAAA0LGTSYo9dqasmwEAAAAAAACUKuZBAgAAAAAAAAAAgEMiEQYAAAAAAAAAAACHRCIMAAAAAAAAAAAADolEGAAAAAAAAAAAABwSiTAAAAAAAAAAAAA4JBJhAAD8P3t3Hh5Vdf9x/DOTyWQPWcjCvoQl7GEJgixBLG64FNFaS6gCIq0tWK0gFVSs4lJRBCr+FONSpRIxSFt3xB0RElBkC2sISxICWck6ycz9/REzOiYQCMEkk/freXjInHPumXPjhK+Tz5x7AQAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALilCxqEpaWlaeDAgVqzZo2zbffu3YqPj1dMTIzGjBmjhIQEl2McDoeWLl2qUaNGacCAAZo6darS09NdxtQ1BwAAAAAAAAAAAHDBgrCKigrdc889Kikpcbbl5eVpypQp6ty5s5KSkjRz5kwtWbJESUlJzjHLly/XqlWr9MgjjygxMVEmk0nTp0+XzWY76zkAAAAAAAAAAAAAy4WaeNmyZfLz83Npe/PNN2W1WrVgwQJZLBZFRUUpPT1dK1as0MSJE2Wz2fTSSy9p9uzZiouLkyQtXrxYo0aN0rp16zR+/Pg65wAAAAAAAAAAAACkC7QjLDk5WYmJiXriiSdc2lNSUhQbGyuL5cf8bdiwYUpLS1NOTo5SU1NVXFysYcOGOfsDAwPVu3dvJScnn9UcAAAAAAAAAAAAgHQBgrDCwkLNmTNH8+fPV5s2bVz6srKyFBkZ6dIWHh4uScrIyFBWVpYk1TguPDxcmZmZZzUHAAAAAAAAAAAAIF2ASyMuWLBAMTExuuaaa2r0lZWVyWq1urR5eXlJksrLy1VaWipJtY4pKCg4qznOh8Vyfrmgh8cFu+UaWpCm8jpqKutA88br6MKjdqEp4HUE4FxRv9AU8DoCcC6oXWgKeB0B9dOgQdjatWuVkpKi//3vf7X2e3t7y2azubRVh1e+vr7y9vaWJNlsNufX1WN8fHzOao76MptNCg72q3sgcIEFBvo09hKABsPr+cKidqGp4GcdwLmgfqGpoH4BOFvULjQV1C6gfho0CEtKSlJOTo7GjBnj0v7ggw8qISFBbdu2VXZ2tktf9eOIiAhVVlY62zp27OgyJjo6WpIUGRl5xjnqy+EwVFhYUu/jpapEnn+McL4KC0tltzsaexm8ntEgzvf1HBjow6edzoDahaaiqdQuoKmgfp0Z9QtNBfUL+BG168yoXWgqqF2Aq7OtXw0ahC1atEhlZWUubZdddplmzZqlq666Su+++65WrVolu90uDw8PSdLGjRvVpUsXhYaGKiAgQP7+/tq0aZMzCCssLNSuXbsUHx8vSYqNjT3jHOejspJ/RND47HYHr0W4DV7PFx7fXzQF/KwDOFf8m4GmgPoF4Fzw7wWaAmoXUD8N+lGPiIgIderUyeWPJIWGhqpdu3aaOHGiioqKNG/ePO3fv19r1qzRq6++qhkzZkiqujdYfHy8Fi1apPXr1ys1NVV33XWXIiMjNW7cOEmqcw4AAAAAAAAAAABAauAdYXUJDQ3Viy++qIULF2rChAkKCwvTnDlzNGHCBOeYWbNmqbKyUvPnz1dZWZliY2OVkJAgq9V61nMAAAAAANDcnTz8ndK//W+tfX3HzVJlebGObP9ApYXZsvoGqW10nILb9pYkGQ6HMlI/U+7R7aqwFcvLN1iR3UcotEN/SVJZUY6O7vhIRTmHJZNZwW17qX3fy+Rhsf5i5wcAAAD8Ei54ELZnzx6Xx/3791diYuJpx3t4eGj27NmaPXv2acfUNQcAAAAAAM2dX1Abtes11vm4rDhPOYe/lX9IB5k9PLX369dlktS682DlZ+7RweS31HPUFPmHdFDGns+Vte8r+Yd2UkiH/spJ/1aHtq6Vp5ef/Ft31r6NK1VRdkrhXWJlKzulk+lbZa8oU9fYGxrvhAEAAIAL4BfdEQYAAAAAAM6OT2CEfAIjJFXt8Er98iVZvPwUNfQm5WXulqOyXJHdR6pd77HyD+mgg8mrlXN4m/xDOshWWiAvv1BFDf2NLFYfeVp9dWTHhzp1Ml0Wq69sJfkK+mEXmCTtKspRXsYuVZQVydPbvzFPGwAAAGhQBGEAAAAAADRxJ9KSVZKfoS6DJ8ji5auyUyckSd7+oT/83VqSVPpDe5dBv3Y5/tTJQ1XjAlrL0ydQMplUnHtUp3LSZdgrZSvOqzq+MJsgDAAAAG6FIAwAAAAAgCbMYa9U1v6v5R0QpuB2fSVJ9kqbJMnkUfW23vzD344f2qsZhkNHvv9A+Vl75BMYoeB2fWQ2e6h9n8t0bOc67f3qVZk8LLJ6B8peWS6H3fV4AAAAoLkjCAMAAAAAoAkrOL5XFWWnFNFtuEwmkyTJ7GGVJBkOuyTJYa+oardYncc5Kit0cEuSCrL2yicwQt2HT5LZ7CFJioi6SMFte6n0VLZ8AsJ1ZPsHKi/OlYfF65c8NQAAAOCCIwgDAAAAAKAJy8/cK0kKahPtbPMOqLokYnlxriSprKjqb5/AcElVIdi+ja+rKPeIAsOj1HXIDfLw/DHkOrLjQznsleo0YLwMw1BJwXHJZJZPq4hf5JwAAACAXwpBGAAAAAAATVhx/jFZvPzk5RvkbAtuE61jO9cr++BmOewVys/cI0kK7TBAknRk50cqyj0ik4dF/iEddCItWZLkG9RGgeFRKi/KVcHxfZLhUEVZkWwleQrtGCOL1fcXPz8AAADgQiIIAwAAAACgCasoPSXvgNYubZ7eAeox4vc6suMDnUhLkdWnlboOuUH+Ie3lqKxQzuHvJEmGvVIZqZ85jwvrEqvA8Ch1HHC10r/7n3KP7pDZYlVE1DC17TX2FzwrAAAA4JdBEAYAAAAAQBM28Oq5tbb7BbdV9KipNdrNFk8NumbeGee0+gSo+/DfNcj6AAAAgKaMIAz14rBX6tiu9co9tkOOSpv8gtup44Dx8vYPVXHeMR3Z/oFKC7Nl9Q1S2+g4BbftLUmqrCjT0R0f6dSJNFXaSuQTGK62vS5RYFjXqnkddmXs/kS5R3fI4ahUq/Aodeh3BZfnAAAAAAAAAAAA58zc2AtA83To2/8o++AmBYZFKaR9P506eUgHk99SZXmJ9n79uspOnVTrzoPlsFfqYPJbKso9Ikk6uuMj5Rz+Tn7B7RTWebBKC7O1/5s3VFFeLEnKTP1Mx/dvlHdAmIIieij36A6lbXm7MU8VAAAAAAAAAAA0U+wIwzmzlRYq79hO+Yd2UudB16nSVqLWnQfJ4umtvMzdclSWK7L7SLXrPVb+IR10MHm1cg5vk39IB7XrfanCuw6Vl2+wSvIzlHO0akeZSSZJUs7hbTKZzOo29CaZLZ4qKchUYfYB2UpPyeoT0MhnDgAAAAAAAAAAmhOCMJyzkoJMSZLDXqHtHy5WRXmRvPxC1XXI9So7dUKS5O0f+sPfVTd0Lv2h3dPLT55efspOS9aR79+XyeyhrrE3yOLlq0pbqSrKi2T1DZLZ4uk8vrQwW2WnThCEAQAAAAAAAACAc0IQhnNmryiXJJXkZ6pt9BjJZFJG6mc6kLxaAa07S5JMHlUvLfMPfzsqbS5z+LVqo04x1yhzzxdKS3lb0aOnysPTq+oY848vS9MPXzvsrscDAAAAAAAAaJpOnTykvRv+5dLm6R2g/pffpYzUz5W553OXvpD2/dRl8ARJ0p4Nr6roZLpLf6eYq9W60yCXtkPf/lc5h79Tp4HXqnXHmIY/CQBugyAM58zsYZUkBbTupDY9R0mSinOPqOD4PtlK8iVJhsMuqWrXmCSZLVaXOfxC2ssvpL0Mw6HD297VycPfqk2P0VXH/HBs1dcVLs8JAAAAAAAAoGkrya+6olTrToPk5RskSTL/8CH4kvwMSVLbXmN/uFmK5B0YLkkyDEMl+Vmy+gYp7CfBl29QO5f5c4/tVM7h7y7cCQBwKwRhOGe+rSIkSRXlxc42wzAkSUFteunUyUMqL86VJJUVVf3t80MxO7B5tcpOnVCvMdNl9vCUvaJMkuRh8ZLF6iOL1VcVZYVy2Ctk9vBUufP4sF/m5AAAAAAAAACcl+Ifwq6IbsPl4ektTy8/Z19JfqasvsEK6zJEJkkent7OvvKiHDkqyxXQtpdCO8bIw9PbecUp55iSfB3+7h2ZzBYZjspf5HwANG8EYThnXn7BCgyPUmH2AR3YlChPn0AVZh+QX3A7BbeN1rFd65V9cLMc9grlZ+6RJIV2GOA8Nj9zt/Zt/Lf8gtvpxKEUmS1WhXbo/8O4/jp+4Bsd2PymPL0DVFp4XIHh3eTpzf3BAAAAAAAAgOagekfYrs+el2GvlJdfiDoP+rWsPoGqKC+Syeyhbe89KclQQFgXdRn0a3l6B6j4h+Nyj+2o2vFlMius82B16He5TCazDIdDaSlr5GH1UWibnso+sKnxThJAs0EQhnrpOmSijmz/UPmZqZLJrOC2vdS+7+Xy9A5QjxG/15EdH+hEWoqsPq3UdcgN8g9pL0lq12usTGYP5RzZppL8TPkGtVH7vuPk5RciSWrb+1LJZFbu0e0qzstQcLs+6tj/ysY8VbQAuzPz9fB7213aQnyt+ufNF0mq2vH49Me7teVwjh65NkZdw6qC2VmJm3WyqLzGfKO7h+sPo3uq0uHQtH99rQq74dL/9I1DFBnoc4HOBgAAAAAAoPE47JUye1jkExiusM5DVGkrVcaez3Vgc6K6DrlBXn4h8vILVnDbPirKSVfOkW069O1/1X34JNkrSuXpE6hW4d3kH9JBJw5t0Ym0ZFl9AhXZfYQy9nym4vxj6jniFhWeONjYpwqgmSAIQ714eHqr86DrJF1Xo88vuK2iR02t9TiT2ax2vS5Ru16X1NpvNnuofZ9fqX2fXzXkcoEzOniySJJ0Sc9IRQRUbcf38fSQJJ0qq9ArGw9oy+GcGsdd07+9Sm0/3tPu49RM5RaXK7Zza0nS4dxiVdgN9WkbpH5tg5zjArw8L9SpAAAAAAAANCqzh0W9L/mDS1tx/jEVZO2VYTjU91d/draHdhyg/Kw9KjyRJofDrvCuQxXedaiz3ycwXLs/X6GC4/vkF9xeWXs3KLTjAFm8/FVpq7rlSmV5sSrKi10uvwgAP0UQBqDFqw7Cru7XTr5Wi1r5WCVJmQWlum/tVnmYzQry8VR+aYXLceN6tXV+vSU9RyeLynXDoE4a3DFUkpT2w7wjo8LVv12QWvlaZTaZBKBxnDp5SHs3/MulzdM7QP0vv0vFecd0ZPsHKi3MltU3SG2j4xTctrckyXA4lJH6mXKPbleFrVhevsGK7D7CeVnfsqJcHdnxgYpzj8owDPkFtVH7vpfJt1XkL36OAAAAANDYyovzlJ2WLC/fIGeoZa+ouqJOSX6G8jNTFRTZQ4HhUTLslXI4KmU2e8hkMutk+lYV52WoTc/RsvoEyl5ZdZzZw6pTJ9MkGco5/F3VZRN/cGzXepWdOvnDh/YBoCaCMAAt3sGTpyRJf3v7W9nsDkUG+uiPcT3k7+WpS6Pb6Kq+7fTsZ3uUX1pQ6/G2SocSvt6vdkG+um5Ahx/nPVEVhL389X7Z7A75Wj00aWhXXdKTX44DjaH6GvWtOw2Sl2+QJMns6aXK8hLt/fp1mSS17jxY+Zl7dDD5LfUcNUX+IR2UsedzZe37Sv6hnRTSob9y0r/Voa1r5enlp8DwKKVtWaPSwmy17jRQkkkn07fqwOY31W/crEY7VwAAAABoLBarr3KPblelrURlp07KbrepKCddfsHt5B/aUXu+ekV5x3aqdaeBKso9IsNeqfBuF8tkMqnSVvZDGHZMQZE9lHO06lYW4V1jZfUJkk9guPN58o7tUl7GLoV1iVVohwGNdboAmgGCMAAtWoXdIauHWR2CffWrXm1UXF6ppK2H9dS6XXr6xiGKv6hrnXN8ujdL+SU2/X5YV3mYf9zxVelwqLW/l8b0iFQrH08lfXtYL27Yp3ZBvuoREXghTwtALYrzMyRJEd2Gy8PT23nZjBOHtshRWa7I7iPVrvdY+Yd00MHk1co5vE3+IR1kKy2Ql1+ooob+Rharjzytvjqy40OdOpmuwPAolRWdlMXqq5B2fWQYDuVn7pbZg0ugAgAAAGiZPDy91OPiyTq6c51yj26XISmkfV+173u5PL38FBX7G2Xs+VzHD2ySxeqjyB4j1TZ6jKSq92uG4dDJ9K3K2v+1vHyD1WXw9WoV0V2S5BMY5nye0sJsSZJvUBv5Bbf9+TIAwIkgDECL5ulh1hPXD3ZpO3DilLYczlXaySL1+cm9vU5n/e5MBXhbNKRTqEv7H+N6ujwur3To9U0Hte1oLkEY0Aiqd4Tt+ux5GfZKefmFqPOgX6vs1AlJkrd/6A9/V93nr/SH9i6Dfu0yz6mTh6rGBVSNa9NztI7tWq89X70iSbJ4+Slq6G8u5KkAAAAAQJPmExiu7sMn1doX1Kangtr0rLXPZDKpTY+RatNjZJ3P0TZ6jDNAA4AzMTf2AgCgMWWfKtPrmw7qw10ZzrYSm12S5OXpUefxxwtLdTS/RAM7hMhi/vGfVIfD0Jsph/Svbw7IMIwf5q2UJHmfxbwAGpbDXimzh0U+geHq0OcytY2+ROUl+TqwOdF5rXqTR9Xng8w//O2otLnMYRgOHd72nvKz9sgnMELB7fpIkqw+reTh6a02PUerba+xqrSVKC1ljQyH4xc8QwAAAAAAANSGHWEAWrQAL4s2HMjWqbIKZeSXqKzCrt1ZBeoWFqCo1v51Hn/gRNX9xbqFue7wMptNOpRTpO+O5in7VJnatPLRx7sz5Wv10KhuERfkXACcntnDot6X/MGlrTj/mAqy9qqkoGqnmOGoCsEd9oqqYyxW51hHZYUObklSQdZe+QRGqPvwSTKbPVRRXqxDW96Wb1Bb5ycRi/OOqiBrr4py0hUQ1uUXODsAAAAAAACcDkEYgBbNx2rRfVf008rNadpwIFuGIV0cFabfX9RVJpOpzuPzSqp2jIT6e9Xou2NMT/17c5q2Hs7V9mP5igrz1+SLohTka60xFsCFVV6cp+y0ZHn5Bim861BJcu4EC2rbS6WF2SovzpUklRVV/V19E2ZHZYX2bXxdRblHFBgepa5DbpCHZ9XPvK04T4bhkL2y3Plc1TvJqneYAQAAAAAAoPHwGxoALV6HED/NvaLvGcfcP75/re3j+7XX+H7ta+3z9/LU7aN6nPf6AJw/i9VXuUe3q9JWorJTJ2W321SUky6/4HYK6zRIx/dtVPbBzXLYK5SfuUeSFNphgCTpyM6PVJR7RCYPi/xDOuhEWrKkqhsy+4d2kqd3gMpOndDB5Lfk4emlUycPycs/VL6t2jTa+QIAAAAAAKAKQRgAAHB7Hp5e6nHxZB3duU65R7fLkBTSvq/a971cnl5+6jHi9zqy4wOdSEuR1aeVug65Qf4h7eWorFDO4e8kSYa9UhmpnznnDOsSq8DwKPUY8Xsd2/WJCk+kSTLUKrKHOvS93HmvMQAAAAAAADQefkMDAABaBJ/AcHUfPqnWPr/gtooeNbVGu9niqUHXzDvjvN7+oYoaemODrBEAAAAAAAANy9zQE+bn5+uBBx7Q6NGjNWjQIN18881KSUlx9u/evVvx8fGKiYnRmDFjlJCQ4HK8w+HQ0qVLNWrUKA0YMEBTp05Venq6y5i65gAAAAAAAAAAAAAaPAi7++67tW3bNj399NN666231KdPH02bNk0HDhxQXl6epkyZos6dOyspKUkzZ87UkiVLlJSU5Dx++fLlWrVqlR555BElJibKZDJp+vTpstmqbjx/NnMAAAAAAAAAAAAADXppxPT0dG3YsEFvvPGGBg0aJEmaN2+evvjiC73zzjvy9vaW1WrVggULZLFYFBUVpfT0dK1YsUITJ06UzWbTSy+9pNmzZysuLk6StHjxYo0aNUrr1q3T+PHj9eabb55xDgAAAAAAAAAAAEBq4B1hwcHBeuGFF9S3b19nm8lkkmEYKigoUEpKimJjY2Wx/Ji/DRs2TGlpacrJyVFqaqqKi4s1bNgwZ39gYKB69+6t5ORkSapzDgAAAAAAAAAAAEBq4CAsMDBQcXFxslqtzrb3339fhw8f1siRI5WVlaXIyEiXY8LDwyVJGRkZysrKkiS1adOmxpjMzExJqnMOAAAAAAAAAAAAQGrgSyP+3JYtW3Tffffp0ksv1dixY/XYY4+5hGSS5OXlJUkqLy9XaWmpJNU6pqCgQJJUVlZ2xjnOh8Vyfrmgh0eD33INLVBTeR01lXWgeeN1dOFRu9AU8DoCcK6oX2gKeB0BOBfULjQFvI6A+rlgQdjHH3+se+65RwMGDNDTTz8tSfL29pbNZnMZVx1e+fr6ytvbW5Jks9mcX1eP8fHxOas56stsNik42K/exwMNJTDQp7GXADQYXs8XFrULTQU/6wDOBfULTQX1C8DZonahqaB2AfVzQYKw119/XQsXLtS4ceO0aNEi5w6uyMhIZWdnu4ytfhwREaHKykpnW8eOHV3GREdHn9Uc9eVwGCosLKn38VJVIs8/RjhfhYWlstsdjb0MXs9oEOf7eg4M9OHTTmdA7UJT0VRqF9BUUL/OjPqFpoL6BfyI2nVm1C40FdQuwNXZ1q8GD8L+/e9/6+GHH9bkyZN13333yWz+cRGxsbFatWqV7Ha7PDw8JEkbN25Uly5dFBoaqoCAAPn7+2vTpk3OIKywsFC7du1SfHz8Wc1xPior+UcEjc9ud/BahNvg9Xzh8f1FU8DPOoBzxb8ZaAqoXwDOBf9eoCmgdgH106Af9UhLS9Ojjz6qcePGacaMGcrJydGJEyd04sQJnTp1ShMnTlRRUZHmzZun/fv3a82aNXr11Vc1Y8YMSVX3BouPj9eiRYu0fv16paam6q677lJkZKTGjRsnSXXOAQAAAAAAAAAAAEgNvCPsww8/VEVFhdatW6d169a59E2YMEGPP/64XnzxRS1cuFATJkxQWFiY5syZowkTJjjHzZo1S5WVlZo/f77KysoUGxurhIQE5+UVQ0ND65wDAAAAAAAAAAAAaNAg7A9/+IP+8Ic/nHFM//79lZiYeNp+Dw8PzZ49W7Nnz673HAAAAAAAAAAAAAB3wQQAAAAAAAAAAIBbIggDAAAAAAAAAACAWyIIAwAAAAAAAAAAgFsiCAMAAAAAAAAAAIBbIggDAAAAAAAAAACAWyIIAwAAAAAAAAAAgFsiCAMAAAAAAAAAAIBbIggDAAAAAAAAAACAWyIIAwAAAAAAAAAAgFsiCAMAAAAAAAAAAIBbIggDAAAAAAAAAACAWyIIAwAAAAAAAAAAgFsiCAMAAAAAAAAAAIBbIggDAAAAAAAAAACAW7I09gIAAAAAAAAAAEDzYTabZDabGnsZaMYcDkMOh/GLPBdBGAAAAAAAAAAAOCtms0nBwT4ymz0aeyloxhwOu/LySn+RMIwgDAAAAAAAAAAAnJWq3WAeSntnhUpzMht7OWiGfELbqMvV02U2mwjCAAAAAAAAAABA01Oak6nS44cbexlAncyNvQAAAAAAAAAAAADgQmBHGAAAAAAAAAAAwFnYdjRPq7cc0rH8EgV4eeryPm01vl97Z79hGHr6493acjhHj1wbo65hAWfVhwuHHWEAAAAAAAAAAAB1OJJbrKfW7VRBaYWu6ttOQb5WrdycpnW7MiRJp8oq9M/P9mjL4Zwax56pDxcWQRgAAAAAAAAAAEAdtmfkq9Jh6Jr+7XXj4M6ae0VfSdJHuzOUWVCqWYmbte1onoJ8PF2OO1MfLjyCMAAAAAAAAAAAgDq09vOSJCWn5+hQTpG+2p8tScrIL5UkXRrdRv+4fpDatPKtceyZ+nBhcY8wAAAAAAAAAACAOgzpHKphXVrrm7STum/tt2rt5yUfTw+VVtgV6O2p+Iu61npcm1Y+p+3DhUcQBgAAAAAAAAAAUAezyaRZY3tpQm6x8ktt6hYWoDvfTJbZJHl7ejT28nAaXBoRAAAAAAAAAACgDieLyrTiq33akZGvfu2CVVReqaLySnUI9pOH2dTYy8NpsCMMAAAAAAAAAACgDoHeVqWkn9TXBxzKL7XpuyO5kqQr+7Zr5JXhTAjCAAAAADfy3nv/06OPPlRr3+rV/9X333+nf//7Xzp69IiCgoJ12WVXatq0GbJYeGsAAGgaysvLddttk5WWdlCrV/9Xbdq01Ztv/ltJSW/qxIlshYSE6sorr9bUqbfLZOLT9wCAX47VYtbdv+qtV74+oA92HlOon7emj+yu0d0jGntpOINm+27X4XDon//8p1avXq3CwkINHjxYDz74oDp16tTYSwMAAAAaTc+evTRjxp+dj48dO6J33vmP+veP0ZEjh/XIIw8qMrKtbr55sjZt+lqvvfayTCaTbr/9jkZcNQAAP1q27GmlpR10Pv7666+0dOnT6tOnn8aOHaetW1P08ssr1LZtO1155dWNuFIAQEvUM6KVHpsw6Ixj7h/fv159uDCabRC2fPlyrVq1So899pgiIiL05JNPavr06XrnnXdktVobe3kAAABAo4iK6qaoqG6SpMrKSv3xj9MUEhKqRx9dpHXrPlCXLl31xz/O1PDhIzVmzKW69dab9e23KY28agAAqnzxxWdauzZJVquXbLZySdLhw4ckSTExgzR27K9UWVmpnTu3y8vLuxFXCgAAmgtzYy+gPmw2m1566SXNnDlTcXFxio6O1uLFi3X8+HGtW7eusZcHAAAANAlvv/2Wdu/eqT//+S4FBQXpxht/q3/9K1HDh4+UJG3dWhWAderUpTGXCQCAJCk7+7gef/xhjR59iXr37uNsHzfuCnXs2EkrV76qKVMm6Y03XtNNN/1OY8f+qhFXCwAAmotmuSMsNTVVxcXFGjZsmLMtMDBQvXv3VnJyssaPH9+IqwMAAEBjMZtNMpu5V4hU9eGxf//7X+raNUpXXnlljXuovPfeO3r22SXy9fXT738/RRZLs/yMXINzOAw5HEZjLwMAWhyHw6G///1+eXl5ae7c+brvvtnOPi8vb7Vv30He3t6aOPEmvfPOWr355hvq3z9GcXFjG3HVAACgOWiWQVhWVpYkqU2bNi7t4eHhyszMbIwlAQAAoJGZzSYFB/vIbPZo7KU0CR988KVOnMjWbbdNU0iIv0vfs88+q6VLl6pVq1b6v//7Pw0Y0KuRVtn0OBx25eWVEoYB+EXxQQ7p5Zdf0nffbdW9996n4uJTstlskqQTJ47rX/9K0Ndff6UlS57VRRcNV8+ePXXrrZP01lurdOml7ArjQxwAAJxZswzCSktLJanGvcC8vLxUUFBQrznNZpNCQvzOa13VH7K9d9pY2e2O85oLLY+HR9WnsFu18pHRBP7/tfr13P2Gv8hw2Bt3MWh2TD/8Evp8X88t/ZcBdaF2obE1xdplNptVWVYsw8Hr+eOPPpQkjRk5XBUlp5zt/1j0tP618t9q376dnlu2RF06d3bpb8lMZrMs3n4KDvalfl1A1C80tqZWv6Sqn4uf79xtaarvV/nEE4+6tN9xx3R5eXn98KhSwcF+sliq/sP5+fkqOPj8/j1xB4Zx/kEYtevMqF1obE2tdvF7Q5yvX/p3h80yCPP2rroZqs1mc34tSeXl5fLx8anXnCaTSR4eDVP0W/lzs1bUn9nctC5L5OkX2NhLQDPW1F7P7obahaaiqf2sW7z5hZgk7di1W61bt1bnbj2dbe+9957+tfLfkqRRo0brs6826rOvNio4OFg33nhjYy21yWlqr2l3Q/1CU8HPetMyc+ZM5ebmOh8vW7ZM+/fv14MPPqjc3FwtW7ZMCxcu1O7du/XBBx9Ikq6++urGWm6T0pD/rqJ21C40FU2tdvF7Q5yvX+o13SyDsOpLImZnZ6tjx47O9uzsbEVHRzfWsgAAAIAm4/jx44qKinJpe+2115xfv/HGG86vu3fvThAGAGhUQ4cOdXm8cuVKSdLo0aPVvn17BQcH6/XXX9fLL7+sNm3aaP78+ZowYUJjLBUAADQzJsNoCpspz43NZtPw4cM1d+5c5xv2wsJCjRo1So8++qjGjx/fyCsEAAAAAAAAAABAY2uWO8KsVqvi4+O1aNEihYSEqF27dnryyScVGRmpcePGNfbyAAAAAAAAAAAA0AQ0yyBMkmbNmqXKykrNnz9fZWVlio2NVUJCgqxWa2MvDQAAAAAAAAAAAE1As7w0IgAAAAAAAAAAAFAXc2MvAAAAAAAAAAAAALgQCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMJauLFjx2rMmDEqKiqq0Td37lxNnjz5gq9h8uTJGjRokDIyMmr0LVu2TGPHjq3R7nA4NGbMGPXt21c5OTkXfI3A2LFjtWzZssZeBgBRu4CzRe0CmhbqF3B2qF9A00L9AupG7Wr6CMKgzMxMPf744426huLiYs2fP/+sx3/99dfKz89XaGiokpKSLuDKgCpvvfWWpk6d2tjLAPADahdQN2oX0PRQv4C6Ub+Apof6BZwZtavpIwiDOnTooNWrV+vLL79s1DVs2LBBiYmJZzU+KSlJgwcP1qWXXqrExEQ5HI4LvEK0dCEhIfLz82vsZQD4AbULqBu1C2h6qF9A3ahfQNND/QLOjNrV9BGEQddee62GDx+u+++/v9ZtztXy8/P10EMPKS4uTv3799fNN9+slJQUZ/+yZcs0efJkrVixQqNHj1a/fv30+9//XgcPHqxzDUOGDNHEiRP1xBNP1LrN+acKCgr08ccfa8SIEbriiit09OjRRi3EaPp69uypNWvWuLT9dMvymjVrNHbsWL399tsaN26c+vbtq4kTJ+rbb7+tdbwkrV69WpdddpkGDBig6dOnKyEhwWUrfl3PKUlbt27VpEmT1L9/f40ZM0YPPfTQGX8GAfyI2gV3R+0C3BP1C+6O+gW4J+oX3Bm1q2UgCINMJpMWLlyowsJCPfbYY7WOsdvtmjp1qlJSUvTEE0/o7bffVnR0tG699VZt377dOe7bb79VcnKyXnjhBb3yyivKyMjQQw89dFbr+Nvf/qaAgADNmzfvjOPeeecd2Ww2XXbZZRoyZIjCw8O1atWqsz9hoBbZ2dlatWqVnnzySSUmJspsNuvee++VYRg1xv7vf//Tgw8+qMmTJ2vt2rUaOHCglixZck7Pl5qaqltvvVUjRozQf//7Xy1atEg7d+7U1KlTa31OAK6oXQC1C2iOqF8A9QtojqhfaOmoXc0fQRgkSe3atdPs2bP11ltv1foJia+++ko7d+7UU089pWHDhikqKkoPPPCAevTooYSEBOe4yspK/eMf/1B0dLQGDx6syZMna8uWLWe1hoCAAD388MP6+uuvz1ickpKSFBMTo/bt28tsNuuqq67S559/rszMzHM/ceAHFRUVWrBggWJiYtSnTx/NmDFD6enpOnHiRI2xr776qq666ipNnjxZXbp00R133KGRI0ee0/MlJCRo+PDhuuOOO9S5c2cNGTJETz31lLZt26bNmzc31GkBbo3ahZaO2gU0T9QvtHTUL6B5on6hJaN2NX8EYXD67W9/e9ptznv37lVAQIB69OjhbDOZTBoyZIj27NnjbGvdurWCgoKcjwMCAlRRUSFJ+r//+z8NHDjQ+eeBBx6osYbRo0dr4sSJ+sc//qFjx47V6N+zZ4927typK6+80tk2fvx42e12vfnmm/U+d0CSoqKinF8HBARIkvP1+1P79+9X//79XdqGDh16Ts+1a9cubdiwweVn4tprr5UkHThw4FyXDrRY1C60dNQuoHmifqGlo34BzRP1Cy0Ztat5szT2AtB0VG9zvuaaa2psczYMQyaTqcYxDodDFsuPLyOr1Xra+X/729+6FCF/f/9ax/3tb3/Thg0bNH/+fA0aNMilLykpSZL0xBNP6B//+IdL31tvvaU//elPLusBqv1823Bthaq21+/pthv/vP1sjv3pczocDl1zzTX6wx/+UOO4kJCQWp8TQE3ULrgzahfgvqhfcGfUL8B9Ub/grqhd7o8dYXDRrl07zZkzR2+99ZbLzSx79uypwsJC7d2712X8li1b1K1bt7OaOygoSJ06dXL+CQ0NrXXcT7c5//e//3W2V1RU6H//+59Gjhyp//znP1q7dq3zzx133KHs7Gx98skn9ThruDtPT0+dOnXK+bioqEi5ubn1nq937941tu3/9HrXZ/Oc3bt31759+1x+Jux2ux577DG26gPniNoFd0TtAtwf9QvuiPoFuD/qF9wNtatlIAhDDb/97W918cUX68iRI862ESNGqGfPnvrrX/+qTZs26cCBA3rooYe0d+9e3XLLLQ2+htGjR+uGG27Q4cOHnW2ffvqpcnNzNWXKFPXo0cPlz7Rp0xQQEKA33nijwdeC5m/gwIFKTEzUzp07tXfvXs2ZM+e8Pv0zY8YMrVu3TitWrNChQ4e0cuVKl//xOpvnnDp1qnbv3q0HHnhA+/fv17Zt23TPPfcoLS1NnTt3rvfagJaK2gV3Q+0CWgbqF9wN9QtoGahfcCfUrpaBIAy1euSRR+Tn5+d8bLFY9PLLL6tXr16aOXOmJk6cqL179+qVV15RTEzMBVnD3/72N7Vp08b5eM2aNercubNGjBhRY6y/v79+85vfaOPGjUpPT78g60HztWDBAoWFhem3v/2tpk+frqFDh2rgwIH1ni8uLk7PPPOM1qxZo6uvvloff/yxJk6ceE7PGRMToxdffFF79+7V9ddfr9tvv10dOnTQyy+/fMbLBAA4PWoX3Am1C2g5qF9wJ9QvoOWgfsFdULtaBpNxugtZAgDO2rJly/T222+zxR4A0GxQuwAAzRH1CwDQ3FC7Gh87wgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglrg0IgAAAAAAAAAAANwSO8IAAAAAAAAAAADglgjCWrjHHntMr7zyivPx999/r0mTJql///6Ki4vT0qVL5XA4nP15eXn661//qtjYWMXGxur+++9XSUnJGZ9j48aNuvHGGzVw4EBdfvnlev3112uMWbt2ra666ir169dP48eP1/vvv3/GOV944QVddNFFGjNmjN59912Xvg8//FA33nhjjWNefvllLVy48IzzAgCavp/XrrFjx6pnz54uf+655x5nf31q1/bt2xUfH6+BAwcqLi5O//jHP2Sz2Zz9OTk5mj17toYNG6aBAwfq9ttv1/79+884J7ULAFq2n9avn9etn/7JyMhwOc7hcGjatGlatmxZnc+xe/duxcfHKyYmRmPGjFFCQkKNMbz3AgCcrXN971VRUaGnnnpKo0aNUkxMjOLj47V79+6zeq7c3FyNHDlSmzZtcmk/duxYrfVy9erVp52L2gWgBgMt1tatW41x48YZNpvNMAzDOHjwoDFgwABj7ty5xsGDB4333nvPiImJMV544QXnMfHx8caNN95o7Nixw/j666+NSy65xJgzZ85pn+Pbb781oqOjjQceeMDYv3+/sX79emPEiBHG8uXLnWPWrl1r9OrVy3jllVeMQ4cOGf/85z+N6OhoY+vWrbXOuWfPHiMmJsbYunWrsX79emPAgAFGXl6eYRiGUVFRYVx22WXG5s2baxxns9mMyy67zEhOTq7PtwsA0AT8vHadOnXK6Nmzp/Hpp58a2dnZzj+FhYXOY861duXk5BhDhw417r//fuPQoUPG559/bgwbNsx4/PHHnWNuvPFG46abbjK+//57Y//+/cbMmTONESNGGCUlJbXOSe0CgJbt5/XrpzUrOzvbSE9PN0aPHm389a9/dTmutLTUuPvuu40ePXoYS5cuPeNz5ObmGhdddJExb948Y//+/cZbb71l9OvXz3jrrbecY3jvBQA4W/V573XfffcZw4YNMz799FNj//79xp/+9CdjxIgRLmNqc+zYMeOaa64xevToYXzzzTcufevXrzf69etnHD9+3OV5S0tLa52L2gWgNpbGDuLQeJ566ilNmjRJnp6ekqTnn39e3bp106OPPiqTyaQuXbpo37592rp1qyTp22+/1ebNm/Xee+8pKipKkvT3v/9dt912m+6++25FRETUeI4XX3xRffv21UMPPSRJioqKUlFRkR544AFNmzZNnp6eWrJkiW655RbdcsstkqQ//elP2rp1qzZv3qyBAwfWmHP//v3q0aOHs8/Pz0+HDx9WUFCQEhMT1aVLF8XGxtY4ztPTU5MmTdJTTz2lN954owG+gwCAX9rPa9fevXtlGIYGDRqkwMDAGuPrU7u2bt2q/Px8zZkzR/7+/urUqZOuvfZaffXVV7r33nuVl5en9u3b649//KO6d+8uSbrjjjt03XXXad++ferfv3+NOaldANCy/bx+hYWFufQ/8MADslgsevjhh51tW7du1bx581RRUVFrjfu5N998U1arVQsWLJDFYlFUVJTS09O1YsUKTZw4UYZh8N4LAHDWzvW915EjR/TWW2/p+eef15gxYyRJjz76qH79619rx44dGj58eK3Ps3r1aj355JNq3759rf179+5Vly5dFB4eflbrpnYBqA2XRmyhtm/fri1btuiqq65ytn355Ze6+uqrZTKZnG2zZs3Sc889J0lKSUlRWFiY8xeJkjR06FCZTCZt2bKl1udJS0vTkCFDXNp69+6t0tJSff/99zp48KCOHTuma665xmVMQkKCZsyYUeucHTp00KFDh3Ty5EkdOHBAhYWFatu2rYqLi/Xcc8/pr3/962nP+4orrtB3332n77777rRjAABNU221a8+ePQoLCzvtLwjrU7uCgoIkSW+88YbsdruOHj2qzz//XAMGDJAkBQcH6+mnn3aGYCdPnlRCQoIiIyPVrVu3WuekdgFAy1Vb/fqpXbt2afXq1XrggQfk4+PjbP/yyy81btw4rV27VgEBAXU+T0pKimJjY2Wx/Ph512HDhiktLU05OTm89wIAnLX6vPf66quvFBgYqNGjRzvbAgMD9cknn5w2BJOkTz/9VLNnz9aSJUtq7d+zZ89p32fVhtoFoDbsCGuhPv74Y/Xt29f5ScSioiKdPHlSAQEBuu+++/TFF18oMDBQv/71rzVt2jR5eHjo+PHjatOmjcs8VqtVQUFByszMrPV5wsLCavQdO3ZMUtX9VQoKCiRJJSUlmjZtmnbt2uX8lP3YsWNrnbNfv3664oorNGrUKHl4eOjuu+9W69at9cwzzyguLs75i8nahIeHq3fv3vrkk08UExNzVt8rAEDT8PPaJVV9OtDX11czZ87Ut99+q5CQEF1//fX6/e9/L7PZXK/aNWTIEN1+++1asmSJFi9eLLvdrqFDh+r++++vMfb+++93fgL/ueeek6+vb61zUrsAoOWqrX791NKlSzV48GDFxcW5tN95553n9DxZWVnq0aOHS1v1p+czMjKUnZ0tifdeAIC61ee916FDh9ShQwd99NFHeuGFF3T8+HH17t1bc+fOdflg4s8tX75cknT06NFa+/fu3auwsDD97ne/06FDh9SpUyfdcccdGjVqVK3jqV0AasOOsBbqu+++c3mTVFRUJEl64okn1LZtW61YsUK33Xabnn/+ef3zn/+UJJWWlspqtdaYy8vLS+Xl5bU+z/XXX68PP/xQa9euVUVFhdLT0/XMM8/IZDLJZrM5n/fee+/V1VdfrZdeekkjRozQHXfcoY0bN552/Q899JA2bdqk5ORkTZ06VdnZ2Vq1apVmzZqlr7/+WuPHj9fll1+uDz74oMaxPXv21LZt287+mwUAaBJ+Xrskad++fTp16pSuuuoqJSQk6KabbtKSJUu0bNkySfWrXYWFhTp06JAmTZqk1atXa8mSJTp8+LAWLFhQY+wtt9yipKQkXXvttfrTn/6knTt3nnb91C4AaJlqq1/VDh48qM8+++y0O7LORVlZWY2a5+XlJUkqLy/nvRcA4KzV571XUVGRDh8+rOXLl+vuu+/Wc889J4vFot/97nfKycmp1zpsNpsOHTqkoqIi/eUvf9ELL7ygfv36afr06dQuAOeEHWEt1MmTJ13uYVJ9vd+LL75Yf/7znyVJvXr1Um5urp599lnNmjVL3t7estlsNeYqLy8/7Sfgr732WmVlZemhhx7Sfffdp+DgYM2ePVtz585VQECASkpKJEnTpk3ThAkTnM+7a9cuvfzyy2fcOv3TrdhLly7Vb37zGwUHB+uee+7RP//5T4WGhurGG2/U4MGDXT7BEhISQkEDgGbo57VLkl5++WWVl5fL399fUtWblupLXsycObNetWvRokUqLCx0vqHr06ePWrVqpVtvvVW33HKLoqOjnWOrL9Hx8MMP67vvvtPrr7+uxx577LTnQO0CgJantvpV7b///a/atm2rkSNHnvfz1Fbzqj/04evr63zPx3svAEBd6vPey9PTU6dOndLixYudO8AWL16suLg4vf3227rtttvOeR1Wq1XJycmyWCzOD3v07dtXBw4cUEJCArULwFljR1gLZTKZ5HA4nI+DgoLk5eVV49Me3bt3V0lJiXJzcxUZGem8nEY1m82m/Px8RUREnPa5br/9dm3ZskWffvqpvvjiC/Xt21eGYahTp06KjIyUpBrP261bt9Nuif65AwcO6NNPP9X06dO1f/9+SdKgQYPUqVMnderUSdu3b3cZb7fbZTbz0geA5ubntUuq+iBH9Ruxaj169FBJSYkKCgrqVbu2bNmifv36ubRV3x+s+j4r77zzjux2u7PfbDYrKiqqxnOdDrULAFqO2upXtfXr1+vKK690uU9zfdVW86ofR0RE8N4LAHDW6vvey2KxuFwG0dvbWx06dDjrOlMbX1/fGjuee/TooePHj5/V8dQuABJBWIsVERGh3Nxc52MPDw8NGjSoxice9uzZo8DAQAUFBSk2NlZZWVlKT0939m/atElSVQGpzcqVK/Xggw/KbDYrIiJCHh4e+uCDD9S+fXt16dJFvXv3lp+fX43n3bt3rzp27HhW5/Lkk0/q9ttvV0BAgMxms8svJisqKmoU7ry8POe18gEAzcfPa5fD4dDYsWP13HPPuYzbvn27WrdureDg4HrVrsjISO3Zs8elbe/evZKkzp07Kzs7W3/961+1efNmZ39FRYV27dp1xmvf/xS1CwBajp/Xr2qnTp3Svn37NGzYsAZ5ntjYWG3ZssWlpmzcuFFdunRRaGgo770AAGetPu+9hgwZosrKSpdgqaysTEeOHFGnTp3qtY7U1FQNHDhQKSkpLu07duxwXp2jLtQuABJBWIvVv3//Gvcx+eMf/6gvv/xSy5Yt0+HDh/X+++/rhRde0C233CIPDw8NGDBAgwYN0l133aXvv/9e33zzjR588EH9+te/dn6qvqysTCdOnHAWlW7dumn16tVavXq1jh07psTERP3f//2f/vrXv0qq+mTIbbfdpmeffVbvvPOODh8+rOeee04bNmzQlClT6jyP5ORk7du3TzfffLMkqVOnTjIMQ2+//ba++uorHTp0qMan+nfu3On8ZD8AoPn4ee0ym826/PLL9eKLL+r999/X4cOHlZiYqBdffFF33nmnJNWrdk2ZMkVffvmlnnnmGR0+fFgbN27U3LlzFRcXp169eik6OlojR47UQw89pJSUFO3du1f33nuvCgsLdeutt9Z5HtQuAGhZanvvJVX9cs8wjNPeP6wuP69fEydOVFFRkebNm6f9+/drzZo1evXVV533H+O9FwDgbNXnvdeQIUN08cUX695771VKSor279+vOXPmyMPDQ9ddd52kmrWrLj169FD37t2d770OHDigxx57TN99953+8Ic/1Hk8tQuAk4EWaceOHUZ0dLSRk5Pj0v7FF18YEyZMMPr06WOMGTPGeP755w273e7sP3nypDFz5kwjJibGuOiii4wHH3zQKCsrc/YnJSUZPXr0MI4cOeJsW7NmjXHZZZcZ/fv3N6655hrjvffeq7Gel156yRg7dqzRp08f49prrzXWrVt3Vudxww03GP/73/9c2tatW2fExcUZI0aMMN5++22XvpMnTxo9e/Y0duzYcVbzAwCajtpqV0VFhbF8+XLj0ksvNfr06WNcfvnlRmJiostx9aldn332mXHjjTcaMTExxiWXXGI8+uijRnFxsbO/sLDQePDBB40RI0YY/fv3N6ZOnWrs3bv3rM6D2gUALcvp3nu9++67Ro8ePYzy8vI657jkkkuMpUuXurTVVr+2bdtm/OY3vzH69u1rXHLJJcZrr71WYy7eewEA6lLf916nTp0yHnzwQeOiiy4yBgwYYEyZMsXYt2+fs7+22lXtyJEjRo8ePYxvvvnGpT0nJ8f429/+ZowYMcLo16+fcdNNNxnJyclndR7ULgDVTIZhGI0dxqFxTJo0SWPHjtW0adMaeym/mBUrVuizzz7TypUrG3spAIB6oHYBAJoj6hcAoLmhdgFwJ1wasQX7y1/+ojfeeEM2m62xl/KLsNlsWrVqlf7yl7809lIAAPVE7QIANEfULwBAc0PtAuBOCMJasNjYWI0ZM0avvfZaYy/lF/Gvf/1LcXFxio2NbeylAADqidoFAGiOqF8AgOaG2gXAnXBpRAAAAAAAAAAAALgldoQBAAAAAAAAAADALRGEAQAAAAAAAAAAwC0RhAEAAAAAAAAAAMAtEYQBAAAAAAAAAADALRGEAQAAAAAAAAAAwC0RhAEAAAAAAAAAAMAtEYQBAAAAAAAAAADALRGEAQAAAAAAAAAAwC0RhAEAAAAAAAAAAMAtEYQBAAAAAAAAAADALRGEAQAAAAAAAAAAwC0RhAEAAAAAAAAAAMAtEYQBAAAAAAAAAADALRGEAQAAAAAAAAAAwC0RhAEAAAAAAAAAAMAtEYQBAAAAAAAAAADALRGEAQAAAAAAAAAAwC0RhAHnwOFwNPYS3A7fUwAAAAAAAADAhWJp7AUA52Py5MnavHnzGcesX79e7du3P6/nsdlseu2115SZman58+ef07E9e/aUJD399NMaP368Nm3apN///veSpK+++kphYWHntbZfwtixY3Xs2DHnY5PJJB8fH3Xs2FETJkzQ5MmT5eHhcc7zpqSk6JFHHtHatWsbcLUAAAAAAAAAAFQhCINb8PX1VUBAQK19Fsv5v8xnz56tDz74QBMmTDjvuZozf39/+fn5qaKiQvn5+UpNTdVjjz2mLVu2aOnSpTKZTGc91+eff67bb7/9Aq4WAAAAAAAAANDSEYTBLVxzzTX6+9//fsHmLyoqumBzNyczZsxwhlelpaVKSEjQsmXL9NFHH2nt2rXnFBTyPQUAAAAAAAAAXGjcIwwtwuTJk9WzZ08tXbpUU6dO1cCBA3X33XdLkjZs2KD4+HhddNFFiomJ0RVXXKEXXnhBhmE4j/3qq68kSW+//bZ69uypo0ePSpIOHDigGTNmaODAgRo4cKCmTJmi77///pzXN3fuXPXs2VPTpk1ztp04cUI9e/ZUz549tWnTJknSsmXL1LNnT82aNUufffaZrrvuOvXr10/XXHONPv/8c5c59+zZo1tuuUX9+/fXJZdcopUrV2rhwoXq2bOnli1b5hz33nvv6YYbbtCQIUM0cOBAXXfddVq9enWda/bx8dGf//xnDR48WJKUmJjo7CstLdXChQt1ySWXqG/fvoqNjdWtt96qbdu2SZLWrFnj/P5LcllT9Tm/++67zv4XXnhBPXv21NixY12O6dmzp5KTk/WXv/xFMTExGj16tFatWqXCwkL97W9/06BBgzRs2DA9/vjjqqioqPs/BAAAAAAAAADArbAjDC3KCy+8IEny9PRUdHS0UlNTNWPGDFVUVMjX11dWq1VpaWl66qmnVF5erpkzZyo4OFhWq1U2m00+Pj4KDAyUxWLR4cOH9dvf/laFhYXy9vaWxWLR119/rS1btmjlypXq16/fBTuP7du36+OPP5aPj49sNpv27t2rv/zlL/rkk08UHByszMxMTZ48WQUFBZKkgoIC/f3vf1dkZKTLPJ9//rnuuusuSVJAQIDMZrNSU1M1f/58eXh46Prrr69zLRdffLG2bNmiHTt2qLKyUhaLRfPnz9c777wjs9msoKAgFRQUaOPGjdq5c6e++uor+fj4KCgoSPn5+ZKkiIgI+fv71+t7ceedd6q4uFh2u13Hjx/XggUL9Morr+jIkSOyWq3Ky8vTyy+/rIiICE2ZMqVezwEAAAAAAAAAaJ7YEQa3kJiY6Nwh9NM/c+fOdRlnNpv17rvvatOmTbr55pu1YcMGVVRUKCYmRikpKdq8ebMWLFigkSNHytPTU5K0dOlSDR06VJJ0xRVX6IsvvlBkZKSWLVumwsJCjR8/XsnJyUpJSdEdd9yh8vJyLVmy5IKeb0ZGhubNm6ctW7Zo8eLFkqSSkhKlpKRIkl555RUVFBTI399f//nPf7R161Y99thjysrKcpmnehfZlVdeqZSUFCUnJ+vPf/6zLrnkkrPeQdW6dWtJUkVFhQoKClRRUSHDMNS5c2clJiZq48aN+s9//iNJKiws1IEDB3TllVfqgQcecM7xxRdf1Dukatu2rTZs2KCPPvpInp6eMgxDBQUF+uCDD7Rp0yb16NFDkrR58+Z6zQ8AAAAAAAAAaL7YEQa34Ovrq4CAgBrtrVq1cnk8ePBgderUSZJktVrVq1cvSdJ3332n+Ph4DR8+XLGxsXruuedktVrP+JwbN26UJH311Vf61a9+JUnO8Gjz5s3O3VEXgr+/v373u99Jki677DJne3FxsSRpy5YtkqTx48crOjpaknT99dfr5Zdf1t69e53jq8//o48+0tSpU3XRRRdpxIgR+tOf/iSz+exycpPJ5PzabrfL09NTTz/9tAzD0IEDB5SUlKTk5OQaa2wo1113nfz9/eXv76+IiAgdPXpUv/rVr9ShQwdJUp8+fbR3794Gf14AAAAAAAAAQNNHEAa3cM011+jvf/97nePCwsJcHl988cV67LHH9Pzzz2vr1q3aunWrJCkoKEhz5szRxIkTTztX9WX9CgoKnJcgrFZeXq68vLwaz3cu7Hb7aftCQkKcAZTFYpGnp6cqKirkcDgkSadOnZIkhYeHuxzXtm1blyDshhtuUEFBgV577TVt2LBBGzZskFR1qcKHH35YcXFxda4zNzdXkuTh4aGgoCBJ0n//+189/fTTyszMlL+/v2JiYpzjq9dYl+p7tElSZWXlacf9NOys3sUXGhrqbKsONH86HwAAAAAAAACgZSAIQ4vi7e1do+3Xv/61rrjiCp04cULJycn69NNP9fHHH+v+++/XyJEjFRER4bLrqVpYWJgyMjL0wAMPaNKkSZKqAjCLxSIPD49zWlf1/DabzdlWHWbV5ufz/3x9rVu31qFDh2pcCjEjI6PGcbfeeqsmTZqkw4cPa8uWLXr//fe1efNm3XXXXdq8eXOdu9qqL8fYu3dvWa1WHThwQPfee68cDoeef/55jR49WpWVlTXumVbb97S63TCMen8vTtcGAAAAAAAAAGh5uEcYWrTHH39cMTExmjx5skJCQnTDDTfotttuk1S1I6t6p1d1GFRSUiLDMORwOBQbGytJeuONN3Ty5EnZ7XbNnTtXMTExmjVr1jmto3pX0969e1VYWChJWrNmTb3Pa8iQIZKk9957T6mpqZKk1atXu+wGk6Q777xTMTExuuuuu9SpUyf97ne/00033SRJKi0tVVlZ2Wmfw263a+XKlc5dZDfffLPzHKp3fUVGRspkMum1115zHlfd99Owqri42Lnrq/p7UR2wFRQU6JNPPqnPtwEAAAAAAAAA0MKxIwxu4X//+58+++yzWvsWLlx42uOuvvpqrVq1Sjt27NDw4cPl7+/vvORhTEyMunXrJklq3769JOnDDz/U4MGDtXLlSv3hD3/QunXrtG/fPo0ePVo+Pj4qKiqS2WzWtddee07rHz58uF5++WXl5+fr0ksvVatWrXTq1Cl5e3ufMYw6nUmTJumNN95QQUGBrrvuOvn5+amkpERBQUHKz8937saaMGGC1q1bp08//VRDhw6Vj4+P8/wvv/xy+fv7u8z7/PPP6/XXX5dhGCosLHSu7ZJLLtH1118vSerbt6/zUo3XX3+98/tSrTroq76HlySNGjVKN954o/72t79p+PDhev/99533FsvLy6uxDgAAAAAAAAAAzgY7wuAWSkpKdPz48Vr/lJeXn/a4vn37auXKlbr00ksVFBSkkpISdejQQVOmTNHzzz8vs7nqR+SWW27RwIED5eXlpVatWsnhcKhr165auXKlxowZI19fXzkcDg0YMEDLly/Xr371q3Naf1xcnO69915FRESooqJCnTp10sqVK2u9lOPZCA8P16uvvqrBgwfLy8tLoaGhevLJJ9W3b19JP14icsyYMUpISNDFF18sX19flZeXq2vXrpo5c6Yef/zxGvMWFRXp+PHjys7OltlsVu/evXXffffp2WefdYZrHTp00DPPPKPu3bvLYrEoKChIM2bM0NixYyVJX3/9taSqSynGx8crKChIJpPJGXY98MADuvzyy+Xr66uSkhL95je/0dy5c+v1fQAAAAAAAAAAtGwmwzCMxl4EgIb13nvvadu2bQoODtbEiRMVFhamkydP6oYbblBmZqaeeeYZXXnllY29TAAAAAAAAAAALiiCMMANffLJJ/rjH/8oSfL09FSrVq2Ul5cnu92u1q1b66OPPpKfn18jrxIAAAAAAAAAgAuLIAxwU6tXr9Ybb7yhtLQ0lZeXKzAwUEOGDNFdd92lqKioxl4eAAAAAAAAAAAXHEEYAAAAAAAAAAAA3JK5sRcAAAAAAAAAAAAAXAgEYQAAAAAAAAAAAHBLBGEAAAAAAAAAAABwSwRhAAAAAAAAAAAAcEuWxl5AU2EYhhwOo7GXAQD4CbPZJJPJ1NjLAAAAAAAAANBMEYT9wOEwlJtb3NjLAAD8REiInzw8CMIAAAAAAAAA1A+XRgQAAAAAAAAAAIBbOq8gbPny5Zo8ebJL2+7duxUfH6+YmBiNGTNGCQkJLv0Oh0NLly7VqFGjNGDAAE2dOlXp6ekNPgcAAAAAAAAAAABatnoHYa+88oqWLl3q0paXl6cpU6aoc+fOSkpK0syZM7VkyRIlJSU5xyxfvlyrVq3SI488osTERJlMJk2fPl02m63B5gAAAAAAAAAAAADOOQg7fvy4brvtNi1ZskRdunRx6XvzzTdltVq1YMECRUVFaeLEibr11lu1YsUKSZLNZtNLL72kmTNnKi4uTtHR0Vq8eLGOHz+udevWNdgcAAAAAAAAAAAAwDkHYTt37lSrVq303//+VwMGDHDpS0lJUWxsrCwWi7Nt2LBhSktLU05OjlJTU1VcXKxhw4Y5+wMDA9W7d28lJyc32BwAAAAAAAAAAACApe4hrsaOHauxY8fW2peVlaUePXq4tIWHh0uSMjIylJWVJUlq06ZNjTGZmZkNNkd9WSzndcs0AAAAAAAAAAAANCHnHISdSVlZmaxWq0ubl5eXJKm8vFylpaWSVOuYgoKCBpujPsxmk4KD/ep9PAAAAAAAAAAAAJqWBg3CvL29ZbPZXNrKy8slSb6+vvL29pZUdZ+v6q+rx/j4+DTYHPVy6qgcK4fVPe5smBpmGrRARmMvAGhaTJO+limwU2MvAwAAAAAAAEAz1aBBWGRkpLKzs13aqh9HRESosrLS2daxY0eXMdHR0Q02R32YHBUylWTU+3gAwAXgsDf2CgAAAAAAAAA0Yw0ahMXGxmrVqlWy2+3y8PCQJG3cuFFdunRRaGioAgIC5O/vr02bNjlDrMLCQu3atUvx8fENNkd9GGZPOXzbns/py6SqSywWldhkdzjOay60PB5ms/x9rXI4DDaGAT8wmz3YZAsAAAAAAACg3ho0CJs4caJefPFFzZs3T7fddpu+//57vfrqq3rooYckVd3XKz4+XosWLVJISIjatWunJ598UpGRkRo3blyDzVEfDr92yr0h9bzO32IxKzjYT48ueU+HMvPOay60PJ3bBevRGVepIK9YlZUEqYAkhfj5yaOxFwEAAAAAAACg2WrQICw0NFQvvviiFi5cqAkTJigsLExz5szRhAkTnGNmzZqlyspKzZ8/X2VlZYqNjVVCQoKsVmuDzQEAAAAAAAAAAACYDMPgKmyS7HaHcnOLz2uO6h1h9y15T4eOsSMM56Zzu2A9eudVymNHGOAUEuInDw9zYy8DAAAAAAAAQDPFbxcBAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglho8CKuoqNDixYs1ZswYDRw4UL/73e+0detWZ//u3bsVHx+vmJgYjRkzRgkJCS7HOxwOLV26VKNGjdKAAQM0depUpaenu4ypaw4AAAAAAAAAAACgwYOw5557TklJSXrkkUe0du1ade3aVdOnT9fx48eVl5enKVOmqHPnzkpKStLMmTO1ZMkSJSUlOY9fvny5Vq1apUceeUSJiYkymUyaPn26bDabJJ3VHAAAAAAAAAAAAICloSdcv369rr76ao0cOVKSNHfuXK1evVrfffedDh06JKvVqgULFshisSgqKkrp6elasWKFJk6cKJvNppdeekmzZ89WXFycJGnx4sUaNWqU1q1bp/Hjx+vNN9884xwAAAAAAAAAAACAdAF2hAUFBenTTz/V0aNHZbfblZiYKKvVql69eiklJUWxsbGyWH7M34YNG6a0tDTl5OQoNTVVxcXFGjZsmLM/MDBQvXv3VnJysiTVOQcAAAAAAAAAAAAgXYAdYfPmzdNdd92lSy+9VB4eHjKbzVqyZIk6duyorKws9ejRw2V8eHi4JCkjI0NZWVmSpDZt2tQYk5mZKUl1zhEaGlrvtVss55cLeng0eK6IFojXEQAAAAAAAAAADaPBg7ADBw4oMDBQzz77rCIiIrR69Wrde++9ev3111VWViar1eoy3svLS5JUXl6u0tJSSap1TEFBgSTVOUd9mc0mBQf71ft4oKEEBvo09hIAAAAAAAAAAHALDRqEHTt2TLNnz9Yrr7yiIUOGSJL69eun/fv3a9myZfL29pbNZnM5pjq88vX1lbe3tyTJZrM5v64e4+NTFQ7UNUd9ORyGCgtL6n28VLWThxAD56uwsFR2u6OxlwE0CYGBPuySBAAAAAAAAFBvDRqEff/996qoqFC/fv1c2gcMGKAvvvhCbdu2VXZ2tktf9eOIiAhVVlY62zp27OgyJjo6WpIUGRl5xjnOR2Ul4QMan93u4LUIAAAAAAAAAEADaNCP2Vff22vPnj0u7Xv37lWnTp0UGxurLVu2yG63O/s2btyoLl26KDQ0VNHR0fL399emTZuc/YWFhdq1a5dzh1ldcwAAAAAAAAAAAABSAwdh/fv315AhQ3Tvvffqm2++0aFDh/TMM89o48aNuv322zVx4kQVFRVp3rx52r9/v9asWaNXX31VM2bMkFR1b7D4+HgtWrRI69evV2pqqu666y5FRkZq3LhxklTnHAAAAAAAAAAAAIAkmQzDMBpywoKCAj3zzDP67LPPVFBQoB49eujuu+/W0KFDJVVdPnHhwoXatWuXwsLCNHXqVMXHxzuPt9vtevrpp7VmzRqVlZUpNjZWDzzwgNq3b+8cU9cc9WG3O5SbW3xec1gsZgUH++m+Je/p0LG885oLLU/ndsF69M6rlJdXzKURgR+EhPhxjzAAAAAAAAAA9dbgQVhzRRCGxkYQBtREEAYAAAAAAADgfPDbRQAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuKULEoStXbtWV111lfr166fx48fr/fffd/bt3r1b8fHxiomJ0ZgxY5SQkOByrMPh0NKlSzVq1CgNGDBAU6dOVXp6usuYuuYAAAAAAAAAAAAAGjwI+89//qP77rtPN910k9555x1dddVVuvvuu/Xtt98qLy9PU6ZMUefOnZWUlKSZM2dqyZIlSkpKch6/fPlyrVq1So888ogSExNlMpk0ffp02Ww2STqrOQAAAAAAAAAAAABLQ05mGIaWLFmiW265Rbfccosk6U9/+pO2bt2qzZs3a/PmzbJarVqwYIEsFouioqKUnp6uFStWaOLEibLZbHrppZc0e/ZsxcXFSZIWL16sUaNGad26dRo/frzefPPNM84BAAAAAAAAAAAASA28I+zgwYM6duyYrrnmGpf2hIQEzZgxQykpKYqNjZXF8mP+NmzYMKWlpSknJ0epqakqLi7WsGHDnP2BgYHq3bu3kpOTJanOOQAAAAAAAAAAAACpgYOwQ4cOSZJKSko0bdo0DR8+XDfeeKM++eQTSVJWVpYiIyNdjgkPD5ckZWRkKCsrS5LUpk2bGmMyMzPPag4AAAAAAAAAAABAauBLIxYVFUmS7r33Xv35z3/WPffcow8//FB33HGHXn75ZZWVlclqtboc4+XlJUkqLy9XaWmpJNU6pqCgQJLqnON8WCznlwt6eDT4LdfQAvE6AgAAAAAAAACgYTRoEObp6SlJmjZtmiZMmCBJ6tWrl3bt2qWXX35Z3t7estlsLsdUh1e+vr7y9vaWJNlsNufX1WN8fHwkqc456stsNik42K/exwMNJTDQp7GXAAAAAAAAAACAW2jQIKz6koU9evRwae/WrZs+++wztWvXTtnZ2S591Y8jIiJUWVnpbOvYsaPLmOjoaOdznGmO+nI4DBUWltT7eKlqJw8hBs5XYWGp7HZHYy8DaBICA33YJQkAAAAAAACg3ho0COvdu7f8/Py0bds2DRkyxNm+d+9edezYUYMGDdKqVatkt9vl4eEhSdq4caO6dOmi0NBQBQQEyN/fX5s2bXIGYYWFhdq1a5fi4+MlSbGxsWec43xUVhI+oPHZ7Q5eiwAAAAAAAAAANIAG/Zi9t7e3brvtNj377LN65513dPjwYT333HPasGGDpkyZookTJ6qoqEjz5s3T/v37tWbNGr366quaMWOGpKp7g8XHx2vRokVav369UlNTdddddykyMlLjxo2TpDrnAAAAAAAAAAAAAKQG3hEmSXfccYd8fHy0ePFiHT9+XFFRUVq2bJkuuugiSdKLL76ohQsXasKECQoLC9OcOXOc9xOTpFmzZqmyslLz589XWVmZYmNjlZCQIKvVKkkKDQ2tcw4AAAAAAAAAAADAZBiG0diLaArsdodyc4vPaw6LxazgYD/dt+Q9HTqW10ArQ0vRuV2wHr3zKuXlFXNpROAHISF+3CMMAAAAAAAAQL3x20UAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglS2MvAM1TQfZ+Zez+TGWnTshi9VV416GK6DZcknT8wDc6kZYsW2mhPL38FdpxgNr0jJPJZJK9olzHdq1XfmaqKivLFBDaSR36XSlv/xBJUkVZkY7u/EiFJ9LksFfIt1Ubte/zK/kFt2vM0wUAAAAAAAAAAM0QO8JwzkoLs3VgU6IqyosUETVMnt7+OrpznbLTklWQtVdHd3wki9VXEVHD5entr8w9Xyj3yPeSpMPfv6sTh1Lk37qzwjoN1qmT6dr39Wty2CskSQeTVyv36A4FhkepdceBKs49on0bV6qivLgxTxkAAAAAAAAAADRDBGE4Z4UnDspw2BXZbYTa9rpE3YdPkiSdOJissqIcSZJ/aCcFt+st/9COkiSzh6ckKT9rnyxWX3Udcr069LtcYZ0Hy1ZaoPysvbJXlMswHAoM76Yug36tDv0uV6vIHrJXlKm0IKtxThYAAAAAAAAAADRbXBoR58zq00qSlJ+ZKv/QDirKOSJJKis6qeB2vXUifauO7/9ax/d/LUkKj7pIwe16O48tO3VCuUe3y8s/VEU5hyVJpYXHFdKuj6JHT3M+j72iXMX5GZIk74DWv9j5AQAAAAAAAAAA90AQhnMW1CZawe36KO/YTu3+7AVZfVrJbPGSo7JchmHI2y9EZg9PhXcZqpOHtyr7wCb5h3RUcNte6tj/Sh1IflNpW96WJPkEhkuSHJUVLs9RaSvR/m9WqaK0UK07D3aGbwAAAAAAAAAAAGeLIAznzGQyqeuQiSrtMUoVZafkF9xe29ctlUwmHd+/UQXH96n78EkKDI+Sb6sI7f58hbIPblJw214KaN1J/X41U8V5GfL09tepk4d0ZPsH8vD0cs5fXpyrfRvfUHlxjkLa91PHflc24tkCAAAAAAAAAIDminuE4ZzZSgqU/t07KjyRpsDwKFVWlMpeUSqfwAiVF+dKkuyV5T/8bZMkmc1VmeuJQ1uUvu1d+QSGyycwXCX5mZIk31ZtJEllRTlK/fIVlRfnKLL7SHUe9GuZzLxMAQAAAAAAAADAuWNHGM6ZxctP+ZmpchzdroqyUyo4vl+SFNH1Itkry1WYfUBHtn+okvws5WXsliSFtO8nSXJU2pR3bKcqy0vk7R+qnCPfy8s/VIER3WQYDh3Y/KYqy4vk5RciD4tVx/dtkFR1OUbuEwYAAAAAAAAAAM4FQRjOmdnDoqihv9Hh7R8o++AmWX1aqVPM1QrtOOCHESadSEvW8QPfyOoTqA79rnD2hXe9SOUl+co9ukPF+ccU1CZaHfpdLrPZQ4XZB1V26oSkqssjHtv9ifM5vfxDCMIAAAAAAAAAAMA5MRmGYTT2IpoCu92h3Nzi85rDYjErONhP9y15T4eO5TXQytBSdG4XrEfvvEp5ecWqrHQ09nKAJiEkxE8eHlweFQAAAAAAAED98NtFAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4pQsahKWlpWngwIFas2aNs2337t2Kj49XTEyMxowZo4SEBJdjHA6Hli5dqlGjRmnAgAGaOnWq0tPTXcbUNQcAAAAAAAAAAABwwYKwiooK3XPPPSopKXG25eXlacqUKercubOSkpI0c+ZMLVmyRElJSc4xy5cv16pVq/TII48oMTFRJpNJ06dPl81mO+s5AAAAAAAAAAAAAMuFmnjZsmXy8/NzaXvzzTdltVq1YMECWSwWRUVFKT09XStWrNDEiRNls9n00ksvafbs2YqLi5MkLV68WKNGjdK6des0fvz4OucAAAAAAAAAAAAApAu0Iyw5OVmJiYl64oknXNpTUlIUGxsri+XH/G3YsGFKS0tTTk6OUlNTVVxcrGHDhjn7AwMD1bt3byUnJ5/VHAAAAAAAAAAAAIB0AYKwwsJCzZkzR/Pnz1ebNm1c+rKyshQZGenSFh4eLknKyMhQVlaWJNU4Ljw8XJmZmWc1BwAAAAAAAAAAACBdgEsjLliwQDExMbrmmmtq9JWVlclqtbq0eXl5SZLKy8tVWloqSbWOKSgoOKs5zofFcn65oIfHBbvlGloQXkcAAAAAAAAAADSMBg3C1q5dq5SUFP3vf/+rtd/b21s2m82lrTq88vX1lbe3tyTJZrM5v64e4+Pjc1Zz1JfZbFJwsF/dA4ELLDDQp7GXAAAAAAAAAACAW2jQICwpKUk5OTkaM2aMS/uDDz6ohIQEtW3bVtnZ2S591Y8jIiJUWVnpbOvYsaPLmOjoaElSZGTkGeeoL4fDUGFhSb2Pl6p28hBi4HwVFpbKbnc09jKAJiEw0IddkgAAAAAAAADqrUGDsEWLFqmsrMyl7bLLLtOsWbN01VVX6d1339WqVatkt9vl4eEhSdq4caO6dOmi0NBQBQQEyN/fX5s2bXIGYYWFhdq1a5fi4+MlSbGxsWec43xUVhI+oPHZ7Q5eiwAAAAAAAAAANIAG/Zh9RESEOnXq5PJHkkJDQ9WuXTtNnDhRRUVFmjdvnvbv3681a9bo1Vdf1YwZMyRV3RssPj5eixYt0vr165Wamqq77rpLkZGRGjdunCTVOQcAAAAAAAAAAAAgNfCOsLqEhobqxRdf1MKFCzVhwgSFhYVpzpw5mjBhgnPMrFmzVFlZqfnz56usrEyxsbFKSEiQ1Wo96zkAAAAAAAAAAAAAk2EYRmMvoimw2x3KzS0+rzksFrOCg/1035L3dOhYXgOtDC1F53bBevTOq5SXV8ylEYEfhIT4cY8wAAAAAAAAAPXGbxcBAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglgjCAAAAAAAAAAAA4JYIwgAAAAAAAAAAAOCWCMIAAAAAAAAAAADglho8CMvPz9cDDzyg0aNHa9CgQbr55puVkpLi7N+9e7fi4+MVExOjMWPGKCEhweV4h8OhpUuXatSoURowYICmTp2q9PR0lzF1zQEAAAAAAAAAAAA0eBB29913a9u2bXr66af11ltvqU+fPpo2bZoOHDigvLw8TZkyRZ07d1ZSUpJmzpypJUuWKCkpyXn88uXLtWrVKj3yyCNKTEyUyWTS9OnTZbPZJOms5gAAAAAAAAAAAAAsDTlZenq6NmzYoDfeeEODBg2SJM2bN09ffPGF3nnnHXl7e8tqtWrBggWyWCyKiopSenq6VqxYoYkTJ8pms+mll17S7NmzFRcXJ0lavHixRo0apXXr1mn8+PF68803zzgHAAAAAAAAAAAAIDXwjrDg4GC98MIL6tu3r7PNZDLJMAwVFBQoJSVFsbGxslh+zN+GDRumtLQ05eTkKDU1VcXFxRo2bJizPzAwUL1791ZycrIk1TkHAAAAAAAAAAAAIDVwEBYYGKi4uDhZrVZn2/vvv6/Dhw9r5MiRysrKUmRkpMsx4eHhkqSMjAxlZWVJktq0aVNjTGZmpiTVOQcAAAAAAAAAAAAgNfClEX9uy5Ytuu+++3TppZdq7Nixeuyxx1xCMkny8vKSJJWXl6u0tFSSah1TUFAgSSorKzvjHOfDYjm/XNDDo8FvuYYWiNcRAAAAAAAAAAAN44IFYR9//LHuueceDRgwQE8//bQkydvbWzabzWVcdXjl6+srb29vSZLNZnN+XT3Gx8fnrOaoL7PZpOBgv3ofDzSUwECfxl4CAAAAAAAAAABu4YIEYa+//roWLlyocePGadGiRc4dXJGRkcrOznYZW/04IiJClZWVzraOHTu6jImOjj6rOerL4TBUWFhS7+Olqp08hBg4X4WFpbLbHY29DKBJCAz0YZckAAAAAAAAgHpr8CDs3//+tx5++GFNnjxZ9913n8zmH3+BGRsbq1WrVslut8vDw0OStHHjRnXp0kWhoaEKCAiQv7+/Nm3a5AzCCgsLtWvXLsXHx5/VHOejspLwAY3PbnfwWgQAAAAAAAAAoAE06Mfs09LS9Oijj2rcuHGaMWOGcnJydOLECZ04cUKnTp3SxIkTVVRUpHnz5mn//v1as2aNXn31Vc2YMUNS1b3B4uPjtWjRIq1fv16pqam66667FBkZqXHjxklSnXMAAAAAAAAAAAAAUgPvCPvwww9VUVGhdevWad26dS59EyZM0OOPP64XX3xRCxcu1IQJExQWFqY5c+ZowoQJznGzZs1SZWWl5s+fr7KyMsXGxiohIcF5ecXQ0NA65wAAAAAAAAAAAABMhmEYjb2IpsBudyg3t/i85rBYzAoO9tN9S97ToWN5DbQytBSd2wXr0TuvUl5eMZdGBH4QEuLHPcIAAAAAAAAA1Bu/XQQAAAAAAAAAAIBbIggDAAAAAAAAAACAWyIIAwAAAAAAAAAAgFsiCAMAAAAAAAAAAIBbsjT2AgA0XWazSWazqbGXgWbK4TDkcBiNvQwAAAAAAAAALRhBGIBamc0mBQf7yGz2aOyloJlyOOzKyyslDAMAAAAAAADQaAjCANSqajeYh9LeWaHSnMzGXg6aGZ/QNupy9XSZzSaCMAAAAAAAAACNhiAMwBmV5mSq9Pjhxl4GAAAAAAAAAADnzNzYCwAAAAAAAAAAAAAuBIIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglgjAAAAAAAAAAAAC4JYIwAAAAAAAAAAAAuCWCMAAAAAAAAAAAALglS2MvAACagvd2HNPrmw7qd0O76Op+7V36MvJLNO8/3yrA21NLbxoqSbI7DL21NV0bDmSrsLRC4QHeunZAB43sFl5j7he+3KvP9h7XjFE9FNcj4hc5HwAAAAAAAAAAO8IAtHCVDof+s+2IVm4+WGt/hd2hZZ+mqrzS4dKe9G26/rPtiML8vXVVv3YqslVq+ed7tP1Ynsu4bw6e0Gd7j1+w9QMAAAAAAAAATo8dYQBatDlJW3X8VKkiAnyUVVhao//fm9OUUVCzPaeoXG1a+eiuX/WSv5enAr099a9vDmpXZoH6tQuWJJ04VaYXN+yTp4dZFXZHjTkAAAAAAAAAABcWO8IAtGi927TS36+J0cVRYTX6vj2Sqw93Zejm2M41+v4Y11NP3TBE/l6ekqRdmQWSpHZBvpKqLp34z89S5We16FfRbS7cCQAAAAAAAAAATosgDECLdtvI7ooKC6jRnldi0/Nf7NWA9sG6vHfb0x7vcBh6acN+paTnqFOIn4Z1aS1JStqargMnTumOMT3lY/W4YOsHAAAAAAAAAJweQRgA1OK5z/eovNKuX8d00PFTZZKqQq+swlLZHYYkqbzSrqfX79LHqZnqFOKney/vK4uHWbszC/Sf749oVLcItfKxqri8UpJUWGZTQamt0c4JAAAAAAAAAFoa7hEGALXYkZEvSXrone+dbbklNt29OkVLfhOrQB9PPf7BDu05Xqj+7YJ159ho+Vir/kndmZkvw5A+33dcn+877jz+jeRDOpZfoj+M7vmLngsAAAAAAAAAtFQEYQBQizvHRrs8XvJJqgK9PTXl4igF+njq9U0Hted4oaweZvWICNS63ZmSpC6t/TWsS2t1CPZ1HvtN2kltSjupcb3aKK57xC96HgAAAAAAAADQkhGEAUAtLuoS9rOWVFktZl3UJUzllXZ9vrdqp5fN7tBbW9Odo8b1aqMpF3dT+2A/Z9uRvBJJUtfWAepay/3IAAAAAAAAAAAXBkEYAEi6YVAn3TCo02n7/z1tlPNrL4uH/jVlZIPNDQAAAAAAAAC4MMyNvQAAAAAAAAAAAADgQiAIAwAAAAAAAAAAgFsiCAMAAAAAAAAAAIBbIggDAAAAAAAAAACAW2q2QZjD4dDSpUs1atQoDRgwQFOnTlV6enpjLwsAAAAAAAAAAABNRLMNwpYvX65Vq1bpkUceUWJiokwmk6ZPny6bzdbYSwMAAAAAAAAAAEAT0CyDMJvNppdeekkzZ85UXFycoqOjtXjxYh0/flzr1q1r7OUBAAAAAAAAAACgCWiWQVhqaqqKi4s1bNgwZ1tgYKB69+6t5OTkRlwZAAAAAAAAAAAAmopmGYRlZWVJktq0aePSHh4erszMzMZYEgAAAAAAAAAAAJoYS2MvoD5KS0slSVar1aXdy8tLBQUF9ZrTbDYpJMTvvNZlMlX9fe+0sbLbHec1F1oeD4+qXLpVKx8ZRiMvRj++nrvf8BcZDnvjLgbNjsnsIen8X89ms6mBVgQAAAAAAACgJWqWQZi3t7ekqnuFVX8tSeXl5fLx8anXnCaTSR4eDfML11b+3nUPAk7DbG5aGzU9/QIbewloxpra6xkAAAAAAABAy9Isf0NZfUnE7Oxsl/bs7GxFRkY2xpIAAAAAAAAAAADQxDTLICw6Olr+/v7atGmTs62wsFC7du3SkCFDGnFlAAAAAAAAAAAAaCqa5aURrVar4uPjtWjRIoWEhKhdu3Z68sknFRkZqXHjxjX28gAAAAAAAAAAANAENMsgTJJmzZqlyspKzZ8/X2VlZYqNjVVCQoKsVmtjLw0AAAAAAAAAAABNgMkwDKOxFwEAAAAAAAAAAAA0tGZ5jzAAAAAAAAAAAACgLgRhAAAAAAAAAAAAcEsEYQAAAAAAAAAAAHBLBGEAAAAAAAAAAABwSwRhAAAAAAAAAAAAcEsEYQAAAAAAAAAAAHBLBGEAAAAAAAAAAABwSwRhLdzYsWM1ZswYFRUV1eibO3euJk+efMHXMHnyZA0aNEgZGRk1+pYtW6axY8fWaHc4HBozZoz69u2rnJycC75GYOzYsVq2bFljLwMAAAAAAAAAcA4IwqDMzEw9/vjjjbqG4uJizZ8//6zHf/3118rPz1doaKiSkpIu4MqAKm+99ZamTp3a2MsAAAAAAAAAAJwDgjCoQ4cOWr16tb788stGXcOGDRuUmJh4VuOTkpI0ePBgXXrppUpMTJTD4bjAK0RLFxISIj8/v8ZeBgAAAAAAAADgHBCEQddee62GDx+u+++/v9ZLJFbLz8/XQw89pLi4OPXv318333yzUlJSnP3Lli3T5MmTtWLFCo0ePVr9+vXT73//ex08eLDONQwZMkQTJ07UE088UeslEn+qoKBAH3/8sUaMGKErrrhCR48ebdQQD01fz549tWbNGpe2n17qcM2aNRo7dqzefvttjRs3Tn379tXEiRP17bff1jpeklavXq3LLrtMAwYM0PTp05WQkOByGc+6nlOStm7dqkmTJql///4aM2aMHnrooTP+DAIAAAAAAAAAzg1BGGQymbRw4UIVFhbqscceq3WM3W7X1KlTlZKSoieeeEJvv/22oqOjdeutt2r79u3Ocd9++62Sk5P1wgsv6JVXXlFGRoYeeuj/27v7mCrLP47jn4OIpWJMU3DKxJ1CfORB8JHAabSkLBUrChyK+TAM00wckxSLcqHOxzkbgrDWQCeKWOsPLaOlgkJmiSjCjFipqORQTB6E3x/9uH+ezkHBn02B92s7G/f3vr7X9b3PDn99d1336hbVERsbK0dHR61YseKe47788kvV1tbqhRdekK+vr/r06aOMjIyWPzBgQ0VFhTIyMrR27Vrt2rVLdnZ2Wr58uRobG63GHjhwQKtWrdLMmTOVlZUlb29vbdq0qVXrnT17VrNmzdL48eOVnZ2tdevWqbCwUJGRkTbXBAAAAAAAAAC0Ho0wSJL69eunZcuWac+ePTZ3V/3www8qLCzU+vXrNWbMGJnNZq1cuVLu7u5KTk42xtXX1ysxMVEeHh4aOXKkZs6cqYKCghbV4OjoqI8++khHjx69Z2MrMzNTXl5e6t+/v+zs7BQcHKycnBxdvHix9Q8O/FddXZ3i4+Pl5eWloUOHav78+SorK9OVK1esxqalpSk4OFgzZ87UwIEDFRUVJX9//1atl5ycrLFjxyoqKkpubm7y9fXV+vXrderUKR0/fvxhPRYAAAAAAAAAdGg0wmAIDQ1t9ojE4uJiOTo6yt3d3YiZTCb5+vrq3LlzRuzpp5+Wk5OTce3o6Ki6ujpJ0vbt2+Xt7W18Vq5caVVDQECAQkJClJiYqN9//93q/rlz51RYWKjJkycbsZdeekl37tzR7t27H/jZAUkym83G346OjpJk/H7vVlJSohEjRljERo0a1aq1zpw5oyNHjlj8T7zyyiuSpNLS0taWDgAAAAAAAACwwf5RF4DHR9MRiVOmTLE6IrGxsVEmk8kqp6GhQfb2//sZOTg4NDt/aGioRQOre/fuNsfFxsbqyJEjiouLk4+Pj8W9zMxMSdKnn36qxMREi3t79uzRwoULLeoBmvzzuEFbDS5bv9/mjin8Z7wluXev2dDQoClTpmjBggVWeT179rS5JgAAAAAAAACgddgRBgv9+vVTTEyM9uzZo/z8fCM+aNAgVVVVqbi42GJ8QUGBnnnmmRbN7eTkpAEDBhifXr162Rx39xGJ2dnZRryurk4HDhyQv7+/9u/fr6ysLOMTFRWliooKffvttw/w1GjvOnfurBs3bhjXN2/eVGVl5QPPN2TIEKsjP+9+V15L1nz22Wd1/vx5i/+JO3fuaM2aNRzzCQAAAAAAAAAPCY0wWAkNDdW4ceNUXl5uxMaPH69BgwZp6dKlysvLU2lpqVavXq3i4mJFREQ89BoCAgI0Y8YM/fbbb0bs8OHDqqys1OzZs+Xu7m7xmTNnjhwdHZWenv7Qa0Hb5+3trV27dqmwsFDFxcWKiYn5v3YOzp8/XwcPHlRSUpJ+/fVXffHFFxZN25asGRkZqaKiIq1cuVIlJSU6deqU3n//fV24cEFubm4PXBsAAAAAAAAA4H9ohMGmhIQEdevWzbi2t7fXzp07NXjwYEVHRyskJETFxcVKTU2Vl5fXv1JDbGys+vbta1zv3btXbm5uGj9+vNXY7t276/XXX9exY8dUVlb2r9SDtis+Pl69e/dWaGio5s6dq1GjRsnb2/uB5wsMDNTGjRu1d+9evfzyyzp06JBCQkJataaXl5d27Nih4uJiTZ8+XfPmzZOrq6t27tx5zyNGAQAAAAAAAAAtZ2ps7gU4AIAW27Jli/bt28fxnAAAAAAAAADwGGFHGAAAAAAAAAAAANolGmEAAAAAAAAAAABolzgaEQAAAAAAAAAAAO0SO8IAAAAAAAAAAADQLtEI60DWrFmj1NRUq/iJEyc0ePBgq/iff/6ppUuXys/PT35+fvrggw9069YtizFff/21goODNXz4cE2ZMkXff//9PWtoaGjQ5s2b9dxzz8nT01ORkZEqKyuzGFNUVKTw8HB5eXlpwoQJSk5Ovuec5eXleuONN+Tt7a0FCxaoqqrKYr1XX31VOTk5FjnV1dV68cUX9ccff9xzbgAAAAAAAAAA0HbRCOsgTp48qcOHDyssLMwinpeXp6ioKDU0NFjlLFq0SOXl5UpNTdXmzZt15MgRrV692rifm5urZcuW6a233lJWVpb8/f21cOFClZaWNlvHtm3blJGRoYSEBO3atUsmk0lz585VbW2tpL+bb7Nnz5abm5syMzMVHR2tTZs2KTMzs9k5165dK7PZrKysLNXX1+uzzz4z7u3fv19PPfWUAgMDLXK6deumt99+W3Fxcff+4gAAAAAAAAAAQJtFI6yDWL9+vcLCwtS5c2dJUn19vRISEhQZGSlXV1er8SdPntTx48e1Zs0aDR06VGPHjtWHH36o/fv36/Lly5KkpKQkBQUFKTw8XGazWcuXL9fQoUOVlpZms4ba2lqlpKQoOjpagYGB8vDw0IYNG3T58mUdPHhQkrR79245ODgoPj5eZrNZISEhmjVrlpKSkpp9tpKSEk2ePFkDBgzQpEmTdP78eUlSTU2NtmzZomXLltnMmzp1qoqKinT06NGWf5EAAAAAAAAAAKDNoBHWAfzyyy8qKChQcHCwEbt165ZOnz6tlJQUhYeHW+Xk5+erd+/eMpvNRmzUqFEymUwqKChQQ0ODfvzxR40ZM8Yib/To0crPz7dZx9mzZ1VdXW2R06NHDw0ZMkQnTpww1vXz85O9vb0xZsyYMbpw4YKuXbtmc15XV1ejppMnTxqNvbS0NHl6emr48OE28+zt7RUUFHTfoxcBAAAAAAAAAEDbRCOsAzh06JCGDRum3r17G7EePXooIyNDo0ePtplz+fJl9e3b1yLm4OAgJycnXbx4UVVVVbp165ZcXFwsxvTp00cXL160OeelS5ckyWreu3MuXbpkc05Jzb7P691331VmZqaGDRumoqIizZs3T9evX1dqaqree+89mzlNJk6cqLy8PFVXV99zHAAAAAAAAAAAaHtohHUAP/30k9zd3VuV89dff8nBwcEq3qVLF9XU1Oj27duSZDWm6X5zc94v5/bt2zbvS2p23iFDhui7775TTk6ODhw4IGdnZ23btk3BwcHq06ePYmNjFRgYqEWLFqmqqsoid9CgQaqrq1NRUZHNuQEAAAAAAAAAQNtFI6wDuHr1qnr27NmqnCeeeEK1tbVW8ZqaGnXt2tVoTv1zTE1NjZ588slm57xfjq11mxpgXbt2bbbeTp06GTveysvLlZ2draioKKWnp6uyslIHDx6Uk5OTtm7dapHX9L1cuXKl2bkBAAAAAAAAAEDbRCOsAzCZTGpoaGhVjouLiyoqKixitbW1un79upydneXk5KSuXbtajamoqLA62rBJ05GI98qxtW7TtbOzc4tq37BhgyIiItSzZ0/l5eUpMDBQDg4OmjRpktX7y5q+l06dOrVobgAAAAAAAAAA0HbQCOsAnJ2dVVlZ2aocPz8/Xbp0SWVlZUYsLy9PkuTj4yOTySQfHx8dP37cIi8vL08jR460OaeHh4e6d+9uzCNJVVVVOnPmjHx9fY11CwoKdOfOHWPMsWPHNHDgQPXq1eu+dZ8+fVr5+fmaNWuWJMnOzs6Yq66uzqoheO3aNUmyeH8aAAAAAAAAAABoH2iEdQAjRoxQYWFhq3I8PT3l4+OjJUuW6Oeff1Zubq5WrVqlqVOnGjuzZs+era+++ko7d+5UaWmpEhMTVVRUpIiICGOeyspK3bhxQ9Lf7wYLDw/XunXr9M033+js2bNasmSJXFxcFBQUJEkKCQnRzZs3tWLFCpWUlGjv3r1KS0vT/PnzW1R3YmKioqOjjaMWPT09lZ2drdLSUmVmZsrHx8di/JkzZ9SlSxd5eHi06vsBAAAAAAAAAACPPxphHcDzzz+v8+fPt2pXmMlk0tatW9W/f39FRERo8eLFCggIUHx8vDHG399fn3zyidLT0zVt2jTl5uZq+/btMpvNxpgZM2bo448/Nq4XLVqkGTNmKC4uTm+++aY6deqk5ORkOTg4SJJ69eqlHTt26MKFC5o2bZq2bt2qmJgYTZs27b415+Tk6OrVq5o+fboRCwsLk4uLi1577TXV19frnXfescjJzc3VuHHjmn2vGQAAAAAAAAAAaLtMjY2NjY+6CPz7wsLCNHHiRM2ZM+dRl/LYqKmpUUBAgDZu3KixY8c+6nIAAAAAAAAAAMBDxo6wDmLx4sVKT09XbW3toy7lsbFv3z55eHjQBAMAAAAAAAAAoJ2iEdZB+Pn5acKECfr8888fdSmPherqaqWkpCghIeFRlwIAAAAAAAAAAP4lHI0IAAAAAAAAAACAdokdYQAAAAAAAAAAAGiXaIQBAAAAAAAAAACgXaIRBgAAAAAAAAAAgHaJRhgAAAAAAAAAAADaJRphAAAAAAAAAAAAaJdohAEAAAAAAAAAAKBdohEGAAAAAAAAAACAdolGGAAAAAAAAAAAANolGmEAAAAAAAAAAABol/4D9sdLWHiuFZQAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# unique values\n",
"unique_vals_info_rem_dupl: dict[str, tuple[int, DataFrame, int, DataFrame]] = dict()\n",
"\n",
"tot_num_entries = len(data_rem_dupl)\n",
"n_plots = len(data_rem_dupl.columns)\n",
"n_cols = 4\n",
"n_rows = n_plots // n_cols\n",
"\n",
"if (n_plots % n_rows) != 0:\n",
" n_rows += 1\n",
"\n",
"fig, axes = plt.subplots(n_rows, n_cols, figsize=(18, 15), sharey=True)\n",
"fig.tight_layout(pad=3.0)\n",
"\n",
"\n",
"row_idx = 0\n",
"col_idx = 0\n",
"# each column: unique values, value counter\n",
"for col in data_rem_dupl.columns:\n",
" non_nan = data_rem_dupl[col].dropna()\n",
" num_non_nan = len(non_nan)\n",
" unique_vals = pd.unique(non_nan)\n",
" num_uni_vals = len(unique_vals)\n",
" \n",
" unique_vals_info_rem_dupl[col] = (num_non_nan, non_nan, num_uni_vals, unique_vals)\n",
" \n",
" #draw_data = pd.DataFrame(data={'Anzahl Non-NA': [num_non_nan], 'Anzahl unique': [num_uni_vals]})\n",
" \n",
" if col_idx == n_cols:\n",
" col_idx = 0\n",
" row_idx += 1\n",
" \n",
" ax = axes[row_idx, col_idx]\n",
" col_idx += 1\n",
" \n",
" # draw\n",
" chart = sns.barplot(data=[[num_non_nan],[num_uni_vals]], ax=ax)\n",
" chart.axhline(y=tot_num_entries, color='darkorange', linewidth=2)\n",
" fraction_valid_vals = num_non_nan / tot_num_entries * 100\n",
" chart.set_xticklabels([f'Non-NA \\n ({fraction_valid_vals:.2f} %)', 'unique'], rotation=0, horizontalalignment='center')\n",
" chart.set_title(col, fontdict={'fontweight': 'bold'})\n",
" text = chart.bar_label(chart.containers[0], label_type='center', rotation=0, fontsize='small', fontweight='bold')\n",
"\n",
"\n",
"for _ in range(n_rows * n_cols - len(data_rem_dupl.columns)):\n",
" if col_idx == n_cols:\n",
" col_idx = 0\n",
" row_idx += 1\n",
" \n",
" fig.delaxes(axes[row_idx, col_idx])\n",
" col_idx += 1"
]
},
{
"cell_type": "code",
"execution_count": 226,
"metadata": {},
"outputs": [],
"source": [
"fig.savefig(fname='NaN-Auswertung.svg')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## NA vals"
]
},
{
"cell_type": "code",
"execution_count": 227,
"metadata": {},
"outputs": [],
"source": [
"data = data_rem_dupl.copy()\n",
"NA = data.isna()\n",
"sum_NA = NA.sum(axis=0)"
]
},
{
"cell_type": "code",
"execution_count": 228,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9892"
]
},
"execution_count": 228,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data)"
]
},
{
"cell_type": "code",
"execution_count": 229,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VorgangsID 0\n",
"ObjektID 0\n",
"HObjektText 7\n",
"VorgangsTypID 0\n",
"VorgangsDatum 0\n",
"VorgangsStatusId 0\n",
"VorgangsPrioritaet 0\n",
"VorgangsBeschreibung 378\n",
"VorgangsOrt 9413\n",
"VorgangsArtText 0\n",
"ErledigungsDatum 1\n",
"ErledigungsArtText 1806\n",
"ErledigungsBeschreibung 3862\n",
"MPMelderArbeitsplatz 4864\n",
"MPAbteilungBezeichnung 2863\n",
"Arbeitsbeginn 4338\n",
"ErstellungsDatum 0\n",
"dtype: int64"
]
},
"execution_count": 229,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sum_NA"
]
},
{
"cell_type": "code",
"execution_count": 230,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VorgangsID 0.000000\n",
"ObjektID 0.000000\n",
"HObjektText 0.070764\n",
"VorgangsTypID 0.000000\n",
"VorgangsDatum 0.000000\n",
"VorgangsStatusId 0.000000\n",
"VorgangsPrioritaet 0.000000\n",
"VorgangsBeschreibung 3.821270\n",
"VorgangsOrt 95.157703\n",
"VorgangsArtText 0.000000\n",
"ErledigungsDatum 0.010109\n",
"ErledigungsArtText 18.257178\n",
"ErledigungsBeschreibung 39.041650\n",
"MPMelderArbeitsplatz 49.171047\n",
"MPAbteilungBezeichnung 28.942580\n",
"Arbeitsbeginn 43.853619\n",
"ErstellungsDatum 0.000000\n",
"dtype: float64"
]
},
"execution_count": 230,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rel_sum_NA = (sum_NA / len(data)) * 100\n",
"rel_sum_NA"
]
},
{
"cell_type": "code",
"execution_count": 231,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Eigenschaft | \n",
" Anzahl fehlerhafter Einträge | \n",
" rel. Anzahl fehlerhafter Einträge | \n",
"
\n",
" \n",
" \n",
" \n",
" | 8 | \n",
" VorgangsOrt | \n",
" 9413 | \n",
" 95.157703 | \n",
"
\n",
" \n",
" | 13 | \n",
" MPMelderArbeitsplatz | \n",
" 4864 | \n",
" 49.171047 | \n",
"
\n",
" \n",
" | 15 | \n",
" Arbeitsbeginn | \n",
" 4338 | \n",
" 43.853619 | \n",
"
\n",
" \n",
" | 12 | \n",
" ErledigungsBeschreibung | \n",
" 3862 | \n",
" 39.041650 | \n",
"
\n",
" \n",
" | 14 | \n",
" MPAbteilungBezeichnung | \n",
" 2863 | \n",
" 28.942580 | \n",
"
\n",
" \n",
" | 11 | \n",
" ErledigungsArtText | \n",
" 1806 | \n",
" 18.257178 | \n",
"
\n",
" \n",
" | 7 | \n",
" VorgangsBeschreibung | \n",
" 378 | \n",
" 3.821270 | \n",
"
\n",
" \n",
" | 2 | \n",
" HObjektText | \n",
" 7 | \n",
" 0.070764 | \n",
"
\n",
" \n",
" | 10 | \n",
" ErledigungsDatum | \n",
" 1 | \n",
" 0.010109 | \n",
"
\n",
" \n",
" | 0 | \n",
" VorgangsID | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 9 | \n",
" VorgangsArtText | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 1 | \n",
" ObjektID | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 6 | \n",
" VorgangsPrioritaet | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 5 | \n",
" VorgangsStatusId | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 4 | \n",
" VorgangsDatum | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 3 | \n",
" VorgangsTypID | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
" | 16 | \n",
" ErstellungsDatum | \n",
" 0 | \n",
" 0.000000 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Eigenschaft Anzahl fehlerhafter Einträge \\\n",
"8 VorgangsOrt 9413 \n",
"13 MPMelderArbeitsplatz 4864 \n",
"15 Arbeitsbeginn 4338 \n",
"12 ErledigungsBeschreibung 3862 \n",
"14 MPAbteilungBezeichnung 2863 \n",
"11 ErledigungsArtText 1806 \n",
"7 VorgangsBeschreibung 378 \n",
"2 HObjektText 7 \n",
"10 ErledigungsDatum 1 \n",
"0 VorgangsID 0 \n",
"9 VorgangsArtText 0 \n",
"1 ObjektID 0 \n",
"6 VorgangsPrioritaet 0 \n",
"5 VorgangsStatusId 0 \n",
"4 VorgangsDatum 0 \n",
"3 VorgangsTypID 0 \n",
"16 ErstellungsDatum 0 \n",
"\n",
" rel. Anzahl fehlerhafter Einträge \n",
"8 95.157703 \n",
"13 49.171047 \n",
"15 43.853619 \n",
"12 39.041650 \n",
"14 28.942580 \n",
"11 18.257178 \n",
"7 3.821270 \n",
"2 0.070764 \n",
"10 0.010109 \n",
"0 0.000000 \n",
"9 0.000000 \n",
"1 0.000000 \n",
"6 0.000000 \n",
"5 0.000000 \n",
"4 0.000000 \n",
"3 0.000000 \n",
"16 0.000000 "
]
},
"execution_count": 231,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = sum_NA.to_frame().reset_index()\n",
"df.columns = ['Eigenschaft', 'Anzahl fehlerhafter Einträge']\n",
"df = df.sort_values('Anzahl fehlerhafter Einträge', ascending=False)\n",
"df['rel. Anzahl fehlerhafter Einträge'] = df['Anzahl fehlerhafter Einträge'] / len(data) * 100\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 232,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAMkCAYAAACoYfFVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QU5cPF8btJaIJICAiIYkEI3Yg0RXqv0lEISm+CFOmINOlIV0SqAtKbNJGOoiJIh4DSayghEAIkIdnn/SNv9pcISAIZJgnfzzkeszOzk8tmttydZ2YcxhgjAAAAAIBl3OwOAAAAAABJHcULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALOZhd4DEyhgjp9PYHQMAAACAjdzcHHI4HA9djuL1iJxOo2vXbsXb+m7dCtbu3buUNu1zyps3vzw8+NMAAAAACV369Knl7k7xSrAuXDivoUMHysvLS82bt1HHjm0UEhIipzNC2bK9rNGjJyh9ei+7YwIAAACIBxzjZZOJE8cqU6bMCg8PV+fO7VWhQiWtW7dFa9dulrd3bk2cONbuiAAAAADiCXu8bLJ3724tX75W164FqGHDWmrdur0cDoeSJUumjh276oMPatsdEQAAAEA8YY+Xjdzc3JQlywsqV66iHI7//SnCw+/KcN4OAAAAIMmgeNmkQIE3NGHCGEVERKh//y+UPHlySdKRI4fVr19vFS9e0uaEAAAAAOILxcsmXbr01JEjh+R0OmNMHzSon9KkSa0OHTrZlAwAAABAfHMYw6C2RxER4YzX08lHCQ0NVYoUKeJ9vQAAAADiX+Tp5B++P4s9XgkMpQsAAABIeiheAAAAAGAxTidvk44d28jh+O8rXE+Y8M0TSgMAAADAShQvmxQvXkJffTVetWvXU7p0nnbHAQAAAGAhipdN3n/fV1euXNHVq1fUtWtPu+MAAAAAsBDHeNmoZcu2OnLksK5cuWx3FAAAAAAW4nTyj8iq08kDAAAASDw4nTwAAAAAJBAUrwSmZ88udkcAAAAAEM84uYZN1q5ddd/pu3fv0k8/rZYxRlWqVH/CqQAAAABYgWO8HtHjHuNVs2Yl3bhxXc8/n1nS//4Ely75K1OmzJIcWrRoxeMHBQAAAGCZ2B7jRfF6RI9bvK5evapBgz5TpkyZ9emnvZQyZUpJUuXKZfTTT5vjKyYAAAAAC3FyjQQuQ4YMGj9+srJkeUEtWzbRP/8clSQ5HA6bkwEAAACIbxzjZSOHw6HmzVvLx6eg+vTprvr137c7EgAAAAALsMcrAciZM5cmTfpWf/zxu8LCQu2OAwAAACCescfLJsYYzZw5VStWLFVg4DXXtCxZXtCaNStVtWoNmxMCAAAAiC8UL5vMnj1TW7du1ieffCqHw6F582arSpXqcnd31/TpUxQWFqZateraHRMAAABAPKB42eTHH5fpq6+m/v+p46U8efKqf/8+mjJlpnLlyqP+/ftQvAAAAIAkgmO8bBIcHKx06Txdtz09PXXu3BlJkrd3LgUGBtgVDQAAAEA8o3jFEzc3hzw83GL9X+7ceTRp0hhJTnl4uOn776crRw5veXi4ae3aH/XSS9nitL77/efmxqnpAQAAgISACyg/ougXUHZzcyi95zNyuMW+x/7zzz9q2bKlbty4oWTJkillypSaNm2awsLC1KJFC3399dcqVKjQY2U0TqeuBd6W08mfGAAAALBCbC+gTPF6RNGLl4eHmzw9Uytow6+KCAyK9Tpuh4Zq/5mTchqjN7K9qtQpUyo8IkLGGCXzeLzD79w90ypt+XcVGHhL4eHOx1oXAAAAgPuLbfHi5BrxKCIwSOFXr8V6+eSSCnk+H3kj+LbCg29LkhySwuM/HgAAAACbcIwXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWMz24nX37l2NHTtWpUuX1ptvvqlGjRpp9+7drvl+fn7y9fWVj4+PSpcurenTp8e4v9Pp1IQJE1SiRAm98cYbat68uU6fPh1jmYetAwAAAACsZHvxmjx5spYsWaIvvvhCy5cv12uvvaZWrVrp0qVLCgwMVLNmzfTKK69oyZIl6tixo8aPH68lS5a47v/1119r/vz5+uKLL7RgwQI5HA61atVKYWFhkhSrdQAAAACAlTzsDrBx40ZVr15d7777riSpV69eWrRokfbu3atTp04pefLkGjBggDw8PJQ9e3adPn1aU6dOVd26dRUWFqYZM2aoe/fuKlWqlCRp7NixKlGihNavX69q1app4cKF/7kOAAAAALCa7cUrXbp02rx5s3x9fZUlSxYtWLBAyZMnV+7cubV48WIVLlxYHh7/i1msWDFNmTJFAQEBOn/+vG7duqVixYq55qdNm1Z58uTRzp07Va1aNe3ates/1+Hl5fXI2T08IncYurvbvuPwgRJyNgAAAOBpYXvx6tu3r7p06aJy5crJ3d1dbm5uGj9+vLJlyyZ/f3/lzJkzxvLPP/+8JOnChQvy9/eXJGXJkuWeZS5evChJD13HoxYvNzeHPD1TP9J9n6S0aVPZHQEAAAB46tlevI4fP660adPqq6++UqZMmbRo0SL17NlTc+bMUUhIiJInTx5j+RQpUkiSQkNDdefOHUm67zI3btyQpIeu41E5nUZBQbclRe5VSqgFJyjojiIinHbHAAAAAJKktGlTxWqUma3F6/z58+revbtmzZqlQoUKSZLy58+vY8eOaeLEiUqZMqXrJBlRosrSM888o5QpU0qSwsLCXD9HLZMqVWQRetg6Hkd4eMIvNBERzkSREwAAAEjKbD0AaP/+/bp7967y588fY/obb7yhU6dOKXPmzLp8+XKMeVG3M2XK5BpieL9lMmfOLEkPXQcAAAAAWM3W4hVVnI4ePRpj+t9//62XX35ZhQsX1l9//aWIiAjXvN9//12vvvqqvLy8lCtXLqVJk0Y7duxwzQ8KCtLhw4dde9Aetg4AAAAAsJqtxatAgQIqVKiQevbsqT/++EOnTp3SuHHj9Pvvv6t169aqW7eugoOD1bdvXx07dkxLly7Vd999pzZt2kiKPLbL19dXo0eP1saNG3XkyBF16dJFmTNnVoUKFSTpoesAAAAAAKs5jDHGzgA3btzQuHHjtGXLFt24cUM5c+ZU165dVaRIEUmRwxGHDBmiw4cPK2PGjGrevLl8fX1d94+IiNCYMWO0dOlShYSEqHDhwvr888/14osvupZ52DoeRUSEU9eu3ZIUeVp5T8/UCly0RuFXrz3WeuOLR4b08qxfVYGBtzjGCwAAALBI+vSpY3VyDduLV2JF8QIAAAAQ2+LF1XUBAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYo9dvEJDQ2WMiY8sAAAAAJAkPVLxOnHihDp37qwiRYrozTff1OHDhzVgwADNnj07vvMBAAAAQKIX5+Ll5+enevXq6dChQ6pRo4Zrb1eyZMk0dOhQLVu2LN5DAgAAAEBi5hHXO4wYMUL58uXTjBkzJElz586VJPXt21chISH6/vvvVbt27fhNCQAAAACJWJz3eO3du1dNmzaVh4eHHA5HjHlVq1bVqVOn4isbAAAAACQJcS5eKVKkUEhIyH3nXb9+XcmTJ3/sUAAAAACQlMS5eBUvXlwTJkyQv7+/a5rD4dCtW7c0Y8YMvfPOO/EaEAAAAAASuzgf49W9e3c1bNhQlStXVq5cueRwODR8+HCdPHlSxhiNGTPGipwAAAAAkGjFeY9XlixZtGLFCn300Ucyxihbtmy6ffu2qlevrqVLl+qll16yIicAAAAAJFpx3uMlSZ6enurSpUt8ZwEAAACAJCnOxWv58uUPnOdwOJQ6dWply5ZNOXPmfJxcAAAAAJBkxLl49e3bV06nU5JcF0+W5Dq1vDFGDodDRYsW1eTJk5UqVap4igoAAAAAiVOcj/GaNm2aUqVKpS5dumjTpk3av3+/tmzZop49eypVqlQaOnSoJk+erJMnT2rChAlWZAYAAACARCXOxWvEiBFq1aqVWrdurRdeeEHJkydX5syZ1bRpU7Vv315z5sxR6dKl1bFjR61bt86KzAAAAACQqMS5eJ04cUIFChS477zcuXPr2LFjkqRXXnlFV69efbx0AAAAAJAExLl4vfTSSw/ck7V+/XplyZJFkuTv76/06dM/XjoAAAAASALifHKNli1bqnfv3goICFClSpXk5eWlgIAArV+/Xhs2bNCgQYN08uRJjRs3TiVLlrQiMwAAAAAkKnEuXrVr15bD4dCECRO0ceNG1/Rs2bJp1KhRql69ulavXq3s2bPr008/jdewAAAAAJAYOUz0c8LH0ZkzZ3Tt2jVlzpxZmTNnjs9cCV5EhFPXrt2SJHl4uMnTM7UCF61R+NVrNieL5JEhvTzrV1Vg4C2FhzvtjgMAAAAkSenTp5a7+8OP4IrzMV5Rrl69qmTJkun555+X0+nUuXPn9M8//2jevHmPukoAAAAASJLiPNTwyJEj6tq1q06ePHnf+Q6HQx988MFjBwMAAACApCJWe7zKlSunI0eOSJJGjhypmzdvqmfPnipSpIjeffdd9evXT6VKlZLD4dD3339vaWAAAAAASGxiVbyKFCmi1KlTS5L27dunzp07q2nTpqpWrZpu376tRo0a6ZtvvlH58uU1e/ZsSwMDAAAAQGITq+I1bNgwvfTSS5KksLAwvfzyy5Kk1157TUePHnUtV6dOHe3duzf+UwIAAABAIhbnoYYvvPCC6/iul19+WcHBwTp37pwkKXny5Lpx44ZFUQEAAAAgcYrzUMOKFStqxIgRWrBggTJmzKjXXntNY8eO1dGjRzVjxgzXnjEAAAAAQKQ4DzXs0KGD3nnnHW3atEmS1Lt3b23YsEG1atXSH3/8oY4dO1qXFgAAAAASoTifTj4kJEQTJkzQ3bt3JUklSpTQqlWrdPDgQeXNm1fZsmWL95AAAAAAkJjF+QLK9evX15o1a5QsWTLXtJdeeklVqlShdAEAAADAfcS5eN24cUOenp5WZAEAAACAJCnOxevDDz/UyJEj9ccff+jatWtWZAIAAACAJCXOxWvFihX6559/1KxZMxUvXly5c+eO8V+ePHniHGL58uWqWrWq8ufPr2rVqmnt2rWueX5+fvL19ZWPj49Kly6t6dOnx7iv0+nUhAkTVKJECb3xxhtq3ry5Tp8+HWOZh60DAAAAAKwU55Nr1KhRQw6HI94CrFixQn369FHPnj1VunRprVq1Sl27dlXmzJn1yiuvqFmzZipfvrwGDhyovXv3auDAgUqXLp3q1q0rSfr66681f/58DRs2TJkyZdKoUaPUqlUrrVq1SsmTJ1dgYOBD1wEAAAAAVnIYY0x8rtDf31+ZM2eO1bLGGJUrV06VKlVSz549XdNbtGihIkWKSJLmzp2rTZs2ycMjsiOOGTNGP//8s3766SeFhYWpWLFi6t69uz744ANJUlBQkEqUKKGhQ4eqWrVqmjJlyn+u41FFRDh17dotSZKHh5s8PVMrcNEahV9NGMMvPTKkl2f9qgoMvKXwcKfdcQAAAIAkKX361HJ3f/hAwjgPNcydO7f2799/33m7du1SlSpVYr2uEydO6Pz586pRo0aM6dOnT1ebNm20a9cuFS5c2FWYJKlYsWI6efKkAgICdOTIEd26dUvFihVzzU+bNq3y5MmjnTt3ujL91zoAAAAAwGqxGmo4Y8YM3b59W1LkXqpFixZp27Zt9yy3Z88eJU+ePNa//NSpU5Kk27dvq0WLFjp8+LBefPFFtWvXTmXLlpW/v79y5swZ4z7PP/+8JOnChQvy9/eXJGXJkuWeZS5evChJD12Hl5dXrPP+m4dHZG+NTcO1S0LOBgAAADwtYlW8wsLCNGnSJEmSw+HQokWL7lnGzc1Nzz77rNq1axfrXx4cHCxJ6tmzpzp06KBu3bpp3bp1at++vWbOnKmQkJB7ilyKFCkkSaGhobpz544k3XeZGzduSNJD1/Go3Nwc8vRM/cj3f1LSpk1ldwQAAADgqRer4tW2bVu1bdtWkpQrVy4tXLhQBQoUeOxfHnUR5hYtWqh27dqSIocyHj58WDNnzlTKlCkVFhYW4z5RZemZZ55RypQpJUUWw6ifo5ZJlSqycDxsHY/K6TQKCorcC+ju7pZgC05Q0B1FRHCMFwAAAGCFtGlTxWqUWZzPanjkyJFHCnQ/USfh+PdQwNdff11btmxR1qxZdfny5Rjzom5nypRJ4eHhrmnZsmWLsUyuXLlcv+O/1vE4EsNJKyIinIkiJwAAAJCUxbl4SdL27du1efNm3blzR05nzA/1DodDQ4cOjdV68uTJo9SpU2vfvn0qVKiQa/rff/+tbNmyqWDBgpo/f74iIiLk7u4uSfr999/16quvysvLS88++6zSpEmjHTt2uIpXUFCQDh8+LF9fX0lS4cKF/3MdAAAAAGC1OBevadOmafTo0UqRIoXSp09/zzW94nKNr5QpU6ply5b66quvlClTJhUoUECrV6/W9u3bNWvWLL3++uuaNm2a+vbtq5YtW2r//v367rvvNHDgQEmRx3b5+vpq9OjRSp8+vbJmzapRo0Ypc+bMqlChgiSpbt26/7kOAAAAALBanK/jVaZMGRUqVEhDhgyJ0xkM/8vMmTM1Z84cXbp0SdmzZ1fHjh1Vvnx5SdL+/fs1ZMgQHT58WBkzZlTz5s1de7MkKSIiQmPGjNHSpUsVEhKiwoUL6/PPP9eLL77oWuZh63gUXMcLAAAAQGyv4xXn4lWgQAFNnTpVRYsWfeRwSQHFCwAAAIBlF1DOkyeP/vnnn0cKBQAAAABPozgf49WnTx917txZzzzzjN544w3Xaduje+GFF+IlHAAAAAAkBXEuXh988IGcTqf69OnzwBNp+Pn5PXYwAAAAAEgq4ly8Bg8eHKczFwIAAADA0y7OxatOnTpW5AAAAACAJCtWxWv58uUqVaqUPD09tXz58ocuX6tWrceMBQAAAABJR6yKV69evbRw4UJ5enqqV69e/7msw+GgeAEAAABANLEqXhs3blTGjBldPwMAAAAAYi9WxStr1qz3/RkAAAAA8HCxuoDyyJEj5e/vH2PapUuXFBEREWPa0aNHVaNGjfhLBwAAAABJQKyK18yZM3X58mXX7YiICJUuXVpHjhyJsVxISIiOHTsWvwkBAAAAIJGLVfEyxsRqGgAAAADgXrEqXgAAAACAR0fxAgAAAACLUbwAAAAAwGIULwAAAACwWKyu4yVJixcv1rZt2yRFnljD4XBowYIFev75513LXLp0Kf4TAgAAAEAiF+vitXDhwlhNczgcj5cIAAAAAJKYWBWvf1+vCwAAAAAQexzjBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFgszsXrxo0bVuQAAAAAgCQrzsWrfv36WrNmjRVZAAAAACBJeqQ9Xp6enlZkAQAAAIAkKc7F68MPP9TIkSP1xx9/6Nq1a1ZkAgAAAIAkJVYXUI5uxYoVunDhgpo1a3bf+Q6HQ4cPH37sYAAAAACQVMS5eNWsWdOKHAAAAACQZMW5eHXo0MGKHAAAAACQZMW5eEXZunWrfvvtN125ckVdunSRn5+f8ubNq6xZs8ZnPgAAAABI9OJcvO7cuaOPP/5Yv/32m9KkSaNbt26pRYsWmjdvng4fPqw5c+YoR44cVmQFAAAAgEQpzmc1HDNmjA4dOqRZs2bpjz/+kDFGkjRy5EhlypRJ48ePj/eQAAAAAJCYxbl4rV27Vl27dlWxYsXkcDhc0zNmzKh27drpr7/+iteAAAAAAJDYxbl4BQUFPfA4rueee063b99+7FAAAAAAkJTEuXjlyJFDK1euvO+8TZs2cXwXAAAAAPxLnE+u0a5dO3Xo0EHXr19XmTJl5HA4tHPnTi1dulTz58/Xl19+aUVOJGAHDuxT/vxv2B0DAAAASLAcJursGHGwcuVKffnll/L393dN8/LyUufOnVW/fv14DZhQRUQ4de3aLUmSh4ebPD1TK3DRGoVfvWZzskgeGdLLs35VBQbeUni409LfVaVKWa1du8nS3wEAAAAkROnTp5a7+8MHEj7Sdbxq1KihGjVq6MSJE7p+/brSpk2r1157TW5ucR65iESkfv2akhz3TL91K1j1678nSVq0aMUTTgUAAAAkfHEuXh9++KH69++v7Nmz67XXXosx78iRI+revfsDjwFD4lahQmXNmzdb9et/oFdfjfzbG2M0duxINW/eyuZ0AAAAQMIVq+K1a9cu1/W6/vzzT+3cuVPXrt07pG7z5s06e/Zs/CZEgtG6dXsVLFhII0cO0UsvZVONGrUkSRMnjlWVKtXtDQcAAAAkYLEqXosXL9by5cvlcDjkcDg0cODAe5aJKmbVq/MBPCkrVKiIvvlmhgYN6qc///xDPXt+ZnckAAAAIMGLVfHq27ev6tSpI2OMPvroI33++ed6/fXXYyzj5uamtGnTcjr5p0D69F4aO/YrfffddDVv3lgRERF2RwIAAAAStFgVrw8++EAjRoxQ3rx5NWzYMBUrVkxZsmSxOhsSMIfDoaZNW+rNN9/SunVr7I4DAAAAJGixOg3h6dOnFRAQIEnq06ePrly5YmkoJFxXr15RSEiIJMnf/6JOnDiuHDm8dfXqVZuTAQAAAAlXrPZ4vf766+revbty5swpY4wGDBigNGnS3HdZh8Oh7777Ll5DImHYvv0X9evXS99+O0s3bwapR4/Oypw5i4wx+uabiRo5cpzeeONNu2MCAAAACU6s9niNHDlSRYsWdZ1cQ4o8mcb9/nM6rb1YL+wzZcok9e3bX6+/nkOTJ09U+/adNHv2Qs2Zs0ht23bUhAlj7I4IAAAAJEix2uOVI0cOTZgwQZKUK1cuDRgwQAUKFLA0GBKey5cvqVy5ipKk8+fPuk4nL0nvvVdH33wz0aZkAAAAQMIWqz1e0R05cuQ/S9fNmzcfKxASrhdeyKrdu3dJknLk8NY//xx1zTtwYL+efz6TXdEAAACABC1We7yiCwsL06xZs/Tnn3/q7t27rut3GWN0+/ZtHTt2TPv27Yv3oLBf06at1KvXp2rYsJGKFHlbvXt3U40atRQcHKy1a1eqY8eudkcEAAAAEqQ4F6+RI0dqzpw5ypkzp65du6YUKVIoffr0+vvvv3X37l116NDBipxIAEqWLK1Bg4ZpyZIFOnLET0FBNzR//ly98sqr6tChi6pVq2l3RAAAACBBinPx+vnnn9W0aVP16tVLU6ZM0eHDhzV+/HhdunRJvr6+nFwjiStW7B0VK/aO3TEAAACARCXOx3hdu3ZNpUqVkiR5e3vrwIEDkqRMmTKpdevWWrOGi+kmZQcO7NORI36SpJ07d+izz3pq4MDP9Pvv221OBgAAACRccS5ezz77rMLCwiRJr7zyii5evKjg4OAYt5E0rVixVJ06tVPHjq21cOEP6tOnu559Nq3SpHlWAwf21YYN6+yOCAAAACRIcR5qWKhQIc2ePVuFCxfWiy++qFSpUmn9+vWqXbu29uzZ88ALKyPxW7BgriZM+EaS1L59S40YMUZvv/2uJKls2fIaN26UypevZGdEAAAAIEGK8x6vDh06aO/evWrTpo08PDzUqFEjff7556pTp47Gjx+vSpX44J1UBQRcVb58BZQvXwE5HA4VKfK2a96bb76lS5f8bUwHAAAAJFxx3uPl7e2ttWvX6u+//5Ykffrpp0qTJo12796tsmXLqnXr1vEeEglDxozP6+jRI7p7N0xOp1N79vylQoWKSJJ27vxD6dN72ZwQAAAASJjiXLwkKWPGjMqYMaMkyeFwqG3btvEaCglT06Yt1aFDK0VEOOXjU1Br167Uli0bFRERoQ0bflbbtlxKAAAAALifRypef//9t/78808FBQXdc/p4h8Ohjz/+OF7CIWEpX76SXnvtdZ09e1pFi76jsLBQTZ8+RQEBAercuRvX8QIAAAAewGGMMXG5w4oVK9S7d+8HXq/L4XDIz88vXsIlZBERTl27dkuS5OHhJk/P1ApctEbhV6/ZnCySR4b08qxfVYGBtxQebu211apUKau1azdZ+jsAAACAhCh9+tRyd3/4qTPivMfr66+/1ltvvaUhQ4bopZdeksPheKSASHyGDh143+mhoSGueX369H+SkQAAAIBEIc5nNbx48aLatWunbNmyUbqeMhcunNe6dWsUGhpidxQAAAAgUYnzHq9XX31Vly9ftiILErgJE77RjBnfatu2zerff4iyZ39dkvTLL1vZ0wUAAAD8hzgXr65du6p///7KmDGj3nrrLaVMmdKKXHhC3NwccnOL7Z5LN7Vt216FChVS796fqlGjJqpXr4Ecjsjj3OKD02nkdMbpsEMAAAAgwYtV8cqVK1eMYYXGGLVs2fK+yzocDh0+fDh+0sFSbm4Opfd8Rg63uJWmChXKqGDBAurRo4f27NkpY4w8PVPHSybjdOpa4G3KFwAAAJKUWBWvjz/+mOO5kiA3N4ccbm4KXL9Q4YFX4nz/YRXf1Pdbd+lYCg9dWfjVY+fx8MwozwoN5ObmoHgBAAAgSYlV8erYsaPr5+XLl6tYsWLKnDmzZaHwZIUHXlH41QuPdN/G+bKqcb6sj3x/AAAA4GkQ5wNzhg0bpoMHD1qRBQAAAACSpDgXLy8vLwUFBVmRBXhiTpw4rrNnz9gdAwAAAE+JOJ/VsEGDBho0aJB27NihHDlyKEOGDPcsU6tWrfjIBsSLS5f8NXz4YKVMmVI9enymfv16at++PXI4HMqTJ5+GDh2l9Om97I4JAACAJCzOxWv48OGSpBUrVtx3vsPhoHghQRk//kulTfuc3Nzc1KFDK2XL9rKWLVsjd3d3TZgwRhMnjlX//l/YHRMAAABJWJyL18aNG63IAVhm//69WrJkpSIinKpcubS+/nqannsunSSpW7deatSorr0BAQAAkOTFuXhlzZo1xu3Q0FAlT56c080jATNyONzkcBg5HA65u/9vs3c43BQR4bQxGwAAAJ4GcS5eknTixAlNmDBBv/32m4KDg7Vo0SItWrRI2bNnV5MmTeI7I/BY3nqriEaOHKLw8HClSJFS06dP0YcfNlN4eLjGjx+tAgV87I4IAACAJC7OZzX08/NTvXr1dOjQIdWoUUPGRF7oNlmyZBo6dKiWLVsW7yGBx9GlSw+FhYXp5Mnj6tmzr3LnzqPatauqbt3qOnbsmD7+uJPdEQEAAJDExXmP14gRI5QvXz7NmDFDkjR37lxJUt++fRUSEqLvv/9etWvXjt+UwGNIly6dBg0aFmPaW28V1rVrAXr11ezy8HikHb8AAABArMV5j9fevXvVtGlTeXh43HNcV9WqVXXq1Kn4ygbEm5CQEIWHh0uKPNnG3Lnfafv2X3TlymWbkwEAAOBpEOfilSJFCoWEhNx33vXr15U8efLHDgXEp127/lSNGhXUoMF72rx5gzp3bq9z585qz57dataskY4ePWJ3RAAAACRxcR5jVbx4cU2YMEEFCxZUxowZJUVeu+vWrVuaMWOG3nnnnXgPCTyOqVMnq337TgoKuqHBg/urb98BKleuoiRp5crlmjRprCZOnGJzSgAAACRlcd7j1b17d92+fVuVK1dW48aN5XA4NHz4cFWuXFkXL15U165drcgJPLJTp06odu16qlmzjsLD76p06XKueVWr1tCxY//YmA4AAABPgzgXryxZsmjFihX66KOPZIxRtmzZdPv2bVWvXl1Lly7VSy+9ZEVO4JGlTJlSgYGB8vT0VLduveV0/u+6XWfOnFaaNGlsTAcAAICnwSOdzs3T01NdunSJ7yyAJUqXLqeePbto4sQpqlnzf2fcXLhwnn744XvVr/++jekAAADwNIhV8Vq+fHmcVlqrVq1HiAJYo0OHLpo69et7Tvxy6NB+NW78EcULAAAAlotV8erVq1esV+hwOCheSFCSJUum9u3vvUjywIHD7rM0AAAAEP9iVbw2btxodQ7AUrt371LatM/p9ddzaPbsWdq06WelTfucatWqqzJlytsdDwAAAElcrIpX1qxZrc4BWGbx4vmaPHmi3NzcVLNmHW3atF7163+gsLBQffnlcIWHh6tChcp2xwQAAEAS9kgn19i6dav++OMPBQUFxThDnBQ51HDo0KHxEg6ID0uWLNRXX01VYGCgevbsoqlTv5e3dy5JUsGChfTll8MpXgAAALBUnIvXjBkzNHLkSCVLlkwZMmSQw+GIMf/ftwG7BQQEKFeuPAoJCZHD4dDrr+dwzcuf/w1duuRvYzoAAAA8DeJcvGbPnq3KlStr2LBhSpUqlRWZgHiVPr2X/vnnqHLk8Nbs2QtjzNu2bYuyZHnBpmQAAAB4WsT5AsoBAQFq2LAhpQuJRoMGH6hz5/a6c+eOsmV7We7u7pKk/v37aNCgz9SqVXubEwIAACCpi/Merzx58ujkyZN6++23rcgDxLs6deorS5Ys93xZkDdvPjVq9KHreC8AAADAKrEqXhcuXHD9/OGHH2rgwIHy8PDQW2+9dd89Xy+8wNAtJCxvv/3uPdNmzpymtWs32ZAGAAAAT5tYFa+yZcvGOGmGMUaff/75A0+k4efnFz/pgHgwdOjA+04PCbnjmtenT/8nGQkAAABPmVgVr6FDh3K2QiRaFy6c14ED+1S6dFmlSJHSNZ1tGgAAAE9KrIpXnTp1rM4BWGbChG80Y8a32rZts/r3H6Ls2V+XJP3yy1b2dAEAAOCJeKQLKIeFhWnx4sX67bffdOXKFQ0dOlR//vmn8ubNqwIFCsR3RuAebm4OubnFdo+Vm9q2ba9ChQqpd+9P1ahRE9Wr10AOh+ThEecTe96X02nkdJp4WRcAAACSnjgXr2vXrumjjz7SiRMn9Nprr+nYsWMKCQnR1q1bNXz4cM2aNUtvvvmmFVkBSZGly9Mzldzc3ON0vwoVyqhgwQLq0aOH9uzZKWOMPD1Tx0smpzNCgYF3KF8AAAC4rzgXr5EjR+rWrVtas2aNsmbNqnz58kmSxo8frxYtWmjChAmaOXNmvAcFokTu7XLXqY2jFRJ4Ls7371Y5jRZtOa7nUjp1ZHHnx86T0vNFvVKum9zcHBQvAAAA3Feci9fmzZvVp08fvfzyy4qIiHBNT5EihZo3b65evXrFa0DgQUICz+nO1eOPdN8a+R2qkT/rI9//SQkNDdGZM2eULdvLSpEiRYx5+/fvVYECPvYEAwAAQJzE+QCX0NBQpUuX7r7z3N3ddffu3cfNBEDS338fUb16NdW8eWPVrFlRP//8U4z53bp1sikZAAAA4irOxSt//vz64Ycf7jtv5cqVrqGHAB7PV1+N13vv1dG6dVvUqVM3jRo1VFu2bHTNN4ZhjQAAAIlFnIcadurUSU2bNtV7772nUqVKyeFwaNWqVZo4caJ+/fVXTZs2zYqcwFPnn3/+1pdfTpSHh4eqVq2h555Lp0GDPlO2bC/rtdde5zpkAAAAiUic93gVKlRIM2fOVKpUqTRt2jQZYzRr1ixduXJFU6ZMUbFixazICTx1kiXz0J07d1y3ixcvoQ8+aKI+fbrr5s2b7PECAABIRGK1x6t///5q0aKFsmXLpgsXLsjHx0fz589XSEiIbty4oTRp0ih16vg5LTeASIULF9PgwZ+rVat2ypEjpySpadOW8vM7pE6d2snpjHjIGgAAAJBQxGqP17Jly3T58mVJUrly5eTn5ydJSpkypTJlykTpAizwySdd5e7uplmzpsaYPmjQMGXMmJET2QAAACQisdrjlSFDBo0ePVrvvvuujDFatGiRtm3bdt9lHQ6HPv7443gNCTyN0qZ9TsOGfXnP9BQpUmrEiLH6++8jNqQCAADAo4hV8erWrZsGDRqkvXv3yuFwaNGiRQ9cluIFxJ+rV68oTZpnlTJlSvn7X9Tvv2+XJJUsWVo5c+ayOR0AAABiK1bFq2rVqqpataokKVeuXFq4cKEKFChgaTDgabd9+y/q16+Xvv12lm7eDFKPHp2VOXMWGWP0zTcTNXLkOL3xxpt2xwQAAEAsxPl08t9//72yZ89uRRYA0UyZMkl9+/bX66/nUOvWTdW+fSfVrl1PkrRs2WJNmDBG06fPtjklAAAAYiPOp5MvUqQIJ9MAnoDLly+pXLmKkqTz58+qRo1arnnvvVdH586dsSkZAAAA4irOxQvAk/HCC1m1e/cuSVKOHN7655+jrnkHDuzX889nsisaAAAA4ijOQw0BPBlNm7ZSr16fqmHDRipS5G317t1NNWrUUnBwsNauXamOHbvaHREAAACxRPECEqiSJUtr0KBhWrJkgY4c8VNQ0A3Nnz9Xr7zyqjp06KJq1WraHREAAACxlKCK18mTJ1WnTh3169dPderUkST5+flpyJAhOnjwoNKlS6cmTZqoRYsWrvs4nU5NmjRJixYtUlBQkN566y31799fL7/8smuZh60DSKiKFXtHxYq9Y3cMAAAAPKZYFa+yZcvK4XDEaoUOh0MbNmyIc5C7d++qW7duun37tmtaYGCgmjVrpvLly2vgwIHau3evBg4cqHTp0qlu3bqSpK+//lrz58/XsGHDlClTJo0aNUqtWrXSqlWrlDx58litA0ioDhzYp2TJkitXrtzauXOHVqxYqmTJkqlixSp6++3idscDAABALMWqeBUpUiTWxetRTZw48Z6zJS5cuFDJkyfXgAED5OHhoezZs+v06dOaOnWq6tatq7CwMM2YMUPdu3dXqVKlJEljx45ViRIltH79elWrVu2h6wASqhUrlmr8+NFyd3dXq1btNHXqNypfvpI8PDw0cGBfdevWW+XLV7I7JgAAAGIhVsVr+PDhlobYuXOnFixYoOXLl6t06dKu6bt27VLhwoXl4fG/mMWKFdOUKVMUEBCg8+fP69atWypWrJhrftq0aZUnTx7t3LlT1apVe+g6vLy8Hjm3h0fkSSHd3RPuySH/K1tCzf2wXIk1d1wtXPiDvvpqiiSpTZsWGj16nN55511JUoUKFfXllyNUuXKVeP2dAAAAsMYjH+N169Yt3bx5U06n8555L7zwQqzXExQUpB49euizzz5TlixZYszz9/dXzpw5Y0x7/vnnJUkXLlyQv7+/JN1zv+eff14XL16M1ToetXi5uTnk6Znwr2eWNm0quyPEWWLMLMV/7oCAqypZMvL4Ljc3N1WuXF7u7u6SpHLlSqpnz66JYhsEAADAIxSvM2fOqGvXrjp06NADl/Hz84v1+gYMGCAfHx/VqFHjnnkhISFKnjx5jGkpUqSQJIWGhurOnTuSdN9lbty4Eat1PCqn0ygoKPJ4NHd3twRbFoKC7igi4t5yLCXc3P+VWUq8ueMqQ4aM+v33Xbp7N0wRERHauHGrChcuKknaseMPpU/vpcDAW/H2+wAAABB3adOmitXIpzgXr4EDB+rMmTNq06aNXnrpJbm5PfrwquXLl2vXrl1auXLlfeenTJlSYWFhMaZFlaVnnnlGKVOmlCSFhYW5fo5aJlWqVLFax+MID4+/D9lWiYhwJoqc0SXGzFL8527atKXatWupiAinfHwKatWqH7Vx4wZFRERow4af1bZth0T5OAEAADyN4ly8du/erf79+6tWrVqP/cuXLFmigICAGMd1SVL//v01ffp0vfDCC7p8+XKMeVG3M2XKpPDwcNe0bNmyxVgmV65ckqTMmTP/5zqAhKp8+UrKnj2Hzpw5paJF31FYWKimTftGly75q0uX7qpa9d69xAAAAEiY4ly8UqdOrYwZM8bLLx89erRCQkJiTKtYsaI++eQTVa1aVatXr9b8+fMVERHhOrbl999/16uvviovLy89++yzSpMmjXbs2OEqXkFBQTp8+LB8fX0lSYULF/7PdQAJVWhoqDZtWu/aTgcM+Ew7d/6hZMmS6YUXsqpixSoxThoDAACAhCvO4wTfe+89ff/994qIiHjsX54pUya9/PLLMf6TJC8vL2XNmlV169ZVcHCw+vbtq2PHjmnp0qX67rvv1KZNG0mRx3b5+vpq9OjR2rhxo44cOaIuXbooc+bMqlChgiQ9dB1AQvX11+O1bdtmLVjwg7p1+0Th4Xc1dep3Gjv2K/n5HdasWdPsjggAAIBYitXX5b1793b9HB4erl9++UUVKlRQgQIFXMdSRXE4HBo6dGi8hPPy8tK0adM0ZMgQ1a5dWxkzZlSPHj1Uu3Zt1zKffPKJwsPD9dlnnykkJESFCxfW9OnTXSfUiM06gIRoy5ZNmjlzrgICrqpFiyZatmyNvLwySJIGDRqmjh3bqmXLtjanBAAAQGzEqnjt2LEjxu3MmTNLkvbv33/Pso97oeWjR4/GuF2gQAEtWLDggcu7u7ure/fu6t69+wOXedg6gIQoJOSO0qf30nPPpZOXVwY9+2xa17wMGTIqOPimjekAAAAQF7EqXps2bbI6B5Dkubk55OYW+y8mXnnlVa1fv0ZVqlTXypU/uaaHh4dr2rTJyps3r+si3o/K6TRyOs1jrQMAAAAPF+9H5h8/flzZs2eP79UCiVrkBbdTyc3NPdb36dGju9q2batatWrEuPRBlSpVFBoaqqlTpz72BZSdzggFBt6hfAEAAFgszsXr+vXrGjNmjHbu3Km7d+/KmMgPbMYY3b59Wzdu3IjTBZSBp0Hk3i537d0yUsHXz8b6fsO6F9Xun3vGmNawcga9lCWNLh4Yp4sHHj1TmnQvyad0D7m5OSheAAAAFotz8Ro2bJhWrVqlkiVL6sSJE0qVKpVeeeUV/fXXXwoKCtKgQYOsyAkkCcHXzyoo4Hic7hMU84oLej6NFHozQKHxmAsAAADWivMBIr/88os6dOigyZMn6/3331fmzJk1btw4/fTTT/L29taxY8esyAkAAAAAiVaci1dQUJDeeustSVKOHDl08OBBSZEXVm7evLm2bNkSrwEBAAAAILGLc/Hy9PTUzZuRp7F++eWXFRAQoMDAQEmRF0S+dOlS/CYEAAAAgEQuzsXr7bff1jfffKNz587pxRdfVLp06bR06VJJ0ubNm+Xp6RnvIQEAAAAgMYtz8erUqZMCAgLUq1cvORwOtW7dWqNGjVKRIkU0a9Ys1a1b14qcAAAAAJBoxfmshlmzZtWaNWt06tQpSVKzZs2UIUMG7d69WwUKFFDt2rXjOyMAAAAAJGpx3uN14cIFpUiRQrly5XJNq1Gjhvr3769SpUpp+fLl8ZkPAAAAABK9OBevsmXLqm3btgoODr5n3tmzZ9W7d+94CQYAAAAASUWci5ck/f7772rQoIFruCEAAAAA4MEeqXiNHj1aKVOmVIMGDfTLL7/EdyYAAAAASFIeqXhlzpxZ8+bNU/HixdW2bVvNmDFDkuRwOOI1HAAAAAAkBY9UvCQpRYoUGjt2rD7++GONGjVKPXr0iM9cAAAAAJBkxPl08v/Wvn175cyZUz169NC+ffviIxMAAAAAJCmPvMcruvLly2vevHm6e/dufKwOAAAAAJKUOO/xOnLkyH2ne3t7a9myZTp69OhjhwIAAACApOSRhhoaY+Tn56fbt2/LGBNjHifYAAAAAICY4ly89u/fr06dOsnf3/+eecYYORwO+fn5xUs4AAAAAEgK4ly8hg4dKg8PDw0bNkyZM2eWm1u8HCYGAAAAAElWnIvX4cOHNWbMGJUvX96KPAAAAACQ5MR5d5WXlxd7uQAAAAAgDuLcoBo1aqRvv/1Wt2/ftiIPAAAAACQ5cR5qePr0aR0/flzFixdXjhw5lDJlynuW+f777+MlHAAAAAAkBY9UvHLlyuW6/e/TyYeHhz9+KgAAAABIQuJcvGbPnn3f6efOndPChQu1dOnSxw4FAAAAAEnJI11AOYoxRps3b9b8+fO1fft2RUREKHv27PGVDQAAAACShEcqXpcvX9aiRYu0ePFi+fv7K23atGrYsKFq1aqlAgUKxHdGAAAAAEjU4lS8tm/frvnz52vz5s0yxqho0aLy9/fXpEmTVLhwYasyAgAAAECiFqviNW3aNC1cuFBnzpzRq6++qk8++US1a9dWihQpVKRIEaszAgAAAECiFqviNXr0aHl7e2v27Nkx9mzdvHnTsmAAAAAAkFTE6gLKNWvW1JkzZ9SyZUu1adNGa9euVVhYmNXZAAAAACBJiNUer5EjR+rWrVtatWqVli5dqi5duui5555TuXLl5HA45HA4rM4JAAAAAIlWrPZ4SVLq1KnVsGFDLViwQKtXr1adOnW0bds2GWPUs2dPjR07Vn///beVWQEkMrduBeuXX7Zo3749XFwdAAA81R7pdPLZs2dXz5491a1bN23evFmLFy/W9OnT9e233ypHjhz68ccf4zsngETgwoXzGjp0oLy8vNS8eRt17NhGISEhcjojlC3byxo9eoLSp/eyOyYAAMATF+s9Xvfj7u6u8uXL65tvvtHWrVvVtWtXRURExFc2AInMxIljlSlTZoWHh6tz5/aqUKGS1q3borVrN8vbO7cmThxrd0QAAABbPNIer/vx8vJSq1at1KpVq/haJYBEZu/e3Vq+fK2uXQtQw4a11Lp1ezkcDiVLlkwdO3bVBx/UtjsiAACALR5rjxcA/Jubm5uyZHlB5cpVlMPxv5eY8PC7MsbGYAAAADaieAGINwUKvKEJE8YoIiJC/ft/oeTJk0uSjhw5rH79eqt48ZI2JwQAALAHxQtAvOnSpaeOHDkkp9MZY/qgQf2UJk1qdejQyaZkAAAA9oq3Y7wAIHPmzJo69ft7ps+c+YNSpEhhQyIAAICEgeIFIF5dvXpFadI8q5QpU8rf/6J+/327JKlkydLy8spgczoAAAB7MNQQQLzZvv0XNWhQS+fOndWePX+pSZMGWrp0oZYsWaBGjepq3749dkcEAACwBXu8AMSbKVMmqW/f/nr99Rxq3bqp2rfvpNq160mSli1brAkTxmj69Nk2pwQAAHjy2OMFIN5cvnxJ5cpVlCSdP39WNWrUcs177706OnfujE3JAAAA7EXxAhBvXnghq3bv3iVJypHDW//8c9Q178CB/Xr++Ux2RQMAALAVQw0BxJumTVupV69P1bBhIxUp8rZ69+6mGjVqKTg4WGvXrlTHjl3tjggAAGALiheAeFOyZGkNGjRMS5Ys0JEjfgoKuqH58+fqlVdeVYcOXVStWk27IwIAANiC4gUgXhUr9o6KFXvH7hgAAAAJCsULQLw6cGCfkiVLrly5cmvnzh1asWKpkiVLpooVq+jtt4vbHQ8AAMAWnFwDQLxZsWKpOnVqp44dW2vhwh/Up093PftsWqVJ86wGDuyrDRvW2R0RAADAFuzxAhBvFiyYqwkTvpEktW/fUiNGjNHbb78rSSpbtrzGjRul8uUr2RkRAADAFhQvAPEmIOCq8uUrIElyOBwqUuRt17w333xLly752xUNAADAVgw1BBBvMmZ8XkePHtHBg/vldDq1Z89frnk7d/6h9Om9bEwHAABgH/Z4AYg3TZu2VIcOrRQR4ZSPT0GtXbtSW7ZsVEREhDZs+Flt23awOyIAAIAtKF4A4k358pWUPXsOnTlzWsWKva3Q0FBNnz5FAQFX1blzN67jBQAAnloULwDxJjAwUJMnT9T+/XuVO3cederUTV269HDNr1ixlH7+eauNCQEAAOzBMV4A4s2kSWNkjFOffTZQGTJkVPv2LXXy5AnXfGOMjekAAADswx4vAPFm164/NXv2IqVNm1bvvltS06dPUc+eXTR9+hw9++yzcjgcdkcEAACwBXu8AMSbu3fDlTp1atftFi3aKEeOnBo4sK8k9ngBAICnF8ULwH9yc3PIw8MtVv95e+fS7Nkz5O7+v/t8/vkgXbx4QSNGDJbDoViv60H/ubmx1wwAACQ+DDUE8EBubg55eqaSm5t7rJb/7LM+atmypf7554i+/fZbSZKnZ2pNmzZVH330kUJCQuTpmfoha/lvTmeEAgPvyOlk7xkAAEg8KF4AHsjNzSE3N3dt2TZcN26cidV9OnfNq+vXQ7ViZfsY09u0e107d6a+Z3pcPPdcNpUu2Utubg6KFwAASFQoXgAe6saNMwq4dizWy7u5SwHX7p2eN5/itB4AAICkgmO8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi3nYHQAAEiJjjE6fPiVJeuWVV+0NAwAAEj32eAGApDNnTqlJkwY6duwf+ftfVNOmH6hJkwZq0qSBWrb8UJcvX7I7IgAASMQoXgAg6csvR+ittwrrpZde0rhxo5Qjh7dWrlyvFSt+0ssvv6LRo4fbHREAACRiDDUEAElHjx7Rl19OlIeHhw4dOqiFC1coVapUkqTu3fuoVq3KNicEAACJGXu8AEBSunSeunr1iiTJyyuDbt0Kds27eTNIadI8a1c0AACQBFC8AEBSlSrV1KNHZ+3evUuNG3+oAQP6avfuXdq2bYu6dftEZctWsDsiAABIxBhqCACSmjRpptu3b6tPn266deuWJKlTp3Zyc3NT+fKV1KpVO5sTAgCAxIziBQCS3Nzc1K5dR7Vu3V5nz55RUNANJU+eQtmyZdMzz6S2Ox4AAEjkKF4A8P9CQ0O1adN6HTv2t27fvqPUqVPrtdeyq0SJ0nr2WY7xAgAAj45jvABA0sGDB1S3bnXNmTNLly75KywsVP7+F/TDD9/r/fdr6ciRw3ZHBAAAiRh7vABA0vjxo+Tr+5Hef9/3nnkLF/6gsWNHacqUmTYkAwAASYHte7yuX7+uzz//XCVLllTBggX1wQcfaNeuXa75fn5+8vX1lY+Pj0qXLq3p06fHuL/T6dSECRNUokQJvfHGG2revLlOnz4dY5mHrQMATp06pXr13r/vvDp1GujkyRNPOBEAAEhKbC9eXbt21b59+zRmzBgtXrxYefPmVYsWLXT8+HEFBgaqWbNmeuWVV7RkyRJ17NhR48eP15IlS1z3//rrrzV//nx98cUXWrBggRwOh1q1aqWwsDBJitU6AMDLy+uBwwkPHNinjBkzPuFEAAAgKbF1qOHp06e1fft2zZs3TwULFpQk9e3bV9u2bdOqVauUMmVKJU+eXAMGDJCHh4eyZ8+u06dPa+rUqapbt67CwsI0Y8YMde/eXaVKlZIkjR07ViVKlND69etVrVo1LVy48D/XAQCS9NFHLdS1a0eVL19R2bPnUKpUqRQSEqKTJ09o/fq16tq1l90RAQBAImZr8fL09NS3336rfPnyuaY5HA4ZY3Tjxg0dPHhQhQsXlofH/2IWK1ZMU6ZMUUBAgM6fP69bt26pWLFirvlp06ZVnjx5tHPnTlWrVk27du36z3V4eXk9cn4Pj8gdhu7utu84fKD/ypZQcz8sV2LMnVAzS4kztxW5atSoqaxZs+rHH5dp9eofdfv2LaVKlUqvvZZdw4ePVqFCReL9dwIAgKeHrcUrbdq0rj1VUdauXaszZ87o3Xff1dixY5UzZ84Y859//nlJ0oULF+Tv7y9JypIlyz3LXLx4UZLk7+//n+t41OLl5uaQp2fCv7ZP2rSp7I4QZ4kxs0TuJ8mqzOXKlVS5ciUtWTcAAHi6JaizGv7111/q06ePypUrp7Jly2rYsGFKnjx5jGVSpEghKfJ6O3fu3JGk+y5z48YNSVJISMh/ruNROZ1GQUG3JUV++55QP7wGBd1RRITzvvMSau7/yiwlztwJNbOUOHM/bBt5VPv371Py5MmUK1ce/fnnDi1fvkQeHslUuXJVvfNO8Xj/fQAAIPFLmzZVrEbjJJjitWHDBnXr1k1vvPGGxowZI0lKmTKl6yQZUaLK0jPPPKOUKVNKksLCwlw/Ry2TKlWqWK3jcYSHx/8Hv/gWEeFMFDmjS4yZJXI/SVZkXrFiqcaPHy13d3e1atVOU6d+o/LlK8nDw0Off95b3br1VvnyleL1dwIAgKdHgihec+bM0ZAhQ1ShQgWNHj3atYcqc+bMunz5coxlo25nypRJ4eHhrmnZsmWLsUyuXLlitQ4AkKQFC+ZqwoRvJEnt27fUiBFj9Pbb70qSypYtr3HjRlG8AADAI7P9yPkffvhBgwcPVuPGjTVu3LgYwwILFy6sv/76SxEREa5pv//+u1599VV5eXkpV65cSpMmjXbs2OGaHxQUpMOHD6tQoUKxWgcASFJAwFXly1dA+fIVkMPhUJEib7vmvfnmW7p0yd/GdAAAILGztXidPHlSQ4cOVYUKFdSmTRsFBAToypUrunLlim7evKm6desqODhYffv21bFjx7R06VJ99913atOmjaTIY7t8fX01evRobdy4UUeOHFGXLl2UOXNmVahQQZIeug4AkKSMGZ/X0aNHdPDgfjmdTu3Z85dr3s6dfyh9er6oAQAAj87WoYbr1q3T3bt3tX79eq1fvz7GvNq1a2v48OGaNm2ahgwZotq1aytjxozq0aOHateu7Vruk08+UXh4uD777DOFhISocOHCmj59umvPmZeX10PXAQBNm7ZUhw6tFBHhlI9PQa1du1JbtmxURESENmz4WW3bdrA7IgAASMRsLV5t27ZV27Zt/3OZAgUKaMGCBQ+c7+7uru7du6t79+6PvA4AKF++kl577XWdPXtaRYu+o7CwUE2fPkUBAVfVuXM3VatW0+6IAAAgEUsQJ9cAgITgtdey67XXskuKPCNqly49bE4EAACSCooXAEjau3f3Q5fx8Sn4BJIAAICkiOIFAJKGDx+sCxfOyxhz3/kOh0Pbtv35hFMBAICkguIFIMlxc3PIzc0Rp/tMnTpLrVo1VZs27VWhQvxfr8vpNHI671/qAABA0kfxApCkuLk5lM4zldzd3ON0P0/P1BoxYri6d++uevVqyc0tfq+2EeGM0PXAO5QvAACeUhQvAEmKm5tD7m7uWv7HcF0NOhvn+79RNp0mLmuj1M8mf/jCsZQh7UuqVayX3NwcFC8AAJ5SFC8ASdLVoLPyDzwW5/tlyCndDD+jm4EWhAIAAE+t+B1LAwAAAAC4B8ULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAsRvECAAAAAItRvAAAAADAYhQvAAAAALAYxQsAAAAALEbxAgAAAACLUbwAAAAAwGIULwAAAACwGMULAAAAACxG8QIAAAAAi1G8AAAAAMBiFC8AAAAAsBjFCwAAAAAs5mF3AADAo7t7966MMUqePLkCA69p06YNSpYsmd55p4QyZMhgdzwAAPD/2OMFAInU3r27VbVqOdWrV0P79+/Vhx++r0WL5mvhwnn68MOGOnr0iN0RAQDA/2OPFwAkUt98M0mtWrWV5FD37p30wQdN1LRpS0nSwoXzNGnSWE2cOMXekAAAQBJ7vAAg0Tp16qQaNGikunUbKCQkRI0afeiaV6dOfR0/fszGdAAAIDqKFwAkUs8884wCA68pIOCqjDG6dMnfNe/y5UtKmTKljekAAEB0DDUEgESqcuVq6ty5vSIinMqUKbNmzpyq4sVLKCIiQrNmTVPp0mXtjggAAP4fxQsAEqlWrdopY8bndfr0SdWqVU9hYaH64ov+unz5kt59t5Rat/7Y7ogAAOD/UbwAIJFyOByqXbtejGnff7/ApjQAAOC/cIwXACRSn376ic6cOWV3DAAAEAsULwBIpHbt2qH27Vtp48b1dkcBAAAPQfECgEQqefIU6t9/sMaOHakePbroxInjdkcCAAAPQPECgETK4XCocOFimjNnkTw9PdWiha86dWqvNWtW6vz5cwoLC7M7IgAA+H8ULwBI5NKlS6fevT/X3LmLlT9/Af3ww2y9/35tlS//rt3RAADA/+OshgCQSBljYtx+4YWsatmyrVq2bKsbN67r4sWLNiUDAAD/RvECgESqUqUq90wLDg5WypQp9dxz6fTcc+mefCgAAHBfDDUEgESqY8cumj59ipYvX6yQkBB17dpRVaqUUcWKpTR27EiFh4fbHREAAPw/9ngBQCL19dcTtHfvboWFhWnDhp/l5uamqVO/U2hoqL76arxmzZqmli3b2h0TAACI4gUAidaWLZs0c+ZcBQRcVYsWTbRs2Rp5eWWQJA0aNEwdO7aleAEAkEBQvAAgkQoJuaP06b303HPp5OWVQc8+m9Y1L0OGjAoOvmljOgAAEB3FCwASCDc3h9zcHLFe/pVXXtX69WtUpUp1rVz5k2t6eHi4pk2brLx588rD49EP5XU6jZxO8/AFAQDAQ1G8ACABcHNzKJ1nKrm7ucf6Pj16dFfbtm1Vq1YNPfPMM67pVapUUWhoqKZOnSpPz9SPnCnCGaHrgXcoXwAAxAOKFwAkAG5uDrm7uWvkX5N05ub5WN+vyBdl1ePPwTGmedV7Sc+++JzGnp0mnX20PNmezaoeb3WQm5uD4gUAQDygeAFAAnLm5nkdv3Eqbne68a/bGaSAkJtSSHylAgAAj4vreAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAAAAWo3gBAAAAgMUoXgAAAABgMYoXAAAAAFiM4gUAAAAAFqN4AQAAAIDFKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQB4YsqWLa4NG9bZHeOpdOtWsK5evaLbt2/bHSXWEmNmKXHmToyZpcSZOzFmlsgdHzzsDvCkOJ1OTZo0SYsWLVJQUJDeeust9e/fXy+//LLd0QDgqWGMU199NV579+5Rhw6dlTJlSrsjJWlOp1MLFvygpUsX6tIlf9f0jBmfV40atfTRRy3kcDhsTHivxJhZSpy5E2NmKXHmToyZJXLHt6emeH399deaP3++hg0bpkyZMmnUqFFq1aqVVq1apeTJk9sdDwCeCsmSJdfUqd9p0KB+atgw8s2vWrUaSpGCAmaFSZPG6s8/d6ht2w569dXXlCJFSoWGhujkyRP67rvpun37ttq3/8TumDEkxsxS4sydGDNLiTN3YswskTu+PRXFKywsTDNmzFD37t1VqlQpSdLYsWNVokQJrV+/XtWqVbM5IQA8PTJkyKgJE77RTz+t1nffTde3336lEiVK64033lTGjM+raNG37Y54X3v37n7oMj4+BZ9Aktj7+eef9O23s/TCC1ljTH/ttdeVO3detW3bPMF9aEqMmaXEmTsxZpYSZ+7EmFkid3x7KorXkSNHdOvWLRUrVsw1LW3atMqTJ4927txJ8QKAx+Dm5pCbW+yHbHh4RB5eXL16DVWrVl27dv2pLVs2afHi+bpw4YI2bfrlsfI4nUZOp3msddzP8OGDdeHCeRlz/3U7HA5t2/ZnvP/exxEeHi4vrwz3nZcunaeczognnOjhEmNmKXHmToyZpcSZOzFmlsgd3xzmQe8gScjPP/+sjh07at++fTGOJ+jUqZNCQkI0ZcqUOK/TmP+9sTsckpubm5y3Q2ScznjL/Tgcbm5yeyalnE6nHvQXjsodcTtYSghPHDd3uT+T5j8zS//LfffOdZmI8CeX70F53D2ULFW6WD3WoXeuyzjtzyxJDjcPpYhl7jt3rsuZAHK7uXkoVSwz3wq5rogEkFmS3N08lDpl7HJfD72h8ATwfPRwc1e6FM899PkoRRav2I6Vf/PNN7Vnz554SPhg0V+f/0tch/dfu3ZNH3zwgTp16qSqVas+YroHi+27cVxyd+jQQc8884y6d++ujBkzuqZfu3ZNw4YNU3h4uMaOHRvHpP+TGDNLiTN3YswskTtKYswskftB/p05tu+DT0XxWrFihXr06CE/Pz+5uf3vRI49evTQ5cuXNWvWLPvCAcBTZOXKlapRo4bdMR7Zrl271L17d23cuDHG+0lCde3aNXXu3Fk7d+7Uc889p2eeeUZ37tzR9evX9dZbb2nChAlKnz693TFjSIyZpcSZOzFmlhJn7sSYWSJ3fHsqite6dev0ySef3HePV1hYmCZPnmxjOgBAYrJs2TKVLFlSXl5edkeJtTNnzuiff/7RrVu39MwzzyhHjhwJ/qy+iTGzlDhzJ8bMUuLMnRgzS+SOL09F8dq/f7/q16+v9evXK1u2bK7pH3zwgXLlyqX+/fvbmA4AAABAUpfwx0nEg1y5cilNmjTasWOHa1pQUJAOHz6sQoUK2ZgMAAAAwNPgqTirYfLkyeXr66vRo0crffr0ypo1q0aNGqXMmTOrQoUKdscDAAAAkMQ9FcVLkj755BOFh4frs88+U0hIiAoXLqzp06dz8WQAAAAAlnsqjvECAAAAADs9Fcd4AQAAAICdKF4AAAAAYDGKFwAAAABYjOIFAAAAABajeAEAAACAxSheAAAAAGAxihcAAAAAWIziBQAAgASLS84iqaB4Wez06dO6du1ajGm8gAAA4ktERITdER5JWFiYJN4T8WD79++XJDkcDrYTJAkULwuFhYVp0aJFWrt2rSTp4MGDkiJfQBIDp9Npd4Q4S6wvzIk1d2Kzd+9eHTp0SNL/HvPEsJ0nxu3j3LlzCggIiDEtMf47EoPQ0NAYtxPDNn3p0iWtXbtWd+7cSTTvifeTWLbps2fPKiQkxO4YcTJ8+HB1795dmzZtkpR4yldiyPgwifXLnMSA4mWh5MmT6+bNmxo8eLA+/PBDDRkyRLdv37Y7Vqw4nU65uUVuHidOnLA5Tew4nU7XG/jNmzdtThN7xph7Pngkhg9OURkT05vM8ePHNXjwYJ0+fVrr1q2TJNd2nlBF3z78/f1tThM74eHh+v777zVr1ixJ0q5du3Tr1q1E/QE7IZo4caLat2+vOnXq6NNPP9WyZcskRW7TCf2D06FDhzRu3Dj99NNPmjhxojZs2GB3pFi5dOmS9u/fr6tXryooKCjRlIHp06dr6NChkqQ9e/YoKCjI5kQP17BhQ6VOnVpTp051bR8J/fGO/jkkMbl06ZIOHjyos2fPSpLc3d1tThR7CXl7uB+HSWyJE4nw8HB5eHhIkmrUqKF//vlHrVq1UufOnRP8Bh29dH377bdauXKlfvjhBz377LM2J3uw6B9OZ8yYoV9//VXJkydX/fr1Vbx4caVMmdLmhPcX/bFes2aN/vrrL/Xr10/S/QtZQhE926FDh5Q3b16bE8XOhg0bNHv2bJ0+fVr+/v7atWuXUqdOnWAf5+jbx9q1a/Xzzz+rWbNmKlCggM3JHm7RokXq16+f8uTJIynyeZkuXTp7Qz1E9Mc7uoT4XPzoo48UHBwsHx8feXl5ac2aNbpx44by5cunyZMnS3rwvyeh6Natm3755ReFhYVpzpw5yps3b4J8rKP07NlTR44c0bFjx5Q2bVplzZpVPXv2VOHChe2O9lCrVq1Sjx499Morr8jNzU1z587Vc889Z3esBwoLC1Py5Ml16dIltW3bVmnTplWTJk1Uvnx5SQnzORk90/fff699+/YpW7ZsqlKlinLmzJkgM0uR2/WJEyd04MABpU+fXi+//LI6d+6s/Pnz65lnnrE73n+K/hp3/fp1ORwO13adUB/vhPuKnIgZY1yla9myZbp586aqVq2qmTNnat68eQoODrY54YNF34iHDx+uMWPG6OTJk7pz547NyR4s+jdMEyZM0KRJk5QtWzadPn1aQ4YM0fLlyxNk/uiP9a+//qp169ZpxYoVmjJliqSE+81e9Mf7wIEDqlu3rlauXGlzqv8W9e1/+fLl9dJLL8nf31+5cuXSuXPnEuQLsxRz+9iyZYt+/PFHbdiwQTNnznQNl0yIovaE1q9fX2+88YYOHz4sb2/vBP0hT4p83Y7+Jcj8+fO1fv16SQnvufj+++/r5s2bmjJlivr166f27dtr9uzZatiwoXbt2qXGjRtLitzzlZByS5HbR1Sm7NmzKygoSGnTptWhQ4cUHByc4B7rKL6+vjpx4oQ6dOigFStWqH379kqVKpWaNWumuXPn6u7du3ZH/E/Vq1dX0aJFdeLECb366qsJ+vnodDqVPHlySZGjFAoWLKgdO3Zo8uTJ2rx5s6SE95yU/ncYycSJEzVp0iQFBARo1apVGjJkiA4cOJAgMzdu3FgnTpxQq1at9MMPP6hLly4KCwtThw4dtHDhwgS/ZzTqNXvixIn66KOP1LRpUy1cuFBSwtxGJIpXvIvesKdPn66ZM2dqwoQJGjNmjOrVq6fhw4dr+fLl9wyFSwgbR0REhGsjHjp0qJYuXapx48bptddeS9Bjw6MyX7hwQYcPH9bUqVM1YMAArV27Vnny5NHMmTMTZPmKXnCHDx+u4OBgPfvss1qwYIHGjBkjKeG9cET/cDpt2jQtWrRIktS9e3ctXrzYzmj/KWov819//aXnn39en332mdKnT68BAwbor7/+sjnd/UU9ziNHjlS/fv2UKVMmValSRdu3b9esWbNcB50nNNGfjwUKFFCrVq20fPlyffnllwn6S6eo1+3Ro0erd+/emjZtmrp06aJJkya55ieE52KzZs0UFham+fPnK0OGDJIiR1h4enqqWbNm+uSTT3Ts2DENGDBAUsI7ptjNzU0Oh0Pbtm3TW2+9pTVr1qhIkSL69ttvtWzZsgRZvt5//33dvn1bU6dOVYUKFfT666+rSZMm+uKLL1SrVi0NGzZMq1evlpRwh4kHBwcrV65c6tSpk7Zu3arPP//c7kj3iPqbR72GjB07Vl26dFGmTJnUsWNHBQUFacaMGQnuC5Hof/OwsDBdvXpV33zzjWbNmqVu3bopPDxcI0eOTHDl64MPPtCdO3c0Y8YMVaxYUQULFlT9+vU1d+5cFSpUSGPGjNG6desS5LDl6I/h3LlzNX/+fJUtW1YvvfSS+vfvr++++05SwtlGYjCIF06nM8btZcuWmW7dupn169fHmD5w4ECTN29eM2fOHOPv72+2bNnyJGPe19WrV01YWJjr9tChQ42Pj4/5+++/TWhoqClcuLD5888/jTHGRERE2BXzP82ZM8cUL17cVKtWzZw6dco1PSIiwnz88cemUqVKZt68eebWrVs2przX+vXrTfHixc2+fftMRESEuXnzphk/frypW7euGTNmjGu5f29fdhs/frwpWrSoWbJkiZk7d67p06eP8fb2NvPmzbM72gMtXrzYVK5c2XV7/fr1pkmTJqZhw4Zm165dNiZ7sD179phSpUqZPXv2uKZt3brV1KpVy3Tp0sUcOnTIvnD/4bvvvjMffvihCQ0NNcYYM3/+fJMrVy4zevRoExwcHGNZu7ft6K9pAQEBplGjRubAgQPm2LFjZurUqcbb29tMnDjRtYydeYcMGWK8vb3Nb7/9dk+eqP/fvHnT9O7d21SsWNGcPHnSjpgPdejQIePt7R1j++3SpYspV66cmTNnjrlz546N6WJq1aqVqVSpkuu20+mMsc1cuXLFdO3a1fj4+Jjjx4/bEfG+/v1eHf32smXLTL58+Uy/fv2edKwHunbtmjEmMqfT6TSnT582lSpVMps3b3Ytc+7cOfPhhx+ahg0bxphu53My+uO6YcMG88MPP5gKFSrEeE9ZvXq1adSokfH19TUHDhywI+Y9mjZtamrVquW6/e/XEWOMad68uSldurS5evXqPfPs9O9te8GCBWb16tXGGGMuX75svvzyS+Pt7W1mzZrlWiahZDfGGPZ4xZPo3yqePXtW06dP18qVK3Xjxg1J/ztt7ueff6769etryJAhqlevnmbMmGFrG7927Zrmzp2rU6dOSZI2btyoffv2ad68ecqRI4du3rwph8PhOilI1DdR27ZtsyuypHv3EL733ntKnz69jh07Jj8/P9c3NG5ubpo0aZJy5syp0aNH67fffrMj7gOdPXtWWbJkUe7cueVwOJQmTRo1btxYPj4+WrRoketYjYT0rU1AQIB+++039evXT3Xq1FGjRo3Us2dPdenSRQMGDNDSpUvtjijpf9tI1P8zZcqkmzdvui7vUL58eX344YdKkSKFRo0apS1btmjmzJkJ6gQ4d+/elcPhkJeXl+tb1ZIlS6pz585at26dpk+frgMHDtic8l4nT55USEiIa7hQw4YNNXDgQE2fPl3ffPONzp8/r1WrVrn2btgl+nDOffv2aceOHUqbNq1efvllZc+eXXXq1FHnzp01adKkGHu+7NK2bVtlzZpVo0eP1q5du1wjLKL/P02aNGrXrp3Onz+fYPaK/nsvkIeHh1KlShVjJMWYMWP0xhtvaObMmZo8ebLatWtn+wk3tm7dqh07dqhAgQIxTmwT/bi5DBkyqHHjxnruuee0Zs0aSfaPYIm+XS9cuFDDhw9XkyZNNGvWLP3zzz+qVauWhgwZohUrVujzzz9XQECA1qxZc8+lb56UkSNHqkOHDvL393ftEXVzc4vx+hAeHq6sWbNq1KhROnXqlKZOnaoff/xRkr3PyajHedSoUerUqZO+++47nTlzRseOHXMtU7VqVTVp0kRS5PFUx48ftyVrlF9//VVHjx517TGX/jcc3+FwuH7u37+/QkJCNH36dNc8u5loo27mzp2rnj17auTIkTp//rwkKWPGjGrcuLFat26tYcOGafbs2ZISRvYoFK/HdODAAS1YsEBTp07VmjVrdPLkSb300kvq2bOnXnvtNX333XeuDyBRp/zt37+/hg4dqg8//FDTp0+39UN1qlSp9NNPP6lr167q3bu39u7dq0mTJilXrlyKiIiQl5eX0qdPr6tXr0qK3OibNm2qPn36yBhjS+7oxxiFhYUpODhYadKk0fz58/XKK69o7Nix2rVrV4w3+/Hjx6tRo0YqU6bME88b5X6PldPpVEhIiG7fvi2HwyGn0ykvLy/Vq1dPN2/e1LJlyxLEB77o7t69q7///jvGMQ1p06ZV/fr1VahQIfXp00fLly+3L6BiDvmN+v8LL7yggIAAXb582bVc+fLl5evrq+TJk6tz586aNWuWUqRIYUvm+w1RCg0N1eXLlxUUFCQ3NzfXFzilSpXSiy++qN9//10LFizQxYsXn3Rcl+jbddTP77zzjoKCgnT16lXXMT0NGjTQwIEDNXXqVNWuXVsLFy60/cDtqDfwESNG6OOPP1a/fv30yy+/6O+//5YkpU+fXg0aNFCXLl00efJkDR8+3Jacq1at0pkzZ5Q+fXotWrRIgYGB+uKLL7R79+57ypckPffcc0qfPr3Cw8NtyftvUY9z1HaaM2dOeXt7y8/PT5JcOb/88ku9+eab2rx5swICAlS6dGlb8kYpVaqUPvnkEx05ckTjx4/X6dOn7/s6XLBgQb3++uvas2ePJPtfq6OXgQkTJihZsmTKmTOnJk+erH79+un27duqWbOmvvjiC61YsUJly5bVDz/8YNvJbzw9PRUaGqovvvjCVXDd3d0VERHh+vIg6kydzz//vHLlyuU6yUlCcOTIEf3222+aP3++xo8fr+bNm2vgwIEx3gcrV66sunXrqkiRInrllVdsyypJPj4+6ty5sy5cuKA2bdro7t278vDwcBWuqKH52bJlU968eW19f4ku+mvcpEmTNGzYMN25c0fBwcHavn2763U7U6ZM8vX1VZs2bTRkyBDXJZ0SjCe5ey2p6dKli2nUqJEpWbKkqVevnvH29jYVK1Y0U6ZMMcYY8/vvv5uSJUuaOnXquO4TEhJyz3ru3r37xDLfz927d03hwoWNt7e3+emnn+6ZX61aNde/qUWLFqZq1aquoYlPevdt9N83bdo006JFC9OiRQuzZs0aY0zkMJsKFSqYqlWrmh07dtx3aGR4ePgTyxsleo7g4GDXdnDw4EGTK1cuM3HixBj/tsOHD5smTZqYPn36mIYNGxo/P78nntmY+w8tDQ4ONk2aNDFffPGFa3hIlN69e5sKFSqY/Pnzu/4mdvrqq69MnTp1zPjx483XX39t6tSpYzZv3mxu3rwZYzl/f3+zY8cO17bxpIfURv99Z86cMWfPnnXdbt68uSlXrpw5c+aMa1pgYKD5+OOPzaRJk4yPj49Zvnz5E817P9OmTTMTJ040GzZsMLNmzTLFihW779Crv/76y3z//feu1z07hoBE/50bN240lStXNuvXrzcbNmwwRYsWNU2aNIkxDC4gIMCMHj3avP/++088748//mi8vb3NuHHjzLlz51x5ypQpY9577z2za9cuV6ao7ffYsWOmYcOGZvfu3U8063/5+uuvTbFixUydOnVMv379TJEiRczgwYPNpUuX7hl+euHCBddzwo7X6yFDhpipU6e6bk+dOtVUq1bN9OrVK8ZQdmP+99zt2rWr6du37xPN+V9++eUXU6ZMGdfQtp07d5r8+fObjRs3mqNHj7peu48cOWLmzJljy/Mx+u+aM2eOqV27tmnXrp1rO581a9Y9Q9jDwsJMhw4dzJIlSxLEoQ9Tpkwxn332menevbtr2o0bN8zQoUNN7ty5zbJly+57Pzu2644dO5qff/7ZGGPMrVu3zPz5803lypVN69atXZ/ponJF/W06d+5sevXq9cSz/hc/Pz/TsWNH1+vbwYMHTf78+U3btm3N33//7Vru4sWLZt68ebZ/xv43D7uLX2LVtGlThYSEqF+/fnrppZeUNm1a7d27V3PmzNH48eN148YNde/eXcOHD1fv3r1Vr149LV68WClSpIhxqnlJMX5+0pxOp+tboxdffFFff/21smXLpty5c7uGK3h5eckYo65du+rs2bNatWqVkiVLds+/w2om2rcd48aN05w5c1SmTBlduHBBXbp00a1bt1SvXj0tXbpUdevW1eDBg9WzZ08VL148xjeQT/p0/ibarvFvv/1Wf/zxhwIDA9WxY0eVLVtWffr0cZ1co2zZskqfPr1Gjx6tzJkzq3379qpevboOHTqkXLlyPdHc0Yer7NixQzdu3FDevHmVNWtWlS5dWhMnTtSLL76oGjVqKH369Lp9+7auXr2qRo0a6dixY1qxYoVKlChh2+naw8LC5O/vr2zZsum3336Tv7+//P391bNnT2XKlEn58uVT5syZlSVLFlWqVElFihSRFDnk4klvI1GP87hx47RixQoZY5QzZ059++236tatmz7//HM1aNBAn376qSS5Th0+adIkHThwQH/88Yfee++9J5o5uvPnz2vTpk26ceOGJk+eLG9vbwUGBqpVq1YqW7as0qZNq0KFCillypQqWLCgChYsKElP/DUkStT2uH37dv3666+qVq2a6zTVr7zyit5//32NGDFCPXv2VJ48eZQ+fXq1atVKXbt2vWfvktVq1KihY8eOaenSpTLGqF69enrxxRe1ePFi1atXT4MHD1a/fv3k4+Mjd3d3hYeHa9SoUUqTJo3eeOONJ5IxNvLly6dOnTpp9+7dunXrlsLDwzVnzhwdPHhQp0+fVr58+ZQyZUq1atXKdbkEp9P5xJ+L58+f1/Hjx7Vjxw4988wzatSokVq2bClJWr58ub755hu1bdtWL7/8sus18saNGwoICHBtQwlBUFCQ63Vu9erV6tevn3r06CEfHx9169ZNjRs3Vrly5eTt7S1vb29JT/75GDXKw83NTY0bN5YxRkuXLtWQIUPUv39/NWnSROfPn9eAAQO0fft2Pfvsszp79qwCAgI0btw4116wJ7mN/PsSDe7u7lq0aJFeeOEFnTlzRtmyZVPatGn18ccfy+FwqF+/fgoJCdH7778fYz1Peru+cuWK7ty5o86dO2vy5MkqWbKkatSoIUmaNWuWOnTooEmTJilZsmS6e/eukiVLpsDAQF27dk0VK1Z8oln/y8qVK7VkyRIFBAQoa9askqS8efNq9uzZatKkiRwOh7p27arXX39dmTNndj3udr3X3JeNpS/Rmj59umnQoIEJCAhwTYv6luD8+fNm+PDhpmDBgq5vOrZt22bKlStnypQpY0fce9zvW6KwsDBz8+ZNU61aNVO9enXj5+fnWq579+7G29vb1KhRw/WtyJP8BiHqAP0oBw8eND169DB//fWXMSZyb8XAgQONt7e3WbRokTEmcs/Xm2++aT799NMnlvN+oj/WY8aMMYULFzb9+vUzvr6+Jl++fGbJkiXm9u3bZsWKFeadd94xb7/9tilbtqxp0KCBa6+Yr6+v2bRpk13/BDNixAhTpEgRkz9/flOmTBmzZMkSY4wxI0eONEWLFjUfffSR6d27t2nQoIGpXr26MSbyW8CGDRs+0W9P/+vbzxs3bpirV6+a5s2bmxo1apgFCxaYNm3amHfffdc0btzYtm9Ooz8+P/zwgylSpIiZN2+eGTdunCldurR5//33jTGRryu9evUyxYsXNzVr1jTt2rVzbR8tW7Y033777RPN/aDH6+7du8bf398cOHDAvPfee6Zq1aqmbdu2plSpUubNN980vr6+CeJAeKfTaa5du2YaNGhgcufObdq3bx9juWPHjpnChQubZs2amX379sWY9yTzR/9WfMyYMebdd981Y8eOde0RjdrzVbNmTdcJelq3bm2qVKnieq22Y9v+9++837f7P/74o3n33XfNypUrzfTp003fvn1N8+bNbdkTECUqt5+fn/n0009N9erVzZw5c1zzo+/5OnHihOs+rVu3Ng0aNLAte/RtMurn6dOnm2rVqpmtW7eaggULxvh3lCpVKsYJY+zwoO1y9uzZpnbt2ubjjz82V65cMcYY8/PPP5vWrVubzp07myFDhrg+f9i5x2v16tWuzyZLly413t7eZvDgwebixYuuZW7cuGF69+5tGjVqZFfMGE6fPm26detmcuXK5Tqx27/3fEX9m8LCwkzr1q1Nw4YNbX1O/vv1dt++fcbX19fkzZv3npN57du3z/j4+Jj3338/xgiRhIbi9Qi6detmBgwY8MDycerUKdOwYUPz8ccfG2Mii8P69etNx44dbd2AjYn5QrVixQozbNgws2jRItdG6u/vb6pVq2Zq1qzpGt7WrVs3U6NGDde/90mWrq5du7p2jRvzv2FB5cuXdw1HMCZyaEpU+YoqBrdv37b98Y5y5coVM2jQoBhnOvriiy9M3rx5zcKFC40xkY/9sWPHzJ49e1wfmsaMGWNKlSplLly48MSyRt9GVq9ebcqUKWO2bNlijh8/btq1a2fKlSvneozXrl1rBg8ebNq2bWtGjBjherwHDRpkunbtet+htVaI/nfeunWrWbx4sZk2bZrZsWNHjOXmzp1rqlSpYoz537/z3/+3w6+//mqGDh1qVq1a5cqydetWU7JkSdOwYUPXcpcuXTLXr183QUFB5s6dO2bs2LGmaNGirg+BVnM6nTEe6/3795vt27e7zigV9SYZFhZmOnbsaL744gtjTORr4N9//51gno9Rw8XOnDlj2rVrZ8qUKXPPm/jx48ddH6bsEPVYRn+9HTVq1APLV+3atU29evVMpUqVbPmC7H4WL15shg4danx9fc28efNc7ykRERHmt99+M8WLFzf+/v733M+O7eTMmTNm3bp1rsf99OnTpkuXLg8sX3369DGnTp0y7du3NxUrVrxnqNaT8u9h7FHDqK9evWpKlChhvL29zeLFi13LBAQEmJo1a5qVK1c+0ZzRRc+8bds2s2jRIrNixQrXtKhhh+3bt3e99/37vcTObdvPz8+8/fbbplmzZq6i8sMPPxhvb28zdOjQGNt0cHDwfc8Y+CRF/72nT582n3766T3la8GCBaZy5cqmbdu2JjQ01HU2aLu263+bPn26+fXXX40xkV+MffTRR6ZevXrmxx9/jLHczp07TZMmTRLEMNQHoXjFQUREhAkODjalS5eO8UJ8P/PmzTNvvfWW60Uj+kabEL4VGz58uClcuLCpU6eOyZ8/v+nXr5/5559/jDGRBaBq1arm3XffNXXq1DFjxoxxZX6SL3Z37941AwcOjLHHa+fOnaZt27b3nFLZmMjxvIMHDzbe3t4xTjVr9wtG1DEaZcuWvedUskOGDDF58+Y1ixYtcj22W7ZsMR07djSNGjUyxYsXt+2U4atXrzZfffVVjL0pTqfTtG/f3pQrV84sWrTI9aJ869Ytc+rUKbNz504zevRoU7BgQXP06FHLMy5cuNB1qltjIj+Yli5d2jRv3txUr17dvPPOO2bChAkx/k1vvPHGPUX2Sb9IR38u7t2711SvXt0UKFAgxnYbFhZmtmzZYsqUKWPq1avnmu7n52cqVqxoatWqZcqWLfvEto8jR47EuD1mzBhTvXp1U758eVOmTBlTtWpVs3v3btfzbdasWaZSpUr3HE9n9/Nx06ZNxtvb23Wpj9OnT5tWrVqZevXqub4EiXL+/HlbPuBF3x6jRiNEud+er2vXrplChQqZcuXK2Va6hg8fbk6fPu26PWLECFO6dGnTr18/M3LkSOPt7W26du1qAgMDjTHG3LlzxxQrVixBHJ9oTOTrdPXq1c3mzZvN1KlTzfHjx83ff/9tunbtet/yVaNGDePj42MqV65s22MefTuZNm2a8fX1NR9++KH54YcfjDGRn0NKlChh2rZta/bu3Wu2bNli2rRpY2rXrm3789CYyG0m6jIwAwYMMLdv33bNiypfH3/8cYxjXu3w78J0584dM3/+fFO9enXTokWLe8rX8OHDzfnz52Pcx+5RFdF//4kTJ0zXrl3vW76qVavmOl9BQvkC59atW+ajjz4yBQoUcF3ayM/Pz3VpgX+XrygJtXxRvOIgagN+//33zYABA0x4ePg9T8ioP/S2bdtM4cKFY7wR2Sn6E2fmzJmmePHirqF6gwcPNj4+PqZfv37m2LFjxhhjgoKCzGeffWY+/fRT132f5Av1v58wc+bMMT/88INxOp3Gz8/PNG3a1BQvXtz88ccfMZY7d+6cmTFjhq0vFP/eJi5dumQ6depkcufO7XqRi77MsGHDYpTFf/75x3zxxRdm5syZ9xzIbaXoB7NHXb/N29v7ngNrnU6n69uw6dOnm5CQEHPmzBnTs2dPU6pUKdOwYUNz+PBhy/PWrl3bNG/e3PXmsHjxYtc10YyJvFZN/vz5zdatW11F69KlS+aNN94wW7dutTxfbER9qJ42bZopUqSIadeuXYz5d+/eNdu2bTP58uWLceD+2rVrzY4dO+67t8AKNWrUMPXq1YsxjKlIkSKu15A5c+YYb29vs3fvXteHkNWrV5vcuXPfcwIWu129etV069bN+Pj4mI0bNxpjIveAtWzZ0tSvX981XDm6J/l6Ev21b+bMmaZZs2bG19fX7Ny50zV91KhRpnjx4mbs2LGuPf83b9605QsyYyLfEytUqOD622/dutWUKFHC7N+/3xgTOTw8d+7cZtu2bebYsWMmKCjIhISEmLfeeivGSSzsdPPmTdOoUSPzzjvvGB8fH9d7oZ+f333L16RJk0y7du1sGQnyb8OHD3edrKRz586mSJEirkMdfvzxR1OxYkWTL18+U7lyZdOyZcsEsRdj1qxZpnjx4sbPz8/cvHnTBAUFGX9/f7Np0ybXddzmzp1rSpcubUaPHm1bzgftpQoJCTELFy40lStXjlG+5s2bZ7y9vc3333//JGPeV/TXkps3b8Z4v/D39zedO3e+p3zNnDnT9OzZ09bt+n6Fyd/f33zyySemYMGCrs99UZ8FGzVqdM+XZgkZxesRDBw40Lz99tv33ZsV9SSdN2+eadasWYwLE9vh66+/dv0cFhZmwsPDTbt27cz06dONMf/7tr1Xr17mrbfeMn369IlxVpgodn2TF3WxyoYNG5qyZcuaZcuWGafTaQ4dOmRat25typQpc89wsih2f0uzZMkS1/ClK1eumJYtW5oiRYq4ikH0F/TvvvvO9rxRooatBQcHm9q1a5uSJUuaX3/99Z7tvHHjxqZLly6uaadPnzZXrlwx169ftzxjw4YNTf369U1QUJBr2vDhw13lZPXq1ebNN9808+fPN35+fqZXr17m4sWL5vLly6ZTp04J4tver7/+2vTr1881bDDqC5GePXvGWC4sLMzs2bPHtu3j/fffNw0bNnTtdQkPDzfdunVzfav+888/m4IFC5pFixaZvXv3miFDhhhjIs9e2LJlywRxzM6/bwcEBJiePXu6zvJmTGT5atOmjSlbtqytx1RGGTVqlHnnnXfMuHHjzMyZM++5+Pvo0aNNqVKlzODBg83ly5dd05/04+3r62saNmwYI9+KFStM8+bNjTGRz0UfHx8zZ84cExQUZOrWrev6kmnhwoW2v+5FRES4tothw4aZXLlymUqVKpl169a5PkxHla8aNWqYuXPnuu57v+GgTypzlKjh4NG/cPL29jZFihSJkXX//v3m4sWLrvva/bj379/fNRrhwIEDZvDgwebtt9823t7e5sMPP3Qt99NPP9nyGhL1ehf1eM2fP9/0798/xjIhISFm/vz5pmzZsqZdu3auz3vr16+3/fGNbtKkSaZu3bqmSJEixtfX16xcudKEhYWZK1eumC5dupg8efK4voy8c+eObdv1v0U9/6L+Bv7+/qZDhw6mYMGCrs99fn5+pmbNmgnqYuAPQ/GKhX+fqvfs2bOmXLlyplatWvc9hiU0NNS0bNnSdXyDXf766y/j7e1t2rRp45p29epVU6FCBbNo0SJz6dIl07dvX9dBtkOGDDF58uQxtWvXdo2lNcbeK35HfbMRGhpq2rRpYypWrGiWLFlinE6nOXjwoGnTpo0pX768+eWXX2zLeD/Xr183DRo0MLVr13Z98xh1coeiRYvet3wZY2wv6j///LMpUKCA67ICDzs9vx278tu3b298fHxct6Oeg23btjVjx441e/bsMT4+Pq5i4OfnZ7y9ve/Zy2V3+ZoxY4bx9vY2I0aMMDdv3jS3b982M2fONGXKlHng6XufdOao45+iPoQ4nU4TGhpqqlevbmbPnm22b99ufHx8XB/wfv75Z1O4cGFz/PhxExoaes9r55Py7w8MM2fOdA1Xil6+unfvbvLnz+/6xvfYsWNm+PDhtm8bu3btMhUrVjR79uwxxkQOeVy3bp3p2LGjGThwoGu5AQMGmLZt29r2Gh017DvqQ1BUjtmzZ5uKFSua1atXm4IFC7q2j7t375qyZcu6Lk8Sxa4PeNH/zkePHjWbNm0yf/31l2nSpImpWbOmWbFihes1OeqEG2+//bZZt26d635P8rGPPqw46jEbM2aM6dixozEmcs+ir6+vmTx5smsky/z58+9Zj51Dq42JfJ9r27atqV27tvniiy9M4cKFTatWrcycOXPM3r17jbe3t9m+fXuM+zzJ52RAQID57LPPXF9CBwUFmc8//9xUqlTpnr1vTqfT9OvXz3h7e5v69evHeA+3a7uO/vf97rvvTOHChc28efPMjz/+aHx9fU2VKlXM1KlTTXh4uDl37pzp1q2b8fb2dr3eGPPkP/ddvHgxxt94yZIl5s0333R9kRv1b7p48aJp06aNKVq0qGvExalTpxLssML7oXg9xL/H2kd9yFu1apV55513TNWqVc2uXbvMtWvXTEREhDl8+LBp06aNqVmzpq3XqTEm8puLNWvWmKJFi5rWrVu7ps+bN8/s3bvXrFmzxrRp08Y1hOXLL790XfPIrg8e0R/vo0ePGm9vb9ebdFShjV6+Dh06ZBo0aOB647HL/f7GJ06cMK1btzb16tUzS5cuNcZElq8WLVqYd955J8aJNhKK3bt3mw4dOpgyZcq4TmoSVb6qV69u/vzzT1vLV+PGjY2Pj49599137zkr14IFC4y3t7fJlSuX62QPxkR+YKpevfoTGf74IA96jKKGpQwfPjxG+SpXrtw9ww6ftA8++MB4e3ub6tWrm3379sUYevL555+bOnXqmIIFC8Y4KcW6detMlSpVYuyBedKvf0ePHo1x4oCzZ8+amjVrmiJFirhGKUT9PS5dumTq1q1rihUrds81DO0YWh31WG3YsMG89957JigoyGzZssU0a9bMVKxY0fj6+hofH58YJ/yw68D9hg0bus6y+cknn8T40Hb48GFTvXp1kzt37hjHiAYGBpqqVau6TiJjl71798a4vXDhQlOxYkXX3/zatWumcePGpmbNmubHH3+MccINO98fBw8e7DpD3l9//WWCg4PNmDFjTM+ePY2/v78ZMmSIGTlypHE6nWbr1q3G29vbeHt7m0mTJtmS99+mTJniem328/MzDRs2NLVr1zYzZ850HZZx7tw5U7duXVtfrwMCAoyvr6+pXLmyad++vZk0aZK5dOmSGT58uKlWrZoZMWJEjOVnz55t2rdvnyC+tInut99+MzNnzowxfDokJMR069bNVKpUyVXkjx07ZiZOnGhbUQwNDTW9e/c2M2fONMZEbhtbtmwx1apVMxUrVnSVr6jHdv369a5t++DBg671JKTH/r9QvP7D/cbaN27c2Bw6dMiEhoaazZs3m/r16xsfHx9TsmRJ1/Et97sYnV1CQkLM6tWrTZEi/8fed4ZFeWZhH9CYuJpi6m6y2ezG7DcKlhGQLgjKANLr0BGkKUUQFCzYCyiiiGisWMCCBkSxYgFR7BQbFiwBRRQQpChDu78ffPNkBjSb3W8zL5Plvq5ckXfamWfO+zyn3kedlX6IERISIpWe9ff3x44dOziLUksaDmvXrsW8efPYzZWQkACg8wb19fWFsbExKzt8+PBhj4l2dCVtePjwISZNmgR7e3upzJetrS18fX05kPAXvGvNrl+/jqlTp0JPT0/K+TI2NoaGhgZnB6KjoyOEQiEePnyINWvWsB4XMcrLyzF9+nSoqqoiJycHr169wtOnT+Hv7w8XF5ceoSN37tzpltVMTU1lzld9fT1ev36NtWvXIigoiDOZHR0d4ezsjOfPn8PY2Lib052fn4/hw4fD1taWkai8fPkSfn5+nGZggE5KYR6Ph82bN2Pz5s04cuQICgoK4OTkBG1tbXaPdnR0oKOjA2FhYTA0NISrqyu7zhXEBCZPnz6FsrIyTExMWJ+lmAwkIiICCxculHqdrGW2srKCnZ0dgM5SMEtLSwQGBko5NKtXr4aRkRHCwsJQVFSEc+fOwc/PD7a2tpyei/Hx8TAzM5Niy127di1jDxWXN9XV1cHNzQ2WlpbYunUrpk+fLkUYJMvvICYQys7OhqamJnR0dKChoQGgU2fu3r2LkpIS2NvbM9Kp8+fPIyAgALm5uZyXjAGdtkhoaCh4PB7LGIrLU9va2lBfX4/a2lr4+/vDycmJ8/26oKAAenp6GDJkCGNcrKqqwtKlS2FmZoYVK1agvb0dIpEIwcHBUlncnhC4FrOy8ng85tBI2qUGBgZYunRpt/fgSleSkpLA4/Hg6OiIiRMnoq6uDlevXoWFhQUMDQ0ZKQ/QGXRYsmQJkpOTe4Ru/7vodbx+A7rW2ndl6Tpx4gQOHDiA9PR0qflXXClE1wioOPOlqqoqZexHRUVBS0sLqampcHV1laKM59L4SEpKgoaGBo4dO4asrCwkJSVh6NChiI+PB/BL2aHYwBaD6406JSUFLi4ujHVHjNLSUjg6OsLY2JhF4l+9esW5vGJkZmZ2m1VUXFyMkJAQjBkzhvW71NfXc9YflZycDCMjIzQ2NgLodHDj4+Oho6PD9ALoLNEKDw8Hj8eDtrY2jI2Npco/uKaMF1M7d90bduzYgaFDhyIhIQHV1dVSZXqylnnevHmws7PDq1evAHT+7gKBAGZmZrh06RKT/fTp01BXV4exsTEmTJgAW1tbWFpacr7WLS0t2L9/P5SUlMDj8Ri7WHFxMYRCIbS1tVmTeXt7O4KDg3H9+nVO9jzJNRKXWIkzbzdu3EBSUpIUqQbQmWkSB6K4wIULFzB16lSpc/DQoUOwsrJCYGAgCgoK2PWkpCTY2dmxzKlk3zNXxumVK1fg6uoKd3d3ln3ZsGGDVEm+GLW1tfD09MT48eOlqlhkCUdHR2zevJn9HRwcDB6PB2tra6nnpaenw9jYmDlpkydPRkREBOd9aJL31cuXLxEdHQ1lZWXm+NbU1CA0NBTjx4+Hubk55/u1WN6LFy/CxMQEdnZ2mDBhAmMkrqqqwpIlS2BgYMBaTkxNTXuE7STG0aNHcevWLRw5cgTa2tqYNm0ae0wsZ2BgIOvH7SmwsbEBj8djbTrt7e24cuUKLCwsIBAIcOfOHTYCRLIcX96cr17H61/gXbX2gYGBvzrfhSujQ/Jzq6ur8eLFC1YeefToUaioqGDSpEkAOssmvLy8YGtri8DAQM4PRKCT0GHixImsP0eMjIwMDBkyhJVMiEQiLFu2jPOMoiTy8/Ohr6+PgICAbsZSfn4+RowYAXNzcxa5Brh3Fu/fvw9zc3M4Ozt3oyUvKiqCsbExxowZ0600iIt1F1MNSzbavs35evXqFS5duoT09HTk5uZyxvT2thKw6Oho8Pl8pKenS2W+ampqoKWlBWVlZezdu7fbe8gS169fZ2st3jsaGhqY83Xx4kW2ltevX0dqairi4uKkHEquD8L9+/ezstP169ez68XFxXB0dISKigrmzp0Le3t7WFhYMB2R5f0o+dtu2bJFKsMvWSr58OFDpKam4sSJE2xMAlfr25VFU3LUh6TzJe69ADp15/r166ioqOgxQcmioiK4uLjAxcUF+fn5SEtLg5aWFjIzM3Hjxg28fv2afTeRSITS0lIp1ldZ4vjx4+w+fPbsGTZt2oQdO3ZAR0eHZWmBzgAwj8eDq6srzMzMpPSES2ega4/Oy5cvMWfOHCgrK7OzsKSkBFu2bMGRI0c426+73vuvX79GfX09Ll26BHd3dxgbG7OytpqaGmRlZWHRokWIj4/nhPn5bXK3t7fj+fPnUudIVlYWhg8fjmXLlgH4hbDM3t5einyNC0jqZU1NDcLCwtg+KC5Rbm9vx+XLl+Hg4AAej4exY8fCwsKC8374/x/0Ol5d8O/W2vekiIGkEickJMDJyQmjR4+Gt7c3G6B47NgxjBo1ClOmTGHPff78eY9hsampqYG6ujq2bdvGrrW3t6OjowPTpk2T6vkSg4uBlV03afH6XblyBYaGhvD19ZViW8zPz0dAQAB27NjBqbP1ts8+ePAgXF1d4ebmJlUvDXRGTc3MzFgPnaxlLykpkerlEtMMi/Eu56srZK0jkgZpS0uL1LotWLAAysrKUo5KZWUlFi5ciKysLM6CCU+fPkVWVtY7B5W+y/nqCq6ND6AzI/r48WPs3r0bQ4YMwerVqwF03qf37t3DnDlz4OzsjOnTp3MecBIPwU5LS8O2bdtYxlZcmpyXl8dmKk6ZMoUzedva2rBo0SKWJRL//pJr/67MlyS4DjaJ9+qCggI4OzvD398f7u7uGDp0KLS0tKCurg4dHR24ublh2rRpUuWTsnbMJX/jtWvXYv78+cz5zc7OhpaWlpTzlZqaipiYGKxcuZITZ6C8vFxq78vKygKPx2NjUSSJbWbMmAE+ny81u1AMLodQi+dXSjJCnj17Fh4eHjA1NWVDwGtqaqTeg2vbCfhFtxMSEmBlZYVnz54B6PwdRowYwXTax8dHav4cF+g6+Bv45Xdfu3YteDye1KiJpqYmZGdn4+jRo5w55/8t9Dpe78B/WmvPFSSVOCUlBRoaGsjIyMC2bdswffp0KCsrMwr5o0ePQl1dHQ4ODlLvIeuo2LsOsalTpyIgIKDb0MSlS5fC3NwcPB6Ps5kNXQ3/9PR0rFmzBjNmzMCFCxcAdGYBxo0bBz8/Pxw/fhw1NTUICAhATEwMZ+VjXT/z1q1bUjPQTpw4AaFQCDc3N6b7r1+/xtSpU5Gdnc1ZxLSsrAx8Ph/BwcGIj4/vlikCfnG+xowZw2kJFtB5b0li69atmDJlCtzc3BAZGcnK9xYvXgxlZWWsW7cOJ0+ehJ+fH7y8vNjruHACsrOzYWBggAMHDiAxMVGKUr2r8/UuohUuICnDpUuXcPz4cWZwtLe3Izk5GUOGDJEapC2eVScGVwf48+fP4eDgIKU3tbW1WL16NXg8HivHevHiBaqrqzkNkL18+RL+/v6wtraGs7Mz3N3dAaDbPMtDhw7B2toawcHB3TL/XOFdgTJx5mvkyJEIDQ1FfX09iouL2Z7u6enJmUMuuaaVlZVIS0sDj8fDsmXLmNF/8uRJaGtrw9nZGbW1tThx4gSqqqrY62SpJx0dHZgzZw5j/bt+/TrOnz8PJycnaGlpMedLvJ7nz59nGd6u8zhlCcl1jomJgaqqKqytrcHj8aR64PPy8uDu7g4dHR0IBAKWQeIKfn5+UsRGwC96funSJZibm7NWDHGvv66uLnR0dHDs2DFOs89dWRf9/f0RHByM4uJitLW1obW1FUlJSRgyZAg2b96MxsZG5OXlSZ39Pana6d9Fr+P1/yCPtfZvw82bNxEVFSUVramsrMSqVaugrq6O8+fPo729Henp6Zg0aVKPKIksKytDcXExSktLIRKJkJ2dDT09PcTExDDn6/Xr1/Dx8UFKSgri4+Nhbm4uZYjIAmJ6XnFvw+LFi6GhoYGAgAA4OjpCSUkJsbGxaGtrQ1FRESZMmAA1NTWMGTNGKjXOdQ14XFwcdHR0MHToUNjY2DC9FjtfJiYmWLlyJVxdXWFnZ8dJGZYYYhKbYcOGgcfjoaysDED3w0Ks4zweT6pUT5bYs2cP1NXVWfnG1q1boaKigrVr12LRokUwMjKCkZER7t+/D6DzkB82bBgMDAzg5OTUI/RDPHyVz+ez0tOuxn5DQwNMTEygqanJKfMYIL1W4l5cPp8PHR0dnDhxgvXKJScng8fjYe7cuQgNDcWBAwfe+h6yRnl5Ofh8vhQLJ9DZRyIurenqzHPZi3bv3j0YGRlBSUkJSUlJUjJJypWVlQVdXV2sXLlS5rJ2RdeMXFJSEoKDg3Hq1Cm8efMGpaWlcHJygqGhoVTPsCS4zMAsWbIEhoaGAIB9+/aBx+NhyZIlzPk6deoU9PT0wOPxYGVlxWkwZNeuXeDxeLC0tISjoyNevXqFW7duwdXVFerq6nj06BF7bklJCZYuXYp9+/b1iMzF5s2boa2tzXq5li9f3s35unjxIpYtW4bg4GBOs0ViNkhxIHjbtm04ceIE6+8DOsnTJPsARSIRjh49Cj6fz+Zdch04i4mJgYqKCubMmYNx48bBxMQEOTk5zPlat24deDweRo8eDR8fH85tp/8Weh0vyGetfVd0dHSgsLAQw4cPh5KSklSpHtBJ0Wpvby/VIyUGlzM9Vq1aBWtra6irq8PKygpCoRBv3rzBxo0bYWxsDBMTEwQEBMDa2hrm5uYAOuc72NnZSX0HWUAcRTI2Nsa9e/cwZcoUXL9+nT2+efNmqKiosNrk+/fvIzs7G4cPH+Y0NS75++7btw86Ojo4fPgwzp07BwsLCxgZGTHn6+zZswgNDYWlpaXU4SJrHZH8vOPHj0NFRQWjRo2SGhvQdS2fPn2KPXv2cBIJE4lEqKysxLx58xjdcGhoqFQ/37NnzyAUCmFmZsau3blzB/fv3+c8+ij+/MTERAwZMgT6+vrYt2+f1PwuSfnq6+sRGhraY6KOiYmJ0NLSQk5ODpszZmVlJTXIdM+ePRAIBHB0dOT8PhSjvr4eLi4uiI2NZdlQMSIiImBgYIDhw4e/tRxLVpDcrw8ePAhvb2+4ubnBxsYGBw8elHqe5HPPnz/PqX50NdJiY2NhYGCA0NBQxq4nHoh748YNuLq6wtPTk5V4vut9ZIni4mIEBwdLUfWLM1+LFy9mzteTJ0+QlZXVI3q6xGMoZsyYwa7dvHkTrq6u0NLSwqVLl1BaWoqAgACEhYWx58g6Owf8ck++efMGgYGBrCWjsLAQZmZmWLx4Mfh8PubPn//W9+FiH/Hw8ICDgwMrzysrK4O3tzd4PB68vb2ZjXfjxg14enpKBW5aW1tx+PBhqKqqIjQ0VOaySyI9PR36+vqMKTQnJwc8Hg8mJiY4e/Ys+23OnDmDtWvX9gjd/m+h1/GSgLzU2ovxtoN8165dzEAVs3mJ4efnxyIdPQEbNmyApqYmzp49i9bWVubwimvqr127hh9//BFRUVFISkpiN9zSpUvh7+/PqGh/b8yZMwfnzp1DR0cHLl++DHNzc6ipqWH8+PEoLy+X+h3WrFmDUaNGdWtCB7hPjefk5CA5OVlqoGZzczMmTJgg5XwBnQQVXJU1SW6sy5cvR1RUFO7cuYOTJ09CTU1Nin3sXWsqy7V2dHRkgY6KigpER0fDwsICqqqqzGCSzBjo6OiwA14SXEQfJdepoKAA165dQ2lpKaZNmwYjIyOkpKSwA178u3QNeHAxdkKSuKSiogK2trasNPLmzZusHEhTUxPZ2dlM5pcvX3IyLkPyt718+TJOnz7N9oi1a9dCRUUFu3btQn19PYDODL+vry+2b9+OGTNmICgoCE1NTZyWg69YsQJjx45FRUUF7ty5gylTpsDKykoqOAl0X1eu9z2gs7dZR0eHZXHFIwfOnTvH5kcVFhbCxMREakA1lxCX4qmpqXVjnRU7X0uXLmVltWJwuV/X19cjOjoacXFxrAJEjOLiYuYg6Ovrw8rKipOsUUtLC16+fCl1raamBhoaGti9ezdevnyJmTNnIikpCSKRiA1HdnNz60ZAJWv4+vqCx+PhyJEj3R67dOkSFi5ciNGjR8Pe3h4xMTFwcnJi/a1itLW1ISMjA7q6unj+/LmsRAcgrSuxsbEsm1hYWAihUIiMjAzGAC0eCSOJnpLo+P9Fr+P1/yBPtfaA9IH4888/SxnNKSkpGDNmDJKSktim3NjYCKFQKNWsyBU6OjrQ2NgILy8vNtgvNzcXfD4fBw8exLVr17Blyxa2KYtEIty9exfZ2dksNS1ucP29UVZWhujoaCljs6CgAO7u7hg2bBibCSRO+VdUVEBTU5PNUukpeP78OYYOHQoejydFNAB0Ol/m5uYwMTGRYgEEuC1FyM3Nhbm5OVtLcZ366NGjERAQwJ4nOd+DC2RkZEgRUlRVVWHevHlQUlLCihUrpJ5bV1eH8ePHY+fOnbIWUwrnz5+X+vvgwYPQ0dGRKncMDg6GkZERUlNTuxFu9CTcvHkTGhoaePDgAcrKyhAWFoaUlBQAYP1osbGxUmU4XOl1bGwsNDU1MWzYMAgEAua0LFiwAFpaWpg0aRLmz58PoVAICwsLAJ3BHEkCBS5QWFjI2Fol+6OmTJkCGxsbVirZlXCAC0RERLC5S2KkpKSwCP+hQ4fA5/ORkpKCyspKCIVCVjJ77949znu6JI3T+Ph48Hg8/Pjjj4xpVAxx2eGOHTtkKqckJO+jrkZySkoKhg4dKuV8tbS0ID8/H6dPn+akCmTFihXw9PSEoaEhhEIh9uzZw9oZsrKycP36dRw7dgzBwcGMHCY2Nha+vr4ICQnhNIjg5OQEc3NzREZGYuTIkVLVFGKdaWlpQXV1NaKjo9nYAWVlZSmiL6DT+eo6Fun3QkVFBYqLi1FZWcnO6ra2NkyaNAnR0dFobGzEokWL2FmZl5cHHo8HQ0NDNn/sj5DlkkRf6gUREbW0tND9+/epo6ODXfvkk0/I1dWVzp8/T8HBwbR69WoyMTFhjwOgvn1lv4QASFFRkYiIVq1aRceOHaNnz55RYGAg+fv7k6urK7W2ttKmTZsoLy+Pvv/+e6qpqaGmpiby8PCQubxdoaCgQIqKivTy5Uv64YcfKCcnh8LCwmj69OlkYWFBP/74I6Wnp5OlpSV9/vnnVFtbSxkZGXT06FH6/vvvKTU1lYYMGfK7ywmAvv32W1q4cCEREe3fv5/69u1L1tbWFBYWRnPnzqXJkydTamoqDRgwgIg69WjgwIHUv3//312+X0NHRwfTESKiL7/8ktLS0ig0NJQuXLhA1tbW9N1331FHRwe9//77tH//ftLX16cDBw6Qnp4ee53ke8gSBw8epB07dtDAgQNJXV2diIjef/99MjQ0JCKiefPmkbu7O/Xv358MDQ3JyclJ5jICIAUFBbK2tiYiorVr11JdXR1Nnz6dQkJCiIjo4sWLlJKSQm5ubkRE1K9fPxo4cCC9//77MpdXjPXr19O+ffto8uTJ5ODgQERE9fX19NFHH9F7771HIpGI3n//fVqzZg1NnTqVkpOTqaqqiu7du0d2dnbsN5A1tm3bRo8ePaLHjx+TtrY2qaio0OjRo2nw4MGkp6dHHR0ddOrUKXr//fdp5MiR1NHRQV988QWVlZXRq1evaNCgQey9ZKXXkvfhoUOH6NixY7Rs2TL685//TCtWrKDExERSUFCguXPn0siRI+natWv09OlTGjFiBEVGRhIR0cuXL+mbb76hlpYW6tevn0zkFgMAXb16ldzd3UlRUZE8PT1JQUGBiIhGjhxJfn5+tHHjRoqLi6Po6GjS0dGhNWvWyFRGSTx79oy++eYbqXOaiKi8vJyePXtG586do7lz59L06dPJxcWFmpqa6NGjR1RYWEhDhw6lf/7zn0RE1N7eTn369JGZ3JJ6Iv63goIChYWFkUgkooSEBPr000/J2tqa3nvvPSIisre3p08//VRqv5YlJGVOTk6mc+fOUVtbGwUEBJCqqiq5uroSEdHSpUtJQUGB/Pz86MqVK6Sjo8POx/b2dpnZUB4eHtTU1ESGhoY0btw4ysnJodWrV9OhQ4do3rx5ZGZmRu3t7bR69Wr68MMPadSoUdTa2kp3794lc3NzsrGxYTLLUjeIiBwcHAgApaWlsXMnLCyMEhISpPbjPn360GeffUbz58+nxsZGGjNmDO3YsYOuXLlC6urqTPY+ffrQwIEDf3e5IyMj6c6dO/T48WPq27cvDRs2jNzd3Wn8+PG0aNEiev78OT148IBu3rxJwcHBRNR5Funq6pKGhga5u7sTEbE95w8DDp0+ziCvtfZdsXbtWmhpaeHUqVO4c+cO6urq0NDQwCIZGRkZUFZWhqmpqRQlt6zT+29b75aWFtjY2MDKygpqampShAgZGRmwsbGRymS8fPkS9fX1rOxJlujo6EBNTQ1sbGxga2vL0vwFBQWwtbWFubk5zp49i+PHj8Pb21uKkIILSP6+169fR0lJCSunKS4uhoaGBiZNmsRKUcW/j0gk4jzaK0ZBQQGcnJwwZMgQqdJIoDPzlZ2dDQ8PD7i4uPSYeR5JSUng8XiIj4+HSCTCixcvEB0dDWNjY0RERCAxMRG+vr4wNjbmtGTi4cOH8PPzg6OjI5uXt3//fri5ub31+WFhYTA3N4e9vT1ncnt5ecHGxgYBAQEICgqCvr4+1NTU2GDZ+vp6tLa2ws7OjmW7Xr9+jYCAAOTk5HDKJgp0EtckJSVh69at7JpIJIKPjw8EAgEyMzPZvdfY2IiysjIUFRUhLi4OKioqrA+CK2zZsgU8Hg+LFi3CixcvpB67efMmtmzZgvnz5/eYexEAdu/ezWa4FRYWwsDAAEOHDpXKEFVUVMDY2Bh5eXlcidmNkXjatGlwc3PD9OnT2VrHxMRAWVkZ+/bte+sac7mfiJkAFy9eDFtbW+jr6+Po0aOsSiQ1NRVDhw4Fn8+Hh4cHJ9kLMRlF14xscnIyTExMYG5uzkiPFixYAKFQiOTkZHh7e8PW1pbT9a2rq8OsWbOkbJ+amhrMnDkTw4YNw6lTp6Se33V9d+3aBR0dHVbGLCuIybmys7Nx//59pKSkwNPTEzwej2WygM4WH3Hfc0dHB/z9/RETE8Me7wmlyv9t/M85XvJaay/Zr9Xa2ooXL15AKBQyJ+DevXvYsGEDDAwMYGBgwAyqXbt2YcyYMVi4cGG3WnBZQLJE78aNGygqKmLDNS9evAhDQ0M4Ojqy54pEIkycOBFTp07lNL38trKP27dvw9vbG/b29qy0prCwEFZWVuDxeJg0aRJiYmI46/1LTEyUqkGPjY2FlpYWRo8eDWtra1ayV1xcDHV1dfj4+LBSScnvKUu59+/fj7q6um7DkYFO4gk3Nzep9ZaEeL4bwP2wTTHEBmpcXBxEIhGqqqowf/58jBw5EiYmJtiwYUOPGLZZVlYGX19f2Nra4tChQzh06BDU1NSwZcsWXLhwAc+fP5cqbZIcfitruZ2cnGBra4vnz5+ze6ugoAAzZ84Ej8eTIgwyNDTE3Llz8fDhQ0yaNAm2tracsnICnWcIn8/vxpAG/OJ8mZmZYceOHWhpacHjx48REREBPT09ODg4yIw5Mi4uDmlpaWhtbWVrJrl/ixnGkpKSuvXISILrPoyOjg7U1tYiKCgIxsbGjOF38eLFMDAwwNKlS/HkyRMUFRXB398fjo6OPcK4i4uLg6amJuLi4jBnzhwYGRnBwMCA9XctXrwYI0aMwI4dO3rEGgOdJcpjx47FvXv3AHSe6TweD3p6ejh27Bi7X69evYotW7ZwQpDg7u4OOzs7Vi7d0dEh5bzu378f48ePR3h4OFpaWnDq1Cl4eHjA0tIS/v7+nPbyd92zJP8W96K9zfkCflnjy5cvw8TERIpR8veG2NEVD88W4+7du5gzZ47USKBTp05h2LBhmDRpEhwdHWFubt4jGH5/T/zPOV5iyFOtfWtrK6KiolhDfm1tLRobG+Hi4oL4+Hjs2bMHJiYmEAqFWLVqFYKDg6Gvr8/IJ3bs2AE9PT1ERkYyOu7fG8HBwYyOHwCWLVsGPT096Ovrg8fjISIiAnl5edi7dy/4fD6srKzg6ekJoVDI+Y0nubmVl5ejtLSUOb5lZWWYOHEiHBwcmDNw7do1WFhYICoqir1O1gfj5cuXIRAI4OXlhZ9//hlnzpyBjo4O8vPzkZaWhilTpsDAwADnzp0D0Ol8aWtrw87OTmruiywRGRkJHo8HBwcHREZG4tq1a92iucXFxXBzc4OLi4tUQ7HkIcgl4cDVq1eRnZ2NXbt2sYjk9u3bwePxsHLlSohEItTU1CAsLAzLly/nhNihK8Sf/fjxY/j6+sLDwwMTJ06EkpISxo0bx+jkrays4OHhIZUNkLXz4ubmBgcHB9ZDKflbV1RUICYmBjwej+2NGzZsgIqKCsaNGwehUMgJK+fbPqumpgampqYYN24cLl68KPUckUgEOzs7hIeHs2sPHjyQ6on4vZGens6YfIVCIZYsWYLKyspuRCpr1qwBj8fD+vXrf9X5kjXedj+VlpZi5syZMDY2ZsPKly9fDkNDQ/B4PEyYMAFubm6cGNZdf9eioiIYGxtL9WpXVlbCxcUFAoGA/Q5RUVFwc3Pj5Fy8e/cuSktLpa7Fx8cz9kLxTLTDhw/D398fenp6OHLkSDcCB1mejSkpKeDxeFIzCcXoShyjoqLCvp+4wobrXv63BYAl9fRfOV+NjY0ICwuDioqKVI/r7wlvb2+YmJiwvyVZc4FOG2ratGkYPXo0bty4gVevXmHnzp0IDQ3FokWL2FpzHVz4PfE/43hJ/vAHDx6EgYEBzpw5g5KSEnh7e0MgECArKwsAcODAAURHR8PX1xdLlixhij5//nzMmDFDpjTmHR0dePPmDWbOnAktLS0IhUJMnDgRbW1tiIiIgKmpKWviFzeDXrhwAc7OzlIGtZievWuZyO+Bqqoq+Pv7Y+jQocjLy0NpaSl0dHRQUFCAn3/+GefPn4eOjg6Cg4Nx//59lJSUICoqCgsWLJDKCHBx40lucGvXroWVlRXGjBkDVVVVzJ49G8+fP0dpaSkmTpwIR0dH5gyUlJQwPeEqSnPgwAEIhUJ4e3sjPDxcqqSmoKAAU6ZMwdixY5nzdfXqVfj4+HCWCTh69CjMzMyY8c/j8eDv749du3ZBJBIxg6ioqAhubm5wdXXtRvXMJeLi4jBhwgT23+jRo5mTsnXrVlZ22NzcjJqaGrbOXA/PBn65t8rKyuDn5wc+nw8vLy80Nzfj8ePH2LVrF2JjYxEQEMDZARgREQEejyfF6Nb13nr8+DH8/f1hZ2eH+vp6NDQ0oKysDAUFBZxQ9Euuc2FhIQoKCliZYHV1NfT19WFtbY1r165JfZeWlhZOiWyuX78OZ2dnbNiwAdOmTYOuri7U1dURFRWFnJwcKdkSEhIwdOhQrFixQublS13RVR9u3brF6MqBzjWPjIyEQCBgznl9fT1ycnI4G+Pg6OiI7du3S107evQoxo0b182ZvXfvHrS0tKRKs95mjMsCGzduxLx581BXV4fc3FwAwLRp0xAREYGmpiYsWbIEy5cvR1tbG65du8YyXxs2bOBEXqDT8QgICICOjg7y8vK6ySD+/VtaWqCnp8dKUyX1vSfMOm1paWHBp654+fIlZs2aBT6f/1a2w4sXL8qsVFmc8ZwzZw6ePHnyq8/T1dVlutEVf2SnC/gfcrzEkKda+6CgIMbe9+zZM5iZmWHo0KFSQylLS0tZ3bL4Rp04cSICAwO7zVXpmvb9PVFWVobIyEgMGTIE06dPZyU2YnmuX78OPp+P+Pj4t76e69KPpKQkaGlp4cyZM2hvb8eMGTMwatQoNlzxwYMH8Pb2xvjx46UYDLmQW/Iz09PT4eLiAmVlZanDGuh0voKCgmBoaNgtOsbF4VJSUgI3NzckJSWhvLwcO3fuxLhx46CkpAQbGxssXbqUZWgfPnwIMzMzzJ07V+Zyvg07duyAhoYGG33w008/gcfj4dKlS+yA3Lx5M3g8Hnbv3s1ex7XT9dNPPyEmJgbu7u7Ys2cPqqurUV1dDX9/f4wZM+adji0Xep2eng5dXV3MmTPnV1lMDx48CGVlZdajIQmuMl0rV66Ejo4OdHR0YGJiwhzyqqoq6OnpwcbGBgUFBe80BLmAOAAiEonw4MEDzJ49G2PGjAGPx0NISAjWrVvH9GDdunVwdHTktBQoIiJCioV4+fLlbM2HDx+OoKAg3L59Gy9fvkRkZCRMTEyk9kSuAiEHDx5kwVtxP/bhw4cxZsyYbmWlYhbULVu2SF3nQk927twJdXV1WFpaQl9fH62traitrUVxcTFKSkpgb2/P9Pz06dPw8/PDtm3bOD/Lm5ub4e/vD01NTZw/f/6tOltXVwdDQ8Nu80+5guTvm5ycDC8vL7i5ubHgOtA98xUUFPTOPl1ZQtzeMnfuXDx48EDqMcm1DwwMZBVkko7WH7W8UBL/U46XvNTaA51OX2RkJKtLvnv3Lry9vTFlyhTo6OiwHi6gMyo2f/58BAcHw8XFpVupnvgmloVCS24Yjx49wuzZszFkyBBMmTIFQOdmIT50NmzYAIFAgFevXnFe0yvZfN/Q0AAPDw9mhJ48eRKqqqrIyMhAfn4+Dhw4AKCzqXzx4sWcHixvO4Bzc3NhYmKCCRMm4M6dO1KPFRYWws3NDUFBQQC43+SWLl2K0aNHs3KU2tpaRpOspKQENTU1zJw5E7m5uXj27FmPmZk3e/ZsZgwdP34co0aNQlpaGm7duoUZM2awdT18+HCPGDkBdJZXjx07FrNnz8ayZcvA4/HYANMnT57Az88PQqFQKijFNTIzM6Gjo8NmuUlC/P1qamrA5/N7DPHRqlWroK6ujtzcXJw/fx4ODg7Q19eXcr4MDAygp6fHOWkG8Ms63rlzB3w+nw2ABzpnA4lnSfF4PAgEAkybNg1v3rzhLPMCdBpqHh4eUFdXR05ODk6ePAl9fX1cuHABNTU1yMrKgouLCzw9PfHo0SNUVFQgMjISZmZmb80eyQKSZzHQ2ZO7cOFC1NXV4dmzZ1BVVcX06dOlSvNevXoFR0dHqUHVXMLV1RVDhw5FSEgI6w8GOrNhBgYGAH4hSJAcOszFrD/J/zc3N8PHx6eb8yX+f1lZGVxdXXH27Fmp61xjxYoV0NbWxurVq5GcnNxtdqmkPtXX13MauOlKEqOjo4N58+bh4cOH7Lo4GdDe3o7Q0FDMmjWLC1E5xx/a8ZLHWvu3ITU1FZcuXUJzczOePHmCmTNnQkdHhzUntre3Y/78+YiKikJcXBxnpXpvW++nT59i9uzZUFZWZiVu4k0tOTkZTk5OnG4WQPfNq7m5GRoaGnj48CEuX74MPp/PHN3169dDX1+/W0kI1423mZmZWLNmDRYvXozGxkYcO3YMQqEQXl5e3Yy7e/fu9Zg1f/bsGfT09KTuOTMzM0ycOBH79u1DVFQUlJSUYGdnx1l/lOQhfPfuXYhEIri6uiIxMRF5eXng8/msgf/cuXNQUVFhBDJicF06kZOTA11dXZaxvXnzJoYMGYLc3FyWKfr555/h4OCA2bNnc254SH5+RkbGW50vsQ5dvnwZ9vb2ePz4sczl7Ir79+/DxsYGV69eBdCZZdbW1oajoyMMDAxYdvzFixcIDAzkPBsgibq6Onh4eMDOzg6tra3o6OhgBAO3bt3C/v374e7uDgcHB87LqsWYPn06VFVVER0d3W3w8enTpzFhwgRWVVFaWoqoqChYWVm9dYD57w3JtXrx4gXrPxLPLzp79iyUlZURGBiI/fv34+zZs/Dy8oK1tTUnerJ7924sXrwYc+bMYaWRkZGRLJsrmdEQn5MODg6wt7fntE+7a4me2FlpaWmRynxJku74+/uzFo6egqtXr0IgEKCwsBBApy11/PhxBAcHY/Hixex5v0bAISu87Wzevn37W50voHOvmThxImuH4HofkTX+sI6XvNbad0VzczNMTEwwZswY1uvw4MEDzJo1C7q6usz56qrYst5AJNfszJkz2LlzJw4fPoyOjg6UlZVh5syZUFdXR15eHl6/fo2XL19i4sSJCAkJ4fSmk5R7+fLliIyMhEgkgre3N4RCIfh8vtQhvXHjRjg5OXFqSHddr9jYWOjp6cHX1xdTpkxhjcQZGRmsJ1DMOiWJnqDnIpEI06ZNg5mZGUpKSmBubg4nJyep4Y4lJSWcydp1mOnEiRNRXl6OmJgYTJgwASoqKszpAoD8/HwIBAI2lJMLdO3vAzp1wcfHB0DnoFDxANm6ujrY2dmxSG9lZaVMM+Rd8a7fOT09/a3Ol0gkgr+/P4KDgzmRt+tnXrt2DaNHj8bDhw/x+PFjBAcHY9u2bSguLoaenh7GjBkjVa0AcBO0eddanTlzBkOGDEF6ejpsbGzg4uLSrS+YS2r+O3fuICsrCzt27EB+fj6ePn3KCFa8vb27rWVcXBz09fVZ+e/Dhw/h7OyMGTNmyHTdJddq8eLFEAgEAH4hf1i+fDlev36Ny5cvw8zMDOrq6rCwsICvry8n5B9ih2/KlCkYN26c1BBkoLPUWux8PX78GK2trcjIyMDChQuxdOnSHhH8lSzREwfC3rx5wzJf4sC7eMQHF0Q8b5NdfH+dPHkSVlZWrCfRy8sLAoEAbm5u4PP5WLp0KSdydoXkelVWVkqVhUtmviSJWcTjTHqSoytL/CEdL3mutX/bgVhfXw9nZ2eMHTuW9ZSIna9Ro0aBz+ezUj6uIS5nMjAwQHx8PPs+FRUVrFleV1cXYWFhsLGx4bzEUAxx1PzGjRtobW3F5s2bGbulGK2trfD29kZERASHkkpDnMkQOyeSevvq1SucOHECQqEQVlZWMmO0fBt+7X4qLS0Fn8+HkpISvL29WTaxq05wuUmfOXMGQqGQZSxKS0uhra0NY2NjXL16Fa2traiqqoKfnx+nhCV1dXXYuHFjNwKgzZs3w9TUFMeOHZNyFltaWjB27NhuTc5c96Klp6dj+fLlmD59OtODAwcOQEdHB5GRkewQ9/X1lYquy1LurqMmRCIRSktLsWjRIjx+/Bhbt27FvHnzGI2zg4MDjIyMIBQKe0ywqWvT/qtXr+Di4gIejwdPT0+pSg/J+48L/Zg2bRpcXFygpaUFfX19jB49GuPGjcP169cRExODESNG4PLly1Kv2b17N1xcXKTuh4kTJ8LZ2ZmV8csCkr3NgYGBUr06YhbU5cuXA+js+yovL0d5eTknrHpishqxw/0uMjGx8xUdHY2SkhIWBBaDy+Dkr5XotbW1wdfXFzo6OrCwsICpqSnbP7iuTADAAktPnz6FsrIyTExMwOPxEBUVhezsbACd/Y0LFy7kUkwA0vvAmjVrYG5uDlVVVanA386dO6GtrY2FCxfiwYMHCAgIgEAg4JSmn2v8IR0vMeS11h7o7Ll48OABix40NDR0c75+/vln7Nu3D0uXLu0Rgyt37twJLS0tVs5UVVWFn3/+GSdOnEBDQwOampowb9488Hg8HDhwgHOqVjEOHz4MdXV1TJo0ic0uEolEWLBgAQQCAczNzREWFgY7OztOSyjCw8NZf5kY+/fvh52dHZqamqT058KFCxg7diyampqQkZGB6OhoziN5wC8GdVRUFKv3bmxsxLRp06CtrS1Fp9xTcObMGdjY2EAgEEgZojdv3oSenh7Gjx/PgjjW1tacRU676uPu3buxaNEiAJ2RfmNjYwwdOpQNHQZ+Kb2WJCngGjExMdDS0kJAQABiYmKksp8HDx6Ejo4OZs6cCaFQKHWAc8VeeOrUKTg5ObF7s7a2Fg0NDTAxMWH9ctXV1Zg4cSLOnj3LaW/Uv8oIAL+QwojHZfQEw8jT0xOOjo4oKipibL3Hjh2Dl5cXVFRUcP78eSxatAijR49Gfn4+nj17htraWnh4eLB+VqCThGDq1KlS8w5/L5SXl0tF/8+ePQsejwcNDY1uny92vuLi4rrRr8tyHzl//jyEQqFUxr69vR1v3rxBcnIyVq5cyWYUiuXW0dGBhoYGTE1Ne0QVxbtK9IKCgth+2N7eDi8vL5iYmHDudEmuWVFREXg8HhvFc+PGDSQlJXU7F4VCIRISEmQq568hISEBWlpaOHz4MC5evIhXr15BJBKxvSMtLQ1jxozBqFGjMGHCBM7XnGv0pT8oSktL6ezZs7Ru3TpSVVWlwsJCevr0Kf31r3+luXPn0pIlS0hLS4v27t1LCxYsoMGDB3MqLwBSVFQkIqLExEQ6f/48lZeX0wcffEBqamq0cOFCWr9+PQUEBFBYWBitWrWKRo4cSX/729/Ye7S1tVHfvrL5SX/++WdqbW2lH374gV27d+8e+fn50bBhw+j69euUmZlJx44do+bmZvr888/pp59+Ik9PT/rb3/5G5ubmpKCgQABkJrMYANhnA6APPviAvvvuO7p+/TrV1tZS//79qV+/fhQVFUUnT56kvLw8am9vp7Fjx1JAQAD17dtXpmtNRFRZWUnffvstmZqaSl1/8eIFPXr0iD744ANSVFRkcn399df0+vVrKi0tJWtra7KysiIFBQXq6OhgeiYriD8vNjaWMjMzaeTIkfT3v/+dXr9+TQMGDKABAwaQqakpHT58mJ4+fUpqamqcyCmGWD/E+Pbbb4nH41FGRgZt3ryZIiIiiIhIWVmZUlJSqKioiCoqKujbb78lY2Nj6tOnj8z1g4ikZH7z5g1dv36drl27RmvXrqWgoCCysbGhvXv30p07d+jmzZvU0NBA27Ztoz/96U9kZGQkU1nfhQMHDlBWVhbt3LmTBg8eTLW1tVRWVkYnT54kPT09srCwICKi6dOn05AhQygrK4vee+89ma63pG7u27ePLl++TIWFhVRTU0OKiopkYmJCDQ0N1N7eTv369aO7d+9SQkICtbW1kba2Nmf3IdEv92JcXBxlZGSQo6MjffzxxzRkyBD2nIkTJ9KBAwcoLS2NJkyYQH369JG5nJJYt24dvXnzhtavX0+ffvopu25sbEwjR46k5cuXU2hoKO3YsYNaWlrI29ubPv74Yxo9ejQ1NDTQ5s2biajzvh40aBAtX76c+vXr97vKPH36dLp58yaVl5eTkpISLVu2jMaMGUOenp60fft2unz5Mg0ePJjef/99IiLy8PAgRUVFWrx4MX3zzTfk5OTE3kuWelJXV0f19fVsfV6+fElnzpyhlJQUKikpoYEDB1JbWxvl5eXRgQMHyMPDg4YOHUpVVVUkEAhIUVFR5rot/jzxvl1XV0f9+/enwYMHU25uLm3fvp2ePn1KX375JeXl5ZGioiLNmjWL1q1bR/369ZM6N2UNSbtv69atVFZWRkREU6dOpbi4ODI3N6dhw4bRo0ePaNeuXfTFF1/Qnj17qKmpiaZMmSJzed+GiooKysnJoSVLlpCBgQE9ePCAMjIyaO/evUREFBkZSQ4ODtTU1ERnzpyhLVu2cGJD9Shw5vL9lyGvtfZdkZiYyLJ05eXliI6OBo/HY+lnceZr+PDhb+3bkQVaWlqQkJCA0NBQ1NfX4+TJk2hoaGCzxlavXo3Ro0fD19cXycnJyMnJgba2Ni5duiT1Plyst2RmUDLacvnyZRgbG8PExOSd8zLE4FpPdu/ejaSkJACdmdFx48YhPDxcqnTm559/hrm5Ocs+co2MjAzo6upKDai8desW1qxZg8LCQrS1tcHHxwcTJkyQynDIGpK/bU1NDZtTVFlZiVmzZmH8+PFSrG//6j1khbd95vPnz7Fs2TIIBAI2n2bLli2wsLAAj8eDubk5Jk6cyGnJR9d9e8eOHYiMjATQSUwRHh4OHR0dqKiogM/nswzCxYsXOR+0mZCQAHV1dWzbtg2pqakQCoVwcHBgbKgzZsyAsrIyDAwMYG9v32NKa36taX/RokVoa2tDUlISlJSUZJIZ+leYPHkyVq9eLXVNUm9KS0thY2OD4OBgNDQ0sKqK8+fPczKny8XFBUKhECdPnsSePXtgamoKBwcH9viCBQswbNgwHDhwoJtcR48e5TQLcPDgQairq+PAgQM4deoUPD09oaSkBAsLC2RkZOD+/fu4ceMGDA0N3zp6gkvd/q0lel1JWHpClm7VqlXQ0NBAWloatm3bhvDwcPB4PLbGeXl50NXVha2tLaZMmcLpXtJ1vSoqKmBubo69e/ciIyMDFhYWsLOzw9KlS+Hm5iaVCe0pVU5c4w/hbkIiQl1SUkKDBw+mjz/+mCwtLUlRUZFOnz5Nn376Kenr69Pf//53+uqrr6iuro4yMzPJycmJvZbryF5dXR1dvXqVFi9eTHp6epSTk0NHjx6l2NhYqquro7S0NHJ0dKT169fT6tWr6fvvv5e5jA0NDfThhx/S6NGjad26dVRSUkKtra20b98+8vb2pvr6ejp27BgFBgaSsbEx/fnPf6bKykr67LPPukU3ZLneP//8M3333Xf03nvvERFRamoqXbp0ib744gsyNTWl0aNH0+LFi2nWrFlkZ2dH6enp9P7771NLS0u36CiXevLq1Ss6f/483b9/nz788ENyd3cnNzc32rdvH4WGhlJERATV19fTxo0b6aOPPiIlJSVO5ESXrFFDQwPp6OjQ4MGDqbCwkFJTU+nixYv05s0bSk5Opt27d9Pw4cOpra2N/vSnP8lc3uLiYlJSUmL6kZSURHl5eVRdXU3+/v5ka2tLISEhtGbNGjpw4AApKCiQj48PERG1t7dL6YQs9UP82eLPvHbtGjU2NtKf/vQnGj58OE2dOpUAUHp6OhERBQQEkJeXFxUUFNCf//xn+stf/sJpxFesI+J95c2bN5SVlUUNDQ10+vRpMjIyovDwcLKxsaGxY8fSxYsXaciQIaShoUFEss3yQyJTXlFRQceOHaPFixezbKGVlRXNmjWLNm7cSAMHDqTY2FhydnamtrY2GjVqFGeZ0H8nI5Cbm0sff/wxWVtb07Vr14jH48lU1q5y19XV0Y0bN0goFBLRL/ouubcMHjyYRo8eTWfOnKGBAwfSnDlz6JNPPiENDQ2WgZHVmjs7O5NIJKIdO3bQwIEDiYiof//+NGfOHLp+/TqNGDGC5s6dSx0dHRQdHU2KiopkamrK5DMxMSEi2eq1JCwsLOjYsWMUGRlJRETffPMNCYVCmjlzJtsb6+rq6L333iMA3V4vy71PMrNWXFxMQqGQEhISyNjYmPbs2UNnz54ldXV1UlNTY68pLy8nbW1tqffhqrJCjBcvXlB+fj7Nnz+f/f51dXX07bffUlRUFA0YMICMjIwoPT2dFBUV6dNPPyUFBQVOdAQSGboTJ07QyJEj6S9/+Qt98cUXtGbNGqquriYPDw8aP348qaurU1ZWFqWnp9ObN29owIABnFU59Thw5vL9lyCvtfZvQ01NDcaMGYOrV68iNzeXMY8BnTTmlpaWqK6ulnqNLCMekZGRiI2NZZ/p6enJ2KQk5WptbcXr169RX1+Pmpoa+Pv7w9nZmbPI0pw5czBx4kSW/Vm1ahVGjRqFqVOnQlNTE87OziwiduXKFdbX9a8yX7LA29ZMTKxibGyMvXv3AugcjGtpaQllZWWYm5vDzc2Nc5YmACxjtGHDBigrK2PKlCkYMmQIgoODkZ6eDgAYM2aM1GgEyf/LAtu2bQOPx2M6sG7dOqirqyMhIQFBQUEYMmQIEhMT0draisrKSsyePRvm5ubdovCyRkhICLZv387ux+XLl0NTUxPjx4/H0KFD4enpiXPnzkEkEmHp0qUQCARSA8u5GiDb9TN37twJNzc31tsSFxeHqKgoHDp0iOlPY2Mj7OzsWO8Dl/ICnRlQbW1tXLhwAcAvBAQtLS0YN24cTExMkJWVJRXZ5TrT9VszAvPmzZN6Hddym5qaMsr1rhDLlpeXB3V1dTx79kzqcVlG1t3d3WFnZ8cqD8T/v3z5MnR0dLoNAZ83bx74fD7S0tI4XeO3UYEfP34cZ86ckWJLFq/lkydP4OHhgfPnz8tWUAlI2mxbtmxhWU4ej4dDhw6xxx4+fIjU1FScOHEC3t7eMDc373HZlvLycvD5fNZTKUZVVRUcHBzA4/G69eBy3R9aVlbG9g4xcUlRURGePn0q9RoPDw+pUTG96IRcu53yXGv/ts8FQF9//TVt27aNLl68SJGRkVK13v369aNPPvlE6jWyijABIE1NTTIzM2OfqaurSwYGBhQbG0uLFy+m4OBg+v777+nVq1e0adMm+umnn1gP2p49e0hRUbFbdkAW0NHRodjYWNq8eTMZGRlRYWEhJScn08iRI+nu3bu0ePFi2rJlCwEgIyMjWrp0Kfn6+tKcOXMoLi5OprJKQlJHHj16RA0NDTRgwAAaPHgwTZs2jeLi4ig5OZk6OjrIycmJbG1tqaCggD777DP69ttvOclkSMqckpJCx48fp5UrV5Kfnx81NDRQdXU1rVixgvT19enDDz+kpqYm+vLLL2nAgAFERJz0CLi5udHt27cpKiqK5s+fTw8fPqSkpCQWKV23bh2tWbOGiDozRsHBwbRkyRIqLy/vltmTJQYMGEArVqyggQMH0pdffklHjx6lxMREUlJSops3b9LGjRspMTGRZs6cSUFBQdTe3k6nTp0iIqKwsDCWBZH1/if5++bm5lJVVRVduXKFFi9eTPPnz6fw8HAiInr+/Dm9ePGCysrKaO3atdTe3k7jx4+XqaxE0lHe2NhY6t+/P02aNImIiC5cuECamprUr18/lh3/4Ycf6Pr167Rz50766quvSE1NjQDIfN/7/80IiHWbqww/AGptbaXBgwfT5cuX6eHDh92qPMSyXb9+nZSVlenPf/6z1OOy2vtSU1Pp8uXLtH79enr//fepvb2d9W+tW7eOvvvuO6k+OiKi+fPnU0NDAx06dIgcHBxkImdXSOpIR0cHNTc304ABA0ggEHR7bt++fampqYnmzp1LbW1tLOvMBcR77urVq2nPnj0UHh5OM2fOpBs3blBERAS1tbWRtbU1PX36lNavX09ffvkl/fnPf6b09HTq27cvJ3YI0dvtvo8//pjt2bq6uvTRRx8REdHnn39O3333HVVXV9OMGTPogw8+oLFjxxIRyfzMkdwDV65cSdXV1TRw4EDKyMighoYGWrhwIY0cOZIePnxIixcvpo6ODrp//z7V1dVJ9VhydVb2OHDk8P1XIa+19gDw+PFj3L59G3V1dQA6Mxc8Hg8hISGMYa+pqQne3t6IioriRMa3saVNmTKF0X7n5ORg6NChCAsLY5Tl9+7dw/79+3Hs2DG2zlxGms6cOQN9fX24urp2mxN18+ZNuLm5SWW+SkpKekQUEujUbzMzM+jr60NTUxO+vr4oLS1FeXk5oqKiMGHCBJbRlYSsMxmSn5eTk4P4+HjweDwEBwejpqaGPVZZWYnS0lLcvHkTAQEBnA0IlURbWxumTZuGoUOHQkVFpRuLVFJSEng8HtauXYvW1lbU1NRwNu9K8j5aunQplJWVER4ejunTp0s979q1a7CxscGcOXMAdK77kiVLYGFhgU2bNslU5rchLi4O6urqiI2NRXh4ONTV1eHp6YmnT59CJBJh1apV4PP5MDU1hYeHB+f79rVr12BoaMhYcZOTkzFq1CgkJyez57S3t2Py5MnIysqChYUFQkNDOZH1j5QRuHHjBoYNG4ZZs2Z1q/gAOjNLvr6+UtlcWaOxsREBAQHQ0dFBTk4Oux4cHAxTU1OWuX2b7vYEttl3MVweOnQIU6dOxdGjR5GUlAQvLy9YWlr2iGqK58+fw8HBQSobVFtbi9WrV4PH4+HEiRMAOodVV1dXc95fJLlWly9fxunTp1FZWQkAWLt2LVRUVLBr1y6mK69fv4avry+2b9+OGTNmICgoCE1NTZxWaCUnJ0NDQwP5+fm4evUqcnJyoKamhsDAQDx//hy1tbUIDQ3F5MmTsWjRIs77cHsq5NLxkiwRfPLkCUxNTdlNBnRugiEhITA1NWWGdGFhIa5cucKpE7BgwQKpTW3FihUwMDCAmpoaNDU1MXfuXJSVlSE5OZmV8AUHB8PJyYlTGvOuSExMhJmZGcLCwhi1b25uLpSUlDB16lQUFxdj27Zt3WZnyBpdB32eOXMG2traGDVqVDfD+tatW/D09IRAIJCaBcO1Q7BhwwZoaWkxY09cniLWo4qKCsycOROamprdShW4grwY1F2Nho6ODixduhQ8Hg/79+/vtkesX7+ePfau95AFus7VWbZsGXg8Huzs7Fh5rFj3d+zYAVVVVeb4VlVVwdfXF5MnT37nfB5Z4ObNm9DX18fFixfZtbKyMujq6sLb25sZJGfPnpUaoM3VAb5x40aYmZlJzfArLy/HsmXLoKysjJCQECxatAguLi4wMjIC0OnwuLu7c7qHyFPT/q9h7969UFZWRlhYGNOZ169f4+HDhyx4I9YNrs7H5uZm+Pv7Q1tbGwUFBQgODoa5uTmjZv81ubh0YH5t5lVxcTHs7OygoqICoVCIhQsX9hhjWl5K9LoiNjYWmpqaGDZsGAQCAQuELFiwgM0OnT9/PoRCISwsLAB0zshydXXlUmwAQFhYWLcAx71796Cqqopp06bh1atX3V7T0/aSngC5c7zktda+oaEBBgYGMDY2RklJCQ4dOsSiYz///DM2bNgAW1tbBAcH49WrVzh69CiioqIQGhqKNWvW9IhJ8JLXtm/fDnNzc0ydOlXK+Ro+fDjU1dVhY2PD6Q3XtR75yZMnEIlEKCoqgq6uLoKDg1FcXCz1mqKiIixcuLBHbBQdHR0QiUTw8fFhfX4nT56EiooKMjIycPHiRTak8P79+1i/fn2PkFteDGpJ/bh+/TpOnjyJkpISNDQ0YNasWeDz+Thx4kS3NU1PT+fM4Ni/fz/mzZsHe3t7BAcHY926dUy+NWvWYMiQId2MkMOHD8Pe3h6NjY3M6AgKCoK5uTkaGxtl/h3EyM/Px5gxY5hDKF7Tu3fvYsSIEQgLC2O6IgaXxunp06ehoqICXV1d3L9/n12vqalBdnY23N3dMWXKFMybN499l/DwcERFRXF2X8pbRuDX0N7ejiNHjkBDQwM6OjowNzeHQCCAq6srvLy8OHMYu/aJNzc3Y9KkSeDxeDAwMOB0aP1vwa/NvIqNjWXPKy8vlwrUcB0kAzr7h11cXBAbG9vN4I+IiICBgQGGDx+OM2fOyEjKt0NS9oMHD8LAwABnzpxBSUkJvL29IRAIkJWVBaBzSHx0dDR8fX2xZMkSts7z58/HjBkzOAuWdXR0oLm5GaamplKskGJ5xEHJqKgolrHrCWyRPRVy5XhJRitiYmKQkJCAxsZGaGtrS3nhYmXw9/eHlpYWhEIhy3BwGfGoqamBvb09BAIBFi9ejFWrVkk9npaWBoFAwAztrkORudzsLly4gOPHj2Pv3r2sgTklJQWWlpZSztedO3dw9OhRJisXN5/kb7x69WpYW1tDQ0ODDU88ffo09PT03up8icE1JXhbWxtz1m/fvo0rV66Az+ezEQjbtm2DhoZGN+OUa+dL3gzqFStWwMjICFpaWpg8eTLu3r2L9vZ2TJs27Z3OFyB749TX1xdOTk4ICQlBYmIinJ2doa6uDnNzc0b5vWTJEgwbNgyZmZl48OABKisr4eXlBR8fH3ZPNDQ0YOHChbh586bMZH/b73vnzh0MHz5cqlKhvb0dL1++hIGBAXg8HqZMmcIek+W+/S59zMvLA5/Px9SpU/HixYtuj3d0dODhw4coLS1FTEwMVFVVORv5AchvRuDXUFFRgaNHjyIxMRE7duzAlStXekTwpqWlhWWKRCIRwsPDoaamhkuXLvUoA7RrefTJkydhZWWF+vp65OTkwMvLCwKBAG5ubhg5cqTUwGExZK0jf4QSPQA4ceIEkpKSpNoCxMFVgUCAzMxMdtY0NjairKwMRUVFiIuLg4qKCu7evSszWd+ls2vWrIGJiUm3iqFt27bBxcUFI0eOxMKFC2UholxDrhwvMeSp1l4sixiVlZXw8fEBj8djPRmSG0JYWBjs7e27XecScXFxMDQ0hFAohK6uLgwMDLB//350dHQgOTkZVlZWCAsL62aMcO0EbNiwAZqamsjPz8eRI0dYVA/odCT19PQQGhoqVf7JFSR1JCMjg827mjRpEgQCAfh8PmMBBDqddHt7e05nXsmbQd0Ve/bsgba2Nq5du4aamhqpg03soKioqODgwYOcGk8BAQFwcHBARUUFC8Y0NjYiNzcXFhYWGDduHCtnWrRoEXg8HoYNG4aQkBA4Ojp2K1GWpYEquW4PHjzAixcvUFtby76Xm5sbzp07x57T0NCAwMBAZGZmYtSoUf9yZtp/G5IR5dzcXOzatQtbt25lzm1eXh5GjhyJiIiIbkyulZWVcHBwwPjx42Ftbd2Nxe73hDxnBP4b4LKf9W39UW/evIGPjw80NTVx/vz5HnOWi/FbGS57khEtzyV6r1+/Bp/PB4/HQ3R0tNRjYufLzMwMO3bsQEtLCx4/foyIiAjo6enBwcEBt2/flpmskrp94MABrFq1Cmlpaaiursa9e/dgZ2cHPz8/Npe1vr4ePj4+2LJlCw4fPgw1NTVmv/Ti7ZA7x0veau0llXjJkiWYN28enj9/Dk9PTxgYGODRo0dSz1+3bh0mTZokYynfjV27dkFbW5tlhvbv3w9lZWXk5+ezCF9ycjLGjBmDhIQELkWVQmNjI7y9vVn2UBLp6em4desWrly5AiUlJc5pwSV1ZO3ateDxeGwtDx48CIFAIDWAUyQSsf4/rg50eTOoJdHR0YGOjg5ERUVhyZIl3R7Pzs5GfHw8mpub4efnh4kTJ3IgZSfOnDkDoVAoRessmU2+efMmi1CLIS77yM7O5rR8TFI34+PjMXbsWOjq6mLatGmoqKjA9evXmZGUlJSEzMxMeHp6wsrKCu3t7QgODu5Gbf57Yffu3VJ/x8bGQl9fH5aWlhAIBODxeNi+fTuATuKYkSNHIjIykmX6xaisrERZWRkjS5IF/igZgd8KSTm5lvnX+qPa2trg5+cHHR0dnDlzhlNZJXWkqKgIPB6PjWa4ceMGkpKSumUxhEIhp2e6PJfovS0QUFNTA1NTU4wbNw4XL16Ueo5IJIKdnZ0U9bq4akF8rsoCXavKVFVVYWRkBF1dXQQEBKC2thaXLl2Cm5sbVFRUYG5uDhMTE0bKc+3aNZibm7+VBKcXv0DuHC95rLUHgNu3b8Pa2hoFBQVMXhsbG1hYWOD+/fuoq6tDU1MTXFxcMGPGDM7k7Ir58+cjJiYGQGe/iIqKCvbs2YPi4mLMmTMHbW1taG9vx6FDhzjPcEmiqqoKqqqqrA8K6NwMRSIRgoKCWLZRknCFC0h+9sKFC9lGJy5DbW5uxvr16yEQCGBgYABvb2/Y2NhwSrYiTwb1r8HPzw/BwcHsb/FvsWzZMhgZGbHDmsts1/r162FjY/POzGZbWxt27doFLS0ttrcAnaQa4v2P63LfXbt2QV1dHRkZGYiJiYG9vT28vLwYu+WSJUugrq4OOzs7+Pv7M7329/dHYmJit/f7b+PAgQMYNmwYrl+/DqAzMKOjo4OCggI0NTWhuroa8fHxUFZWZjMic3JyGMvl274zF5DnjIA84tf6oyRL9BwcHODn58eZnPLOcClPJXqA9H5bWFiIgoICJkN1dTX09fVhbW2Na9euSf02LS0tnJ41krJcuHABDg4OKC4uRnNzM9LS0mBrawt/f3/U1NSgtrYWJ0+eRGJiIpvBCXTOkhQKhTINPMkjerTj9Ueptd+5cyfU1dUREBAgFXmpqamBra0t1NTUYGxsjICAgB7DXtjW1obW1lYIhUJs2rQJN27ckOoxKi4uBo/Hk2IAFL9O1niXnkyZMgWTJ0/GkydPpK5HR0dj6tSpUte4dhqXLVsGVVVVVFRUICYmBiEhIeyx5uZmXL58GYsWLcK8efOwceNGzshW5MmgFuNd+hETE4Nx48ahqKhI6vc/ffo03NzcpJwdrg7EyMhIBAQE/OpzKisrMWrUqLeyWnJtOBUXF2PGjBk4ePAgu5aZmQlHR0d4enri8ePHADoNprq6OrafL1++HOrq6lKZvt8LpaWlUFNTw4YNGwB0ViZ0LQdqa2vDvHnzoKmpiYqKCgCdmQMu11eeMwLyiH+3P0qcTReJRD2iz0seGS7lqUQPkL4nV65cCR0dHejo6MDExIS1xlRVVUFPTw82NjYoKCjodgZyrSuHDx/G9OnTMW3aNKnre/fuhY2NDfz9/fHzzz8D6LRNioqKsHnzZsybNw+qqqoyX3N5RI91vOS11h7obkzm5+fD1NQU2traTGHFz6mpqYG/vz94PB4uXbrECd19R0fHO2/2H3/8EXw+H0pKSsjMzGTXL1++jAkTJrDvwxUk5b548SIyMjKYM5iSkgIDAwMsX76cEYK8efMGkyZNwvLlyzmR92348ccfwePxmJ4uWrSIRaG7EqxIgssDUR4MakBaP7KysrBy5UqWpRCJRJgwYQLMzc1x8eJFvHz5EvX19ayMkyusXr0aV69eBdAZoTYwMPjVwNHLly+hrq6OI0eOyErEd0Jy78vPz4dAIICqqmo32TIzMyEUCuHt7c3KmO/cuQMbGxuYmZnB0NCQ7fWykDchIQF6enp4+PAhpk2bBh8fn27PycnJgaqqaje5uHZu5S0jIO/4rf1RkuxvQO/Mq98CeS3R64pVq1ZBXV0dubm5OH/+PBwcHKCvry/lfBkYGEBPT4/z+6/rms+cOROjRo2CQCCQKp0FOnvLHR0d4eDggMrKStTX12PXrl0wMTFBeHg4uzd68evocY6XPNfaX716VWpQrBhtbW24cuUKxo4dKxVJF29uL168wMyZMzlhAhTP/RHjzJkzSEtLQ0pKCp49e4aysjJ4e3tj3LhxrAa8qqoK/v7+8PT07DGp8eXLl8PQ0BDq6upSPVvr16+HkZERzM3NERISAqFQCDMzM06NJUkK4paWFly4cEGqGXXz5s1wdnaWes3MmTNZZJKLTKi8GdRdERMTAw0NDfj5+WHmzJlsX3j58iU7FPX09GBnZwcrKyvOss7Xrl2Dqakp3N3dcefOHdy9exdDhw5FQkKC1CHY3t7OZCsoKICTk1OPbGhOTExk2f6ubJbi/kVxWVZ9fT3OnTuHc+fOdXvu740rV65AIBAgIyMDa9euhaamJq5evSq1TxQWFsLS0lJmQYPfAnnLCMgj5LE/qivkgeFSXkv0uuL+/fuwsbFhwbOCggJoa2vD0dERBgYGyM/PB9Bp9wUGBnJebSPG+fPn2b9Xr14NXV1dLFq0CC9fvpR63rZt2zB79my25u3t7WhpaenNmv8b6FGOlzzX2s+cORM8Hg8TJkzA3r17pfrPgM7I0ZUrVzBmzBh4enp2c77EkOVNuGzZMvj5+TFZFi9eDB0dHVhYWGD8+PHg8/k4c+YMcnJyMGnSJCgpKcHAwAAmJiawtbXtEdPrAWDr1q3Q0tJCYWEhRCIRqqur8fTpUxQWFqK9vR2FhYVYs2YNZsyYgaSkJGZM9YSyyLdltA4dOoRx48ZBJBKho6MDvr6+0NfX5zyyLgl5MaiBzn1EX1+fReMaGhpw9+5dpKSksCzjqVOnsGvXLhw8eJDTIesAcPToUbi6usLNzQ0VFRVITk7G0KFDsXPnzm6BpNbWVvj7+yMwMJDzHiMxNm7cKFUqm5iYCGNjYyxYsADPnz+Xem5eXl6PmfcXGhoKe3t7tLe3w9HREaampsjNzcXz58/x4sULTJo0Cd7e3pzud3+UjIC8QB77o+SR4VKeS/S6ynHt2jWMHj0aDx8+xOPHjxEcHIxt27ahuLgYenp6GDNmDGvZEINr5+v27dvg8XjszAY6g5VmZmaIiYnptleIvzPXtp+8okc5XvJaa//mzRtERUVh7NixWLRoEZSVlWFgYIB58+bh9u3bUlmlK1euQFdXF15eXpxTgcfHx8PKygqRkZHIy8uDg4MDrl+/jqamJlRWVmLOnDlQUVFhDZbZ2dnYtm0bjh8/zrlxKsabN28QFhaGvXv3AgBu3bqFmJgY6OjoQEND453rzLXTlZKSgmnTpsHExASLFi1iUTCg0/DW0tLCq1evMHnyZBgbG/eIent5MqglkZSUxOrVr169iunTp0NbWxtKSkowMTHBjRs3ur2Ga/3IysqCi4sL3NzccPHiRcTHx7NypkOHDuHhw4c4cOAA/Pz8YGlp2WOCIB0dHdi/fz+UlJQwZ84cdn316tWYMGECFi5c2E1XANmt9+LFi5GRkSEVnRX/+/bt2xg3bhyys7NRVVUFW1tbaGlpQV1dHdbW1rCxseF0nf8oGQF5hLz0R8k7w6U8legB0k7X7du3IRKJUFpaikWLFuHx48fYunUr5s2bx9irHRwcYGRkBKFQ2GMCZUDnHrh7926MGDECS5cuZdeXLVsGc3NzxMbGdqvm6knyyxt6jOMl77X2d+7cgZKSEo4fP45Hjx4hOjoafD4fo0ePhpubG/Ly8vD06VMAnc7XsGHDOJuRIV7HtrY2bNq0CUKhEI6OjnBzc+tmkAQHB8PExKRblEz8+p6A4OBgWFhYYMOGDdDW1oaXlxc2bNiA1NRUjBkzhpPStl/DihUroKenh9WrVyMzMxM8Hg/u7u6sD62kpARGRkawsrKCkZERO8S5Lo/syQa1GG+jmt64cSPGjx8Pf39/jBgxAsHBwThw4AAqKyuhqqrKjKeeAEn5T58+DR0dHbi5uaG4uBhZWVmwtLQEn8+HmpoaXFxcEB0dzRnRCtCdcEAsR1ZWFkaMGIGZM2ey66tXr4a5uTkiIiK6la/IAmVlZRg/fjx4PB48PT2xadMmqcfr6+vh7u4uNfPx8OHDSEtLQ3Z2NqfBJnnOCMg75KU/ShLyyHApbyV6kvfTqVOn4OTkxCqxamtr0dDQABMTE9Z7WV1djYkTJ+Ls2bNS7QayxrvWTSQSYc+ePVBSUpJyvsRl+m8bzdOL/ww9xvESQx5r7dvb29He3o4ZM2bA0tISNTU1eP36NRobGzF9+nTweDwoKyvDzMwM27dvR2FhIUpKSjjbOCQ3jBs3biA+Ph7jx4+Hjo4Oc7zEsp04cQJ6enpsQCuX+DWWS09PT+jo6GDDhg2M2OHnn3+GhYWFzMlVukJycy0qKoKBgQE7XIqLizFs2DCcOnUKN27cQFVVFcrLy8Hj8WBtbc2Z0yVPBrUYXfVD3BP1/PlzrFixAv7+/sjIyGCRO5FIBKFQiOPHj8tcVjE2b96MoqIi9rdk6WloaCh0dXVhb28PNzc3PH36FB0dHaioqEBJSUm3mUFcQtzPJ0ZraysOHTqE4cOHY9asWez64sWLER4ezpkT8Pr1a1y4cIHtFyYmJkhNTWUR6StXrkBdXV1qALgkuF5necsI/BEgb/1R8sJwKc8lepLrnZaWhoiICPB4PBgZGeHgwYNoaWlBTU0NjIyMkJKSgjt37mDy5Mlwc3PjpJcf6ExYSFb/rFu3rtt6ikQi7Nq1C0OHDkVcXBy7vnPnTs73vj8SeozjJW+19kD3jSMzMxPKyspS7H8WFhYICgrC6tWrYWNjAx6Ph7CwMKmsE1cyL1++HL6+vqioqMCWLVswbtw4zJ8/Xyq7dfXqVRgbG3cb9CxrdC3DWr16NebMmYPU1FR2vbm5Ge3t7WhsbERjYyN8fX3h7u7OuZ5I4uzZs7CxsQHQWVLI5/NZJEkoFGLLli148+YNduzY0SPKOeXFoJb83OTkZEyfPh36+vpYuHAhzp49yx5rbGxEcXExysvL4evrCxsbG84OlLKyMujo6GDq1KndsrJBQUFsEOWJEyfg5OTEMl9dwTXZysWLF8Hj8aRY9YDOQ3z//v3g8XiIjY3t9lou78v6+nrcvXsXYWFhMDc3h5aWFrZs2YJLly5hzpw5bNxBTzI25C0jII+Qx/4oScgLw+UfpUQvISEB6urq2LZtG1JTUyEUCuHg4MCqKGbMmMFaT+zt7TkrQd2yZQv4fD527NiBhoYGtLe3IyoqSqpcVgyRSMQ4C+bOnSv1WO+e8t8BZ46XPNfad/3csrIy9m8PDw84OjqioaEB1tbWcHZ2ZlmAV69e4datWz1CeS9cuABHR0fk5uYC6DSo169fzwY4P3r0CMXFxfDy8oKbm1uPcV6WL18OXV1dzJo1i20cYWFhADqZLJcsWQIDAwMIhUKpjJGs5d+0aRNiYmKwaNEiPHjwgP3m+fn50NHRwdatW1m9vRhCoVCquRXg1jGXR4M6Li4O2tra2Lp1K3bt2gV9fX2MGzcOFRUVEIlEiImJgZ6eHoyNjeHi4sJ579zt27dhZWWF4OBgxkoYHBwMc3NzqX3lyJEjcHNzg5mZGR48eMCJrGJI6khjYyNEIhFiY2MxZMgQJCcnSz338ePH0NLSAo/HQ1JS0lvfg2vcunULGzZsgKGhIfz8/KCmpgZtbW1Os7eAfGcE5BHy3h8lLwyX8lqiJ/m5HR0dePLkCUxNTaWy442NjQgJCYGpqSkbLVBYWIgrV65wHkgNDQ2FQCDAjh07IBKJUFdXh0WLFoHH4+Gnn36Sem5iYiJ8fX3h4eHRY2y/PxL6EgcoLy+nnJwc2rlzJx04cIB0dXXJx8eH+vXrR0REf/3rX+nrr7+mw4cP0/jx4+mnn36iI0eOUFNTEw0aNIgMDAyoT58+1NbWRn37yv4rACBFRUUiIoqPj6eKigqaPn06ffXVV2RiYkLLli0jXV1dGj58OK1atYoGDRpEREQffvghKSkpERFxIjsAUlBQoJMnT1J8fDy9efOGfvjhByIi6tu3L02aNIkUFRUpJSWFjh07RiNGjKDPPvuMVqxYQYqKitTR0cG+tyzlFeP06dN05MgRSkxMJD6fT8eOHaNjx47R+PHj6dGjR/SPf/yD9PX1adCgQfTFF1+QjY0NJ3ri4eFBr169ou+//54KCgooNzeX1q9fTz/88AN9++239I9//INWrlxJ3t7e5OzsTERELS0tJBKJ6K9//avUe/Xp00dmckuud1NTE40aNYq8vb1p+fLlpKCgQBMnTiQion79+pGamhp9+umntHXrVho4cCBNmTKFFBQUpO4NWeP69et0/PhxSkpKIj6fT0VFRVRbW0srV66k6upqUlRUpIkTJ5Kmpib96U9/IlVVVVJUVORsHyEiGjp0KC1btoyioqJo3bp1VFVVRfX19bR+/Xr661//yu45U1NTEolEVFxcTN999x0nshKR1B5w8uRJOnbsGM2aNYumTp1Kffr0oZiYGAJAXl5eRNS55wkEArK1tSVlZWX2PpL3NVcQ67uSkhIpKSmRgYEB3b9/n2pqakgkEtFHH33EuWxERCUlJTR48GD6+OOPydLSkhQVFen06dP06aefkr6+Pv3973+nr776iurq6igzM5OcnJzYa2W5f8g7xHq9fPlyysjIoMbGRvr6668pODiYAgMDqaamhhITE+nUqVP07bffUklJCb1+/Zo8PDwoMTGRLl26RH/6059kJm/X87h///506tQpcnNzo/z8fLp06RKNHj2aFBUVqV+/fpSUlEQuLi5UXFxM7u7u9N1339HkyZMpIiKC3n//ffrkk09kKvO+ffvo8uXLVFhYSDU1NaSoqEgmJibU0NBA7e3t1K9fP7p79y4lJCRQW1sbaWtrk4KCgsztkLfJrqCgQH379qVXr17Rhx9+SESdZ/iAAQMoLi6OTE1NaeXKlSQSicjY2JidL+3t7TI9a4KCgujvf/87RURE0KpVq2jq1Km0bds2UlBQIAcHBwoODiYANGvWLOrTpw9ZWVlRS0sL3blzh2xtbcnExKTbd+/FfwFceXzyXmsPdEZrrK2tWekH0BnxsLCwgKamJqeshWIUFBR0u1ZXV4eoqCgoKytj0aJFUn0lra2t2Lp1K8aNG4eNGzf2iEZh8Wdv27YNXl5eAIDjx4+Dz+djz549ePHiBXx8fFj2ThKy1hMnJyfY2NiwqCgAGBkZSaXsDx8+DFNTUzg7O2P//v04cOAAvL29YWlp2SMoiLOzsxEeHo6amho0NzcjLi6uW+arpqYG8+bNQ3FxcY+4F4HOPcPc3BxA5xrz+Xzs3LkTIpEIXl5e2LhxY7fX9BTZb9++DRMTE6ipqeH06dPs+ruGm3PNupibmwtfX1+oqqpi0aJFqKmpgUgkYrqyYsUK5OTkwMfHB25ubj1iH/l3IP6uXK+zvGUE5BHy2B8l7wyX8lKiJ4bkGsbExCAhIQGNjY3Q1tZGfHw8e0z8+/v7+0NLSwtCoZDNeJP1PdnQ0IClS5eCx+Nh/fr17HpISAgMDQ2xc+dONDc349WrV5g/fz54PB4cHR1hZmYmNQ6hdy/574ObMC91Rmc0NTVJWVmZnj17Rj/++CPt3r2b1q5dSz4+PjRs2DASCAR09+5dMjIyovb2dqnoHdeRvJMnT9L69eupf//+pKKiQkS/RDxcXV1p4cKFdOHCBTIyMuJMRh8fHzp37hyZmZnRDz/8QB4eHvTBBx/Qxx9/TLNnzyYAdO7cOfriiy/I29ub3nvvPerbty+5ubnRRx99RDY2NizCJMsozZEjR6i2tpY+++wz0tXVpYEDBxIRkUgkooEDB9KxY8do5syZFBkZSUKhkJ4+fUrFxcU0fvz4bu8lSz1xdnamvn370saNG+nDDz+k5uZm+uCDD8jU1JQqKyspNzeX3n//fTIyMqJBgwZRSkoKzZs3j4YMGUJ//vOfaf/+/dS3b99uuv57QzKadfbsWUpLS6OCggL65JNPaMqUKRQcHExERLGxsVRTU0OjR4+mlJQUam5upuHDh5OCgoJMs0YbN26kJ0+e0MCBA0lXV5e0tbWJiKixsZEqKytp3759FBsbSxEREeTq6kpEnbpTVlbW7b243kfEGDp0KK1evZoiIiLo4MGD9OWXX5KysjIpKCiwTKJklogLucU6smzZMjpz5gwNHTqUfvjhBzp+/Di1trZSUFAQBQUFUf/+/WndunV09OhR+vLLL2nHjh3sO3CVWfytEN974gy/rNdZnjMC8grxWmVnZ1N5eTm5u7vT2LFjiYho/fr1FBgYSGvWrKH29nYyNzcnKysrampqopcvX9LNmzfp5MmTdPDgQdq9ezer2vk9Ifn7xsfHU3p6OhF1Zpdnz55Nurq6tH//frKzs6PFixdTdHQ08fl8UlBQoPfee6/be8gC4v0LAFVUVNCxY8do8eLFzD6ysrKiWbNm0caNG2ngwIEUGxtLzs7O1NbWRqNGjeK0wonolwx9QUEBnThxghYsWEADBgwgX19fWrNmDQ0aNIgmTpxI/fr1Y2s7e/Zs2rBhA6WmppKamprMs/wDBw4kf39/+vDDD2n16tUEgCZPnkwJCQk0depUSk5OJiIiR0dHmjFjBo0cOZLy8vLoL3/5C4WGhnJii/zPgEuvryt6aq3923D27Fl4eXmBx+NJkWkAndTy2traWLBgAUfSdUI8z8rNzQ0CgQC6urpYuXIlCgsLAXRmHWfPng1zc3P8+OOPbx3mK+vomLe3N2xtbWFgYACBQAA3NzeWORT3HPF4PKSlpbHX1NTUwNra+p3ZUVkgNTUVPB4PFy9eBACp2W02NjbQ0NCAiooKRo8eDVdXV/adnj59ioaGhh6REVi6dCmMjIwQEhICoVAIXV1dzJ07Fy9evEBzczOSkpKgrKwMQ0NDODk5MX2RZUTM3d0dlpaWiIqKgoGBAWxsbJCTkwOgM9ro4eEBHo8nld1qamqCra1tt/6jnojbt2/DwsICISEhPW4MAtDJIKqnpyc1+yw5ORnOzs6YN28eY4wsLy/H7du32f4hL5mungJ5ywjIO+SlP0oS8sJw2dWGqKyshLa2Ni5cuADglyxRS0sLxo0bBxMTE2RlZUntGT1Brzdu3AgzMzNERESwa+Xl5Vi2bBmUlZUREhKCRYsWwcXFBUZGRgA6SS3c3d057dWurq7GmjVrwOPxsG7dOnZdMvMltke6Vj/14vdBj3C8uhpu9+7dw+HDh2FnZwdzc3POb7p3OR8lJSXw8vKCqalpN0rqmTNnws3NTRbidYPkvDMPDw/s2rULxcXFmDp1Kvh8PpSVlTFt2jRkZ2ejoaEBM2bMgIuLC5YvX87pzebk5ARbW1s8f/4cr169wuHDh2FlZSVF47tp0yYoKSkhKSkJV65cwc2bNzFp0iTY2tpyqic3b95EYGAg+Hw+Ky0AOtnpjI2NceXKFVRWVmL79u1QV1dnbIxvmzvFBeTBoBaXcYoDMS9fvoSlpSViYmKkvoeNjQ0MDQ2RmZmJPXv2wMfHh9Myzn8Xt2/fhrW1NTw9PTkdmeHq6tqtPPPw4cMQCASoqqqS2hfXr18PPp+P+fPns3mFYvSE0qaeDnlu2pdHvE0na2pqYGpqinHjxuHixYtSzxGJRLCzs0N4eDi79uDBA1RWVqK2tlYWIktBXhgu5bFE7104ffo0VFRUoKuri/v377PrNTU1yM7Ohru7O6ZMmYJ58+axezE8PBxRUVEyXf+36bbk3DlJ52vq1KkQCAT48ccfpcaT9OL3RY9wvH4NXNbaS34+0EkXv27dOgQHByM7O5tREvv7+8PGxkbqoPz555/fOgtJlmhvb4eTkxNcXFzYtRs3bjAmGx6PBz8/P6xZswaGhoZYuHAhZ7K6ubnBwcFBKlMkEolgb2+PtWvX4sGDB6ipqUF9fT127NgBPp8PVVVVTJgwAe7u7j0i4ltaWoqAgAAMHz4c9+7dw4wZM2BmZibFTtfU1IQxY8Zg1apVnMkpjwa1u7s77Ozs0NzcDKAzQg10ziKZOHEijh8/zqKk169fx+TJkzFq1CjY2Nhg6tSpPUI//h0UFxdjxowZnDotJ06cYOstRlpaGrS1taVmoQGdv4eWlhaMjY2xdOlSToxRecUfJSMgL5DH/ih5Z7i8du0aDA0NWTYuOTkZo0aNkqpCaG9vx+TJk5GVlQULCwupQeayxq/NDOXz+Zg6dSpevHjR7fGOjg48fPgQpaWliImJgaqqKu7du/d7i8sgKffdu3dx7tw5FBQUsP161apV3ZyviRMnIiQkpMc4uP8L6LGOl+Qm0RMiprGxsdDX10dkZCQmT56MYcOGYcaMGQA6o03+/v6ws7PrVnbIlezi9bt06RKUlZWxZcsW9pipqSnc3NwQHx8PExMTKCkpwdXVlb1G1jegePigeEaRpEEhLjvk8/ms9AbojPgVFBTg1q1bnJYzdV2r8vJy+Pn5gcfjQV9fnxlNYhlrampgb2+PvXv3ylxWMeTNoE5JSQGPx2OkE5J7g1AohL6+PrS0tDB8+HAIhULmZD158gRv3rzpEWWc/wm4oufftWuXVLBg/fr1bGD269evMXbsWPj6+kq9pqysDN7e3pg1axYEAsFbSX160R1/pIyAPEDyXlq5ciV0dHQYuZdkiZ6enh5sbGxQUFDQbX1lfT/K+8wreSrRAyBFkJKbm4tdu3Zh69atrPQ7Ly8PI0eOREREBKqrq9lzW1tbUVlZCQcHB4wfPx7W1tYoKSmRmdySv3V8fDwmTJgAfX19WFhYwNDQEHfv3kVDQwMSEhLA4/Hw448/sudznST4X0OPdbx6AsTKePz4cejq6rI67mvXrkFJSQm5ubn4+eefAXQ6X0KhEFFRUZzJ+zZUVlbC2toawcHBqKyshIWFBVxcXNDY2Aig8ztmZ2ezDY6LjS49PR26urqYM2eOVKlbUFAQm+cmHmzK5/PfOseICwdXcpM6duwY9u3bBwB49OgRIiIioKysLPV9Ojo6mIPOxTrLq0Hd2NiIgIAA6OjosH4uoHPelUAgQHFxMR4/fowTJ05g5MiRWL16NQBpXZbXA0XWch8/fhwaGhqIjo7GkydPAPzi+C5evBgAcPLkSWhoaMDV1RU5OTnIy8uDt7c3/P39AQDjxo2Tchp68a8hbxkBeYc89kfJK8OlvJTo7d69W+pvcbDd0tISAoEAPB4P27dvB9DZxjFy5EhERkaiqqpK6nWVlZUoKytDXV2dzGSXRHJyMrS0tFi5qZhp9vz582hpaYFIJGI9X+np6ex1PSHB8b+CXserC2JiYroNk0tNTcXkyZMBdNLNjho1Cjt37sTTp0/h5ubGIiElJSU9Unl/+uknDBkyBGpqavD29mYbRVdZuSxFyMzMhI6ODmbPno2ysjKEhobC3NycObZAZ5ZLWVm52+/DBSTXrri4GJaWllLlpmVlZfDz88Pw4cOZ8zVp0iQIBAJOyt7k3aBubm6Gv78/tLW1UVBQwIYMl5eXs+dUV1dDIBBg5cqVnMj4R8GGDRtgZmaGOXPmoKKiAgCwf/9+KCkpISYmBi0tLSgqKoK9vT3GjBmDcePGYeLEiaz809vbm5FA9OJfQ94yAvIOeemPkjxj0tLSWGWIkZERDh48iJaWFtTU1MDIyAgpKSm4c+cOJk+eDDc3NyazrO0ReS3RO3DgAIYNG4br168D6AwG6+jooKCgAE1NTaiurkZ8fDyUlZWZ45uTkwMej4e1a9dKfQ9ZQjzgGwBzqqZMmcIc8dOnT4PP5yMjIwPFxcVYuXIlmpubUVVVhX379sldFcgfBb2OlwQePnwIFxcX2NjY4MiRI+z6kiVL4OzsjCtXrmDUqFGMGEEkEkFVVRUpKSlS79PTnK9nz56x9PfbskVcQnKjysjIgK6uLvT19SEQCFgaX7w53Lt3DwKBgB2MPQExMTFwcXGBmZkZRo0aBVNTU0YGUlZWBn9/f/D5fBY1EztdXGx48mZQd43YNjc3Y9KkSeDxeDAwMGDZO/H91tDQAHt7exaV7MW/B8kSm/j4eFhaWiI6Opod7mlpaVBSUsLSpUvZ88rLy/H48WP22jVr1kBHR0cqs9qLX4e8ZATkFfLeHyUvDJfyWqIHdPZnq6mpYcOGDQA6bb6u7JZtbW2YN28eNDU12flZVFTEmfPy5s0bJCQksJJj8TkoFAqRk5OD3Nxc8Pl8Zq/u2rULmpqaUsFKQP5K8P8I6HW8uqCoqAiTJ0+Gra0tG5p48+ZNaGpqdqMxf/r0KUxNTXH27FmuxP3NWLFiBZSVldmGxrVz+K7PP3ToENTV1REcHIzS0lKp5/v7+0tF87hGeno6tLW1cePGDbx8+RK1tbXw8/ODs7Mzc9zFpXoODg6cOV3yaFBL6kdLSwtjXBKJRAgPD4eamhouXrwotZZ+fn6cs1vKKySN061btyIqKgrq6upQUlJCdHQ0MzTS0tLY4HXx665cuQJHR0dWrtUTafB7CuQ1IyCvkMf+KHljuJT3Ej3xeickJEBPTw8PHz7EtGnT4OPj0+05OTk5UFVV7bbHceG8lJeXw9LSEpMnT0ZQUBAiIyMBdAZI9fX1oaKiwtofgM4Aj4WFBZ49eyZzWXshjV7H6/9B8sbJzMyEh4cHjI2NWUN/bGwsDAwMsGjRIlRUVKCwsBABAQFwcHDo0YaeeMNoaGiAvr6+FB0uV5A0PtLT07F8+XJMnz6dySouO4yMjGTOl6+vL2dleu9CfHw8/P390dHRwfTn5cuXcHV1hUAgwLFjxwAAFRUV7HFZb9DyaFBL6kdycjK8vLzg5uaGa9euAeiM9Pn4+EBDQ4PRPvdE/ZBHbN26Faqqqjh58iSKi4sRHx8PGxsbzJkzhx3Y+/fvlzKmACApKQlHjx7tFk3txS+Q54yAPEIe+6PkjeFSXkv03oYrV65AIBAgIyMDa9euhaamJq5evSq1toWFhbC0tOR0zIckLl68CB0dHSgrKzMH+O7duzA3N4exsTELWjY1NbG2gZ6w1v/r4GYMeA+EeCJ6XFwc3b59mxobG+np06cUFxdHCgoKFBoaSv3796e9e/fSrl276Ntvv6Uvv/ySUlNTqU+fPj12wrd4Wnq/fv3on//8J71584ZNkecKioqKREQUGxtLmZmZNHLkSPr73/9OTU1NNHDgQLK0tCQFBQWKjY0lRUVFevjwIdXW1lJWVha99957nEywl1wz8WT6Z8+eUWNjIykoKFDfvn2ppaWFBg0aRGFhYeTq6krbt2+nvn370rhx49jrZC23WObk5GRKSkqi2NhYcnZ2plOnTlFeXh6tW7eOAgMDycHBgRQVFWn27Nn0t7/9jTw8PEhNTY309fXp+++/p2HDhtFf//pXmcgs1o+4uDjKyMggR0dH+vjjj2nIkCFERPTBBx/Qjz/+SJMnT6bw8HD69NNPqa2tjVP9kHcAoNbWVrpw4QJ5eXkxnR0xYgR9+eWXtHPnTlq3bh0FBQWRnZ0dffrppzRmzBj2+ilTpnAleo/Hnj17yMnJifr160dERMuXL6cjR47Qxx9/TM3NzRQbG0uzZs0iDw8PSkhIoKlTp1KfPn0oIiKCPv/8c+rbty999dVXlJiYSC0tLfTRRx/Rxx9/zPG36tkQ79FERPv27aPLly9TYWEh1dTUkKKiIpmYmFBDQwO1t7dTv3796O7du5SQkEBtbW2kra1NCgoKUu8hCwCQOhv79+9PkyZNIiKiCxcukKamJvXr149aWlqoX79+9MMPP9D169dp586d9NVXX5GamhoBkKkdMmzYMPrggw/owoULNHz4cCopKSFDQ0MaNWoUERH96U9/opCQEHr16hXFxMSQuro66evr0969e0lZWZm9D5f2iPh3VlNTIyUlJUpNTaW9e/fS2bNnKTo6mqKiomjIkCGkoKBAa9eupc8//5y+++47zuQl+sUeaWtrIwUFBfruu+8oNzeX/vGPf5CGhgYFBQXRwoULSSAQ0KBBg0hRUZFaW1tp//79nOh2L7qAS6+vp+HAgQNQV1fHlStX0NDQgGvXrmHatGmwsbFhbGr19fU4e/Ys7t+/zymN+X+CiooKzijju0LczyXOaL18+RK3bt1CQkICCgsLAXQSmfB4PFhZWXHaGyUZhWxvb2dRx5ycHAwZMqRbP8DZs2fh4eEBGxsbuLi4SM0mkzU6OjogEong6+srFWEEOsk1jI2NER0djefPnwPoLEfoCfp89epVCAQCpgtPnz7F8ePHERQUxLJy7e3t8PLygomJCaf68UdBa2srnJ2dGdmKpN5HRkZi5MiRCAkJYboifk0v3o0/UkZAHiEv/VGSkBeGS3kt0Vu8eDEyMjKkMtDif9++fZsxKVdVVcHW1hZaWlpQV1eHtbU1bGxsmI5w0a7xrs88e/YsbGxs4OPjw0hjnj9/jri4OKxcuRIpKSmcVd30ojv+Z8PC8+fPJwsLC1JVVWXX7ty5Q6qqqqSmpkZERCoqKvTBBx/QmjVrKCYmhlpbW2n8+PFSkV4ushj/Kf7yl78QEXGSnUOXLFtDQwPp6OjQ4MGDqbCwkFJTU+nixYv05s0bSk5Opt27d5OFhQV9+eWXpKqqSn379uUs0yWODO3YsYMKCwtJQUGBJk6cSPr6+iQUCikuLo6am5vJysqKXr9+TTt27KBhw4aRh4cH6evrU35+PhkaGspUbjEUFBRIUVGRGhsbqa6ujoh+ifC5urrSjRs36ODBg/Tq1SuaPXs2GRgYEBHJfK3FMon1pK6ujvr370+DBw+m3Nxc2r59Oz19+pS+/PJLysvLI0VFRZo1axatW7eO+vXrR4qKir2Zrn8Db4t49u3bl7777js6ffo0eXl50ddff80e+/777+mbb76hb7/9lj7//HOp1/Ti3fgjZATkCeL9AwBVVFTQsWPHaPHixWRkZERERFZWVjRr1izauHEjDRw4kFUAtLW10ahRo6hPnz6c7iObNm2izMxMUlFRIV1dXSIiGj9+PFVWVlJcXBwVFhbSF198QSUlJVRVVUVmZmb0/PlzysnJkfm5LtZJbW1tOnz4MBUXF9P3339PKSkpdO3aNRo5ciRbx48//pi++eYb6t+/v9R7yHqdy8vLKScnh3bu3EkHDhwgXV1d8vHxYdnov/71r/T111/T4cOHafz48fTTTz/RkSNHqKmpiQYNGkQGBgac6Yjknn3gwAG6e/cuNTQ00OLFi2nMmDHU2tpKa9eupY0bN5KPjw+NHj2awsPDpd6jvb29d8/uAfifzDU2NTXR+fPnadasWXT9+nXq6Oggos4Sp+rqamagEhEpKSmRubk5PXr0iBYuXEh5eXlS7yWP6VouSiLFm3RDQwMREb1584aysrIoMDCQXFxcqKWlhcLDw+natWv08ccf08WLF4mISENDg1OnSyx3XFwcrVmzhl6/fk33799nTsusWbPIzc2N4uPjydLSktzd3ammpoaCgoJowIABpKysTF988YXMZBbrsiQkDeqKigopne0pBrVYpnv37hER0dChQ6m0tJQcHR3J39+fvvrqK5o+fTrt3LmTjIyMqK2tjYg6yw4VFRXlKgDCNSQP8KtXr1JOTg6lp6fTmzdvaMaMGTRw4EAKDQ2le/fuUV1dHTU3N9O1a9fIwsKCwsPD2Xr34tcBgAYPHkzu7u6UmppKjx49opqaGnr27JnUc/r06UMGBgbU2tpKtbW1RETMaBXreS/+NTo6Oth+LS7/fvXqFX344YdERNTS0kIDBgyguLg4amlpoZUrV9Lhw4dp2LBhpKamxloGuNxHfvjhB3r27BldvHiRSktLiajTGfDz86PVq1dTbW0tPXv2jP75z3/SkSNHiIjo9u3b9M0338hcVvEeIFmiN3nyZPrb3/5G0dHRlJ+fTy9evKCqqqoeU6L37bff0sGDB2nbtm1ERLRt2zYyNTWlXbt20ePHj+nDDz+kkJAQys/Pp+zsbCIimjBhAjk4OND48eM51RHJMtTly5fTo0eP6MMPP6TGxkYiIjI0NKSQkBCqqqqiFStWkI6ODkVFRRHRL79VT2yH+Z8Ed8k2bvHy5UsIhUKMHz8excXFADqH4A4bNgy7d+9mFNoAkJ+fD1dXV2zbtq23af/fhGRqfOfOnXBzc2OlSnFxcYiKisKhQ4dQX18PoJOxyc7OjhFT9ASUlJQgJCSElQs9evQIgYGBGDZsGIqKiti106dPS1Hdr1q1CgKBQKo06/eE5FpfuXIFZ86cwU8//YTXr1/j5cuXsLS0hIODA+7evYva2lq8efMGfn5+WL9+PSsJ4XLuS1FREXg8Hvvtb9y4gaSkJEaXK4ZQKERCQoJM5fwjYuXKlRAIBLC2toa6ujoEAgEOHDiAGzduwMLCAlpaWjAyMoKNjQ1MTExYiQrXjKjyBnls2pc3SJZixsTEICEhAY2NjdDW1paaPSguKfP394eWlhaEQiHbX7gm0hCjpzJcynOJ3ttQX1+Pu3fvIiwsDObm5tDS0sKWLVtw6dIlzJkzB4mJiQB6FlHT21o0bt++jcTERGbH5ubmYtGiRQgPD2dr3oueBQUA4Nr54wq1tbUUEBBA1dXVtHr1aho+fDjFxMRQSkoKTZ06lVRVVemLL76g+fPn05dffklLly4lBQWFHkuk0dMgGVnPzc2lgoIC2rBhAwkEApo/fz59+umnRET0/PlzamxspObmZlq7di1VVlbS/v37e8QaZ2dn05o1a4iok6BCnBV6+PAhxcfHU25uLm3ZsoXU1dWptbWVrly5QgcOHKDGxkYqKCigrVu3kpKSkkxljo+Pp+PHj9Of/vQnqqiooE8++YSmTJlCgwcPplmzZlF1dTUNHDiQBg4cSG/evKFDhw5R3759OWkmF0eot27dSmVlZbRnzx4i6swwmpubExHRo0eP6MKFC/TFF1/Qnj176MWLF5SRkdGb4fo3IbneKSkplJSURBs2bKARI0ZQZmYmRUZG0p49e4jH41H//v1p3759JBKJaMCAAWRpadmjSYR6IiTvp7CwMHry5Ant3buXnJ2dqaGhQappf+bMmQSANm3aJJdVFD0FBQUFNH36dFqwYAHp6urStm3baM2aNRQSEkITJ04kos7fJSgoiMzMzGjDhg00ePBgWrVqlUzlFBNkEBGdPXuWnj59Ss3NzaShoUFKSkp07tw5CgoKIiMjI4qKiqLPPvuMiDpLwGtqaig4OJhqa2tp4MCBtGzZMkY89HuhvLycvL29qby8nDQ1NVmJnhgNDQ0UGBhIn332GVvLnlKi91tw+/ZtOnfuHO3du5d++OEHKigooH79+lFWVhYNGjSIM7m6nsmpqal08+ZNWrZsGRUVFVFqaipduHCBmpqaSFFRkckvqV89dc3/p8Gp2ydjvC2iVVtbCzs7OxgYGLCMxqpVqzBmzBiMHDkSFhYWsLOz63HRGnlCXFwc1NXVERsbi/DwcKirq8PT0xNPnz6FSCTCqlWrwOfzYWpqCg8PD04bnLv+vsePH4ebmxuUlZW7RaMfPHiAkJAQ8Hg8lJSUoKOjAzdv3oSvry/WrFkjNYfs94SkXu/cuROampos+nXgwAHweDwUFhayLG5aWhp27tyJ9PR0tsZcRvVWrVoFDQ0NpKWlYdu2bQgPDwePx2MN8Hl5edDV1YWtrS2mTJnSIxrg5Ql79uzB06dPAfyi39HR0Syie/jwYaiqqmL37t0oLCzsNjhUjN71/nX80TIC8oaNGzfCzMwMERER7Fp5eTmWLVsGZWVlhISEYNGiRXBxcYGRkREAYMuWLXB3d5eZbsvzzKvXr1/jwoUL8PT0hI6ODkxMTJCamspmoF25cgXq6upSM8ck0RP3j6424b1793D48GHY2dnB3NycU5m7joI5f/48EhMTMWLECAQGBmLo0KEIDg7GTz/9BADQ1dXFjh07uBK3F/8G/mccL8nD7OnTp3j06BHu3LkDAHj16hUcHR1haGiIGzduAOicZH716lUUFxfLHXthT8LNmzehr6+PixcvsmtlZWXQ1dWFt7c3G+J79uxZlJSU9Ji1Tk9PZwxM+fn5sLKygkAgwIMHD6Sed+/ePcTHx3Mi7x/BoH7+/DkcHBxw9OhRdq22tharV68Gj8djh/iLFy9QXV3NDiOu9UNecPjwYWhoaGDBggXsXmtuboalpSU2bdqE4uJi8Pl8xsxZUFAAHo/HHPde/DaUlZVh/Pjx4PF48PT0xKZNm6Qer6+vh7u7uxT73OHDh5GWlobs7GxOBt/+0XD69GmoqKhAV1cX9+/fZ9dramqQnZ0Nd3d3TJkyBfPmzWPrHB4ejqioKJnsgX8Uhkt5LNH7TyA+U2X9PV6+fCn1d1paGkaNGsX25GXLliEyMhIHDx7Eq1evAHTOabWzs3un09uLnoX/CcdLcqNKTEyEk5MTtLW1YWhoiFmzZkEkEuHly5dwcHCAoaEh2xgl0RuF/M+Qn5+PMWPGoKamBsAvhsXdu3cxYsQIhIWFMYNQDC7XuqOjAw0NDRgyZAhsbW2Zc37u3Dk4OTnB3Nz8nX0YsjSa/igGdXl5Ofh8Pg4fPix1vaqqCg4ODuDxeFJOGcC94SFvSExMhLm5OebNm8cGZiclJUFPTw/KysosYgp0ZhdNTU3ZsORe/Hb8ETMCPRXy1h8FdAZz1dTUsGHDBgDAkiVLugXD2traMG/ePGhqarJ7taioqMc65Ldu3cKGDRtgaGgIPz8/qKmpQVtbu5vzIE+QvA9lbYuYmJggKiqK/Z2RkYHQ0FDs3Lmz23Orqqrw4MED3L59GwEBAbC2tu7dQ+QE/xPF5OK+hrVr19LOnTspICCA9uzZQ1paWvTTTz/R48ePadCgQbRp0yb6/PPPycPDgx48eCD1Hr119/8ab2M6+/TTT6muro6uXbtGRMR6ib744gv67LPP6MiRI7Rw4UL2fEjQt8sKkGhzVFBQoIEDB1J2djY9f/6c5s6dS3fu3CEdHR0KDAykjz76iEJDQxnjlCRkWUc9YcIEcnNzoytXrtD69evp2bNn9P7775OxsTHt3LmTXFxcKDo6mpydnYmok8nz+++/py+//FJmMnbF2/Tj448/JiUlJbp58ybV19ez62IGrK+//ppmzJhBOTk57LFeau3fhpaWFiIiCgoKIkNDQ9Zj+fLlSzI0NKRBgwbR4MGDGdNYdXU1paam0l/+8hdO9URe0b9/f9LU1KTExETaunUrDR06lHbv3k0uLi60detW6ujoIIFAQHfv3iWiTmpnSfT2zv02tLS0sDPi7NmztHv3bkpOTqbbt2+Trq4uJSYmUk5ODi1fvpxqamrY69ra2ujFixcUGRlJAQEBdPHiRUpJSaF//vOfv7vM+IMxXIrPTCUlJfLz86Mff/yRrKys6LvvvqNPP/2UPvroI44l/M8heR/K0hZxcXGhgQMH0pw5c9i1rKwsOnr0KB0/fpyxFwIgkUhE27dvJ3t7ewoPD6empiZKS0tjfbi96OHg0uv7PfHgwQOpYcE1NTXw8PBAdnY2AODMmTNQU1PDgQMHcPHiRezfvx9AZ1lCdHR0b+Tg34RkZOjBgwd48eIFamtrAQABAQFwc3PDuXPn2HMaGhoQGBiIzMxMjBo1Chs3bpS1yACko1viQcfi7/LkyRNoampCKBSipKQEQGfmy9jYGNOnT5e9sP8Pkj0k8fHxsLCwwLx581BTU4OSkhJYWVnB0tKSDVKsqqpCQEAAvL29OcsmSn7u5cuXcfr0aZapW7t2LVRUVLBr1y7Gbvn69Wv4+vpi+/btmDFjBoKCgtDU1NSb7fqNkFynXbt24dKlS0hMTISpqSkWLFiAxsZG5OfnQygUYtSoURg/fjzMzMx6e43+y/gjZgS4gjz3R4nxv8BwyVWJnjzDyckJNjY2rA9b8oxfsGAB1NXVsWnTJjQ0NEi97syZM7h9+3aPadHoxW/DH9Lx8vb2xrhx41BQUMAU8sWLF9DR0UFRURFyc3PB5/ORkpICoNPws7a2ZuVwYvRuHL8NkkZefHw8xo4dC11dXUybNg0VFRW4fv06hEIhLCwskJSUhMzMTHh6esLKygrt7e0IDg7GvHnzZCrzunXrpA62DRs2IDg4mOmAWG/KysqgoaEBNzc31vNVXFzMmW7Iu0EdGxsLTU1NDBs2DAKBAIcOHQLQebhoaWlh0qRJmD9/PtMXAFizZg1cXV05k1me8Lb+AD6fz0pMExMTYWJiggULFqCpqQmVlZU4cuQI1q9fj8OHD/f2Gv2X0JOb9uUR8t4fJbnnhoaGwt7eHu3t7XB0dISpqSlyc3Px/PlzL8e3NgAALSZJREFUvHjxApMmTeI0SPafgssSPXmGUCiEjY0NGhsbAUCKAl4crJ42bRrGjx+PnTt3dnO+xOhdc/nBH87xqqurg6amJng8Huzs7JjzVVtbCwcHB0ydOhVqampS0bPExEQ4Ojr2Ku5/gK6OgLq6OjIyMhATEwN7e3t4eXmhsrISpaWlWLJkCdTV1WFnZwd/f3+2wfj7+7OGXFkcjBcuXICBgQH8/f1RVlYGoLNnasiQIZg9ezZzvsQHSWZmJoYMGQI3Nzcpcg1ZGk/yalBL3lMHDx6EgYEBzpw5g5KSEnh7e0MgECArKwtAp3EVHR0NX19fLFmyhMk8f/58zJgxQyoK2Ivu+K39AZK60rW/EugNOP3e6M0I/PuQt/6oXobLXvwW+Pn5Ydy4cexvSX0JDAyEm5sb+zs0NBRGRkZISUl5p/PVC/nAH8rxEhvthw8fhr29PXR1dWFoaIiCggIAnZScPB4P06ZNQ3NzMwCgqakJ3t7emDlzJmdy/xFQXFyMGTNm4ODBg+xaZmYmHB0d4enpicePHwPoHJBcV1fHGp+XL18OdXV1mZVViBvd09LS4OjoCF9fXybbqVOnMHz4cERFRaG6upq95uDBgwgJCcGcOXM4OQj/CAb1iRMnkJSUhK1bt7JrIpEIPj4+EAgEyMzMZPI1NjairKwMRUVFiIuLg4qKCu7evcuV6HIBZ2dn2Nvbs6gpAEyaNAk8Hg9ubm7dDmox4ca0adO6Zfp78fugNyPwn0F8rickJEBPTw8PHz7EtGnT4OPj0+05OTk5UFVVZdUJYsjS+epluOzFb8HTp0+hpqaGoKAgKRZOAAgODoaZmRmePHkidX3atGlQU1PrRjjVC/nCH8rxEqOkpASTJk3CwYMHMWXKFOjo6KCwsBBAZynckCFD4Ovri9DQUDg7O8PMzIxFmHp7SH4bJNcpPz8fAoEAqqqqOHLkiNTzMjMzIRQK4e3tzbIzd+7cgY2NDczMzGBoaNjtkPy9EBAQIHXY7du3DzY2NlLO18mTJzF8+HDMnDkT9+7dQ319PSZPnozk5GT2OlkaTX8Eg/r169fg8/ng8XjdotRi58vMzAw7duxAS0sLHj9+jIiICOjp6cHBwQG3b9/mSHL5wH/aHxATE4OIiIheJ6AXcgF56o/qZbjsxW9BSUkJrK2tERQUxOZ+BgcHw9zcnDldkrbWlStXsGzZsl79kHMoABKUbnIOySnfq1atotOnT9PmzZtp1qxZVFpaSgkJCcTn8ykjI4Py8/NJJBLR4MGDKTAwkLEG9U74/s8gZoxUUVGh+fPn01dffcUeO3ToEK1du5bGjBlDc+bMoYaGBrp+/ToREf3www9Sz/098fLlSxo4cCD169eP6urq6JNPPqGMjAzauXMnff755zR79mz67rvv6NSpUxQeHk79+/enDz74gAYOHEjp6en03nvvEQCZseo5OzuTSCSi1NRU6t+/v9Q0+oULF9Lhw4fJ19eXnJycaODAgex1sbGxVF1dTbGxsZywcUreh2K8fPmS3NzcqKWlhZYsWUKjR49mz2lpaSEXFxf6+9//TnFxcURE9PDhQxowYAC9//779Mknn8j6K8gNnJycqKWlhXbu3EkDBgyg1tZWeu+994iI6Pz586Sjo0Ph4eF0/fp18vT0JBsbGxowYAB7vVif3/ab9aIXPQGSuhkWFkZPnjyhvXv3krOzMzU0NFBUVBQNGTKEFBQUaObMmQSANm3a1CP0uaGhgZ49e0Y//vgj3b9/n2pqasjHx4eGDRtGhw4doq+++oqCgoKovb29l9XyfxQlJSUUFRVFP/zwA1VVVVF9fT2tXbuW/vrXv0rZG05OTvTZZ5/R2rVrSUFBoVdn5Bhy73gdOnSIlJSU6PvvvycFBQVmeNTX11NUVBSZmZmRrq4u+fv7U2VlJSUkJNDIkSO7vU+vEv/72LRpE928eZMSEhKIqNP5ysrKIm1tbQoICJCipD537hxpaWlxtsaSv+/27dtpx44dtHbtWho6dCilp6dTSkqKlPN1//59ysvLo4EDB5Ktra3MHXN5NaglP6+oqIgA0IABA+j//J//QzU1NWRnZ0eDBg2i6OhoGjVqFDtUWltbqU+fPj3CWJIX+Pv704MHD+jkyZNERFKOeVBQEL169Yp27txJRJ0G661bt8jT05OsrKykHHVZBhN60Yt/hSVLlpCysjJNmDCB6bNYt0tKSig4OJiioqKIz+eTv78/PXv2jNrb2+nrr78mBQUF2rt3L7333ns9Lphw+/ZtOnfuHO3du5d++OEHKigooH79+lFWVhYNGjSIa/F6wSFKSkpo2rRpVF1dTcuXLycDAwMp/fXz86Py8nLKzMxk90Qv5Bdy7Xh5e3tTfn4+jRo1iv7+979TeHg4DRo0iPr06UMtLS0UFxdHT58+paSkJGpqaiJfX1+qrKykmJgYUlNT61GbsrwBAKWnp9PcuXPJ1taWFi1aRERECQkJdOLECdLU1CR/f/9u84B6goNbWVlJ1tbW9O2339KiRYtoyJAhzPn64osvKCoqiv7xj39IGaSylFteDWrJgyI+Pp7S09OJiOjDDz+k2bNnk66uLlVXV5OdnR199tlnFB0dTXw+X0rGnmYs9VRUVFSQlZUVaWpq0tSpU+mHH35gj4WEhNDDhw9pw4YN9M0337Dr4eHhdPbsWVq0aBGZmJhwIXYvevGrKC8vJ29vbyovLydNTU3S1dUlHx8f9nhDQwMFBgbSZ599RqtWrSIioiNHjlBTUxMNGjSIDAwMqE+fPj2qeqXrPnz//n26f/8+bd26lUQiER04cIDzM7EX3OPu3bsUERFBP/zwA3l7e9Pw4cOJiMjX15fKysooKyuL3nvvvR6l2734DyHz4sb/Ejo6OrB8+XLweDxYWlrCxsYGOjo6WL16NSPTqK+vx7hx47Bt2zb2t4mJCYKDg7kUXS4h7gORrDdubW1FVlYWRowYIUVOsnr1apibmyMiIoLzeTVd+1fE/QCVlZXQ1dWFtbU1m9GVnp4OBwcHODg4vJWcQhb4IzTcrlq1Curq6sjNzcX58+fh4OAAfX195OXlAeicK2ZgYAA9Pb1e0oz/D/T2B/Tij4j/pf6oXobLXkji9u3bsLCwQGhoKG7evInAwMD/2969x/V89w0cf1VKqRwyMmU5Vygi5M7xHiqHMReXSmPOIiGtUo5zhRJlZSEqOhBmZDWnTQ6Xw1aYuTVzWs5SQg7p9Lv/cPe967Jrs130K3s/Hw+Px+/3Pb59+/br+/59Pp/3R9W/f3+lBoEUXHk7VOsWL3gxlisqKorFixdz69Ytzp07x6lTpxgxYgQffPAB58+f5+eff2by5MnUq1ePx48fo6enJ98w/Ulnz57F2tpaeV9cXMyePXvw9/dn8ODBBAYGAi+6i+Tl5REcHKy2FozyrSf79u3j8uXL3L59G3t7exwcHMjJyeHDDz+kQYMGLFmyBAsLCxISEjh//jyLFy9WW9w//fQTc+bMwdTUlJkzZ9KiRQs8PT25evUqa9aswcTEpMK3qOnp6Rw4cIBPPvlE7ff1pUuX8PHxISAggE6dOnH69Gk8PDwwNTXl3r17BAYG0q1bN+7du8eiRYtYtWqV2mOuzmR8gHhbvc3jo8rHLK38orzMzEz8/f25fPkyJiYmJCcnS0vXW6baJV6JiYnk5uYCL5pgdXV1+fTTT/nyyy8JDAzE2tqas2fPEhERQf369cnLy6OoqIjAwEBsbW2V41THD2t1KP/wdvLkScaMGYOvry9jx45VtiksLGT37t0EBAQwbtw4fHx8Kuyr7j8swcHB7N27l9atW1O7dm127drFlClTmDlzJtnZ2QwfPpyGDRuyYMECrKysqkTc1eWBWvUv3WhOnTrFlClTSEpKQlNTkxUrVtCpUydsbGyYPn06KpUKd3d3XFxclH3kd/E/I+MDxNtOxkeJv5Jz586xfv16QkJCpPDbW6hafc0yfvx4tm7dSkpKCtHR0YwYMYKioiLmz5/P3/72N3x8fDh27BgDBgxgw4YN/P3vf6dBgwZkZWUp403KyIPe7yv/UP3kyRNsbGwYN24cwcHBxMbGKtvp6Ohga2uLkZER0dHRfP755wBoaGigUqkqPXkp/13C119/TXJyMitXriQyMhInJycAbGxsuH79Og0bNmTbtm2cO3eOzZs3qzXu8iwtLVm2bBnnz58nMzOTGTNmYGpqSmlpqfIzmTRpEg8fPiQ0NFRZpq6kKzMzk8LCQurUqcMHH3yApqYm3377LUZGRvTq1Qtra2uMjY3R1dVl165dFX5G8rv4n7G0tCQsLIxGjRqRnJzMjz/+qNy7EydOJCsri+TkZHR0dCguLlZztEK8urLPiTZt2jBp0iTWrFnDkCFDMDMzw8jIiNq1a6s5QiFev3bt2hEWFiZJ19uqkrs2/mnOzs6qYcOGqXJzc1W5ubmqtLQ0la2trWrlypXKNkuXLlW1adNGtWXLlgr77ty5U/pQ/0Hlx0bt379fNXv2bFVubq6qoKBAFRISojI3N68wGW5ubq5qwYIFqh9++EFt1zorK0t5XRbD2rVrVZ988olKpVKp9uzZo+rQoYNqy5Ytqjt37qjc3NxU6enpKpVKpbp//36VvEd++ukn1aBBg1QzZ85UnT17VlleNvGwuvp+l78/vvnmG5Wzs7Nq586dKpVKpcrLy1Pl5+erHB0dlXskJydH9fHHH6sOHz6sjDuSOfNeLxkfIP5KZHyUEKI6qhZptKurK8+fPyc+Pp5atWoB0LFjR0xNTSkoKFC28/PzQ0NDQxmfM2jQIPT09BgyZAiAfHPwisp3Uzp8+DBbt27l1KlT1K1bl6lTpzJ9+nTgxXxRubm5dO7cmfj4eAoKCrCyskJDQ0Mt13rVqlU0btyY2bNn88svv9C8eXOePXtGfn4+qampBAQE4OPjw8iRI8nKyuLixYvcuHGDTp06Kd1Vqlq3N3Nzc4KDg/H19SU6OpoJEyYQGRmp1ipH5e+Pbdu28d1333H69Glyc3PR1NTE0dGR/Px8SkpK0NHR4cKFC6xatYri4mL+67/+S+3dON9WlpaWBAUF4e/vj4uLCyYmJlIJS7x1yj6jNTU1KS0trVKf10II8Xuq/F/iMWPGkJOTw549e9DU1FRKaxsaGvLs2TNl7iLV/3V78vX1RUNDg3nz5vHOO+/Qp08f5Vjy4PFqyh6Ily5dysGDB7G0tKRly5bs3buXoqIiPDw88PDwQE9Pj88//5yvv/6ahg0bsmnTJqWbXmVe67KfvaWlJSEhIRw6dEiZz8XMzIykpCSOHTuGl5eXMraoZs2a1KtXj/r161c4VlX8I17VHqjL7o/PPvuMhIQEpk6dio2NDcnJycTFxVFSUsLQoUOxsbFh6dKlNGzYkPr165OYmIiWllaVS27fJpaWlixevFjGB4i3VvnPDvnyRghR3VTp4hrXrl3j008/5aeffiIhIQEzMzNlnbu7O9euXSMlJQV4eZB/fHw8zs7O8sDxJx09epSAgABWr15Nu3btAIiNjWXfvn20bt0aT09PjIyMuHHjBvn5+Zibm6OpqanWh7ySkhLc3Nw4ffo0Q4YMISgoCABvb29SU1Px8fHBzs4OTU1Nli9fTn5+PgkJCdUmCVD3gNuy3zGVSsWtW7eYOHEis2bNol+/fsCLcYD+/v5cvHgRLy8v+vbty5kzZyguLsbGxqbKza/zVyDXWwghhKg6quxf5AULFijdxsLCwhg1ahSJiYm89957eHp6cuPGDTZs2AD8evcwNzc3QB48XoWbmxu9evVi4sSJyrJHjx6hq6tLo0aNlG5hH3/8MQUFBaxduxYNDQ0mTpyIqampsk9paalar3VOTg5NmzalXbt2xMXFYWRkhK+vLyEhIZSUlJCQkMCyZcswNzenVq1axMXFVasWmLIBt1D593X5roEaGhrUqFGDhw8fYmhoCLyobKmvr09ISAhOTk6sWLGC58+f4+DgoMRZUlIiv4uVTK63EEIIUXVUyb/Ku3btIikpCQsLC/T09JgxYwahoaG4ubnRvHlzHjx4QGRkJI0aNQJ+u3uYPHj8vjFjxtCzZ88Ky548ecLjx4/R1NSs0MVzzJgxbNq0iePHj6Ojo4O7uzt169YFKr/bx78mTMbGxixdupSSkhIaNGjAypUrUalU+Pn5ERoayvnz53nw4AGGhoa0bdtW7S10/4nKbukq+9kGBQWhp6fH+PHjATh+/Dh2dnbo6Ogo90jLli05e/YscXFxGBsbY2tri0qlqhbJrRBCCCHEm1IlO0hbW1tTr149Ll26xJ49e0hPT8fLy4vOnTtz4sQJvL29K7S0iD9n8+bNXL9+nX79+lGzZk3WrFmDv78/AIMGDUJHRwc/Pz8AZf6fnJwcLC0t6dSpE2lpaVy9erXS47569WqFpCs+Pp7Fixczbtw4du7cyd27d5k0aRKzZ88mNjaW4OBgAB48eEDnzp2xsrJSBmZXx6SrspV14T116hT79u2jY8eO6OvrM3HiROLi4pSpBXR0dJSWsYCAAJ4+fUpCQkKFYwghhBBC/FVVuadOlUpFs2bN8PLyYs+ePTx9+pTExEQ0NDQYO3YsT548Yc6cOWzYsIHWrVurO9xqa9++faxatYrMzEwmT56MiYkJhoaG7NixA319fQICApg7dy4BAQG4ubkxceJEtLS0iImJQVtbm8DAQPr27UtaWho2NjaVFndoaCjR0dHExcXRoUMHwsLCSExMZMCAAZSWlhIeHk6rVq3w8fFhwoQJaGhoEBoaSnx8PB06dKBbt27KsWRg9quLiopi165ddOzYke7duwPQt29f7ty5Q0hICKdPn6ZBgwZkZmZy7949Bg4cyN27d0lLS6s2XTmFEEIIId6kKvXkWX5y2FatWmFgYICfnx+dOnUiNjaW06dPM2PGDCwtLRk/fjwXL15Uc8TVV//+/Rk3bhynTp1izZo13L59m1GjRhEYGEhiYiJBQUH07NmTtWvX8vz5c+bNm8fChQspLS0lNDQUADMzM5o1a1apcY8dO5b27dsze/ZsDh8+zLlz54iIiGDhwoXExsbi4eHBw4cPWbduHU+fPuXvf/87MTExTJ8+nejoaKU4hPhjWrZsye3btzlx4gSXLl0CwNTUlEmTJhEWFkZeXh63b9+mVatWpKamAnD+/HlMTEzUGbYQQgghRJVRJaoaZmVlKRULyw/inzNnDtnZ2WzYsAEfHx/OnDnD6NGjsbW1JSwsjLS0NPbv30+TJk3UGX61UzYWB160IKWlpdG+fXumTZuGsbEx27ZtY+HChbi5uTFnzhwAbty4QUlJCe+++y46OjqEh4eTlJTE5s2bK/36P3r0iClTpnDhwgV0dXWJioqiTZs2yvqEhAQiIiLYunXrS7FV1zFdlenfzbF19OhRpk+fTq9evQgICKBBgwYV1qtUKn755RdKS0vZvn0727ZtY/PmzbRq1aqyQhdCCCGEqLLU/gTq7u7OjRs36NWrF9OmTVMSAnhRBtzLy4sjR44QHByMp6cncXFxaGhoMHXqVJo1a0bjxo3VGH31o1KplGscExNDdnY2d+7cUVox3N3dGTFiBACLFi2ipKSEuXPnYmJiQkZGBj4+PqhUKrKzs1m3bl2lJl1l3xHUrl2byMhIAgICOHDgADk5OcD/F9twdnZm1apVZGRkvBSfJF2/rXxSfvjwYW7evElBQQFdu3ale/fuhIeH4+Hhgba2Nn5+fso8aMXFxeTm5uLr60teXh4GBgbEx8dL0iWEEEII8X/U2uKVlZWFg4MDNWvWRKVS0bRpUxwdHenfvz8tW7aksLCQ4OBgHj58yPLlywGYOXMmR44cYcmSJTg4OAC/Xk5e/LaYmBhWr15NUFAQDRo04JtvvuHIkSO0bduWadOm0ahRI7744gsCAgLw9/dn9OjRAHz++ec0b96cdu3aVUqBk+TkZFq3bo2FhYWyrKzV6uHDh3h4eHD37l2ioqKUVtO7d+8yevRo5s+fj729/RuP8W2wZcsWnJ2dlffBwcGkpqZSp04dCgoKyMrKUu6DQ4cOMWPGDBwdHfH29uadd95R9rt79y6FhYXUrl2bOnXqqOO/IoQQQghRJam9q+HZs2eZOnUqffv25f79+xQXF5ORkcGUKVPo168fBgYGDBkyBC8vL4YMGQJAWFgY06dPl2TrT1CpVBQVFeHh4aF0LyyTkJBAXFwcXbp0wcPDg4YNG3Lw4EF69OihlpaiFStWEBUVhZ6eHsOGDcPOzk6ZrLfMo0ePmDRpEjk5Obi5uVG7dm1SUlLIzc3liy++kHvkFezatYu5c+eSmJiIlZUVX375JStWrCA8PBxzc3OePXvGpk2b2LBhA4GBgQwZMoRDhw4xefJkpk+frtxD/zqJuRBCCCGE+H9qT7wA0tPTmTNnDk5OTtjb25OVlcW6deuoU6cO9vb2aGtrK92Y9PT0lP2kpevPKS4uZvTo0bRt25aAgIAKY3r8/PzYs2ePMo6nYcOGyj6VPWFvQkICmzdvxsHBgeTkZB4+fIilpSXDhw+na9euyjxujx8/Ztq0aZw8eZLevXvTvHlzZs2ahba2ttwjr+Dy5cs4OzszceJEJk2axJIlSygoKODTTz9VtikpKWHx4sXs3buXHTt28O677/LDDz/Qtm1b6b4phBBCCPEKqkRVQ1tbW5YuXcqXX37Jt99+y9ChQ9m4cSPOzs6kpKQQGRnJli1buHPnToX95IH695WWlr60rEaNGpiZmfHtt99y69atCoUUmjdvjomJCU2aNKnQhUwdE/YOHDiQhw8fUrNmTVJSUvD29ubevXvMmzeP4cOHExsby4kTJzAwMCA8PJyOHTuiq6uLj48P2traFBcXyz3yO1QqFS1atOCjjz4iISGBq1evkpuby+3btytso6WlRZ8+fSgqKiIvLw+A9u3bU6NGDYqLi9UVvhBCCCFEtVElWrzKpKen4+npyaBBgxg/fjzGxsYUFBQQExPDlStXWLZsmTxI/wHlW7LS09N5/Pgx9+/fx8nJiYKCAj7++GNq1qzJP/7xDxo2bIiuri4zZszAxsaGyZMno6Gh8W8r3FWWjRs38tlnnxEdHU379u0B2LBhA8uXL0dLSwstLS0GDhxI165d6dWrF3Xq1EFTU1O6vf1B6enpBAQE4O7uzs2bN4mPjyciIkJJrgDOnDnDggULCAsLq/RpBIQQQgghqrsqlXgBZGRk4OnpyeDBg3FxccHMzKzCQ7R0HfvjVq5cyd69e6lVqxa3bt2ibt26TJ06lRYtWuDv709OTg4GBgYYGBjw7Nkzdu/eTY0aNSo96UpMTOT+/fsATJgwAV1dXU6fPs2UKVMYOnSoUtr+gw8+wMzMjH79+nHs2DG++uorbGxs2LRpU5VIFquT8tdq1qxZ3Lhxg6SkJFxcXMjPz8fPzw8LCws0NDSYM2cOKpWKqKgoub5CCCGEEH9QlUu84EXyNWvWLHr06IGnpyfGxsbqDqlaKZ+oxsfHs3r1atauXYu1tTW7du3C19eXLVu2YG5ujp6eHtu2beP58+fo6+vzwQcfoKWlVekJ7vjx48nNzaWgoIDs7GxMTEzYsWMH2traLFmyhJSUFBISEvDy8kJXV5eIiAiMjIwAePjwIQYGBmhpaUlL1+8IDAykbdu2DBgwQCkbX1ZCPjMzk+nTp+Pn50eHDh2YPHkyt2/fpqSkhMaNG6OhoUFSUhLa2tqS3AohhBBC/EFVMvECOH78OBs3biQyMlIepF9RUlISPXr0oHHjxsqD8fz582nYsCEeHh6kpqYyf/58vL29sbCwYMeOHRUKKJSp7KTLxcWFwsJCoqKiAPjxxx/x9vbGxcUFLy8v0tPTmTp1Ko8ePaJLly6EhYUpSVf5WKU19Lddv36dcePGcf36dezs7OjevTsTJkxQ1ufn5zNt2jTq169PaGgoAKmpqTx58oR69erRp08ftLS0ZBJqIYQQQog/ocp+Zd2tWzcl6fq1AhGiotTUVEJDQ1m/fj13795FU1OT58+f88MPP6Crq8vZs2cJCAhg9uzZODs7o1Kp2Lp1K2fPnn3pWJWZvLi6uvL8+XPi4uIwMjLCyMiIjh07YmpqyvPnz4EXxVfs7OzQ0tJi4cKFGBkZKZMpl49Vkq7f1qRJE5KTk4mNjQUgNjYWJycnEhMT+eWXXzA0NMTT05Njx46xf/9+AAYMGMCIESPo27ev0hIqSZcQQgghxB9XZRMvAA0NDaXCnfhtAwYMwM3Nje+//57IyEhu375NzZo1cXBwIC4uDldXV+bNm4eLiwsAT548oXnz5kq5eHUYM2YMOTk5bN++nVq1alFYWAiAoaEhz549Q19fX0m6J0yYgI6ODnv37gWQVtA/SU9PDzs7O8LDw4mOjsbS0pLNmzfj6upKdHQ0paWl9O/fnwsXLgAvWhHLk+RWCCGEEOLPqfJfXcsD9u8rG6Pj4eFBUVERBw8eZO3atXh6evLf//3f7Nu3j7p162JmZgZATk4OCQkJvPvuu2pLvK5du4a2tjZPnz7l+vXrmJmZKWOO3N3d0dLSwtPTU9ne1NSUNm3acPDgQVxdXalTp45a4n5bGBoaYmhoyMqVKzl//jxHjx4lISGBli1bcurUKXR0dBg1ahT16tVTd6hCCCGEEG+FKjvGS7ya8sUkNm/eTIsWLfjuu+9ITU3Fzs6O2bNnc/bsWVatWsXPP/9M/fr1qVmzJjo6OmorlLBgwQIaN25Mz549CQsL43/+539ITEzkvffew9PTk6tXrxIVFUWjRo0qjCdKSEhg9+7dbN68WRLy1+BfC5FcvHiRixcvEh0dzfPnz9m5c6e0cAkhhBBCvCaSeFVTeXl5FVojtm3bxpIlS9i4cSPW1tZERESQkpJCt27d8Pb2Jj8/n1OnTpGVlcV7772Hg4ODWgollFVVtLCwYNiwYdja2hIaGsqFCxdo3rw5Dx48ICIiAlNT05f2LSwsRFtbW0rGV4Ky6ysFS4QQQgghXg9JvKohJycnOnTowNKlSwHYuXMnhw4dolOnTri5uSnblU++Jk+e/FJZfnU8VF+9ehVXV1fy8/OxtrbG0dGRzp07s379elJSUli/fj3du3f/zWNIyfg3p/w9IcmtEEIIIcTrI09V1YyrqysGBgbMnTtXWfbVV1/x9ddfs3fvXh4/fqws9/DwYODAgXz//fcEBwcrkxOXqeykS6VS0axZM7y8vOjatSsqlYrExETS09MZO3YsvXv3Zs6cOfz888+/eRxJut6c8veEJF1CCCGEEK+PPFlVIy4uLhQUFLBp0yb09fWVKoDr16/H1dWVn3/+mS1btryUfHXv3h1NTU3q1q2rpshftJ6UJUytWrXCwMAAPz8/OnXqRGxsLKdPn2bGjBlYWloyfvx4Ll68qLZYhRBCCCGEeN2kq2E14ezsTGFhIXFxcejr61NUVIS2tjYA//znP7G3t1cKaYwZM4YPP/wQfX19Zf+y7nmV3X0sKytLqaZY/txz5swhOzubDRs24OPjw5kzZxg9ejS2traEhYWRlpbG/v37adKkSaXFKoQQQgghxJsiLV7VwOTJk8nJyWHHjh1KS1dZ0uXh4cGaNWsAWLFiBe3atWPTpk3s3LmzQsuXOuZEc3d3x8PDg5CQEJ49e0b5HN/b25vi4mKOHDlCcHAwFhYWxMXFkZGRwdSpUxk7diyNGzeutFiFEEIIIYR4kyTxquJu3brFqVOnsLS05NKlSwDKfFeenp788ssvLFu2TNk+NDQUKysrwsLCOHr0aIVjVebYqKysLA4ePMi1a9fYtGkTI0eOZO3atcr/wdDQkFatWpGcnAzAZ599hqWlJStXruT27dv4+vqipaX10gS+QgghhBBCVEeSeFVxjRs3Ji4ujhs3brBq1SouX74MoMx3tXbtWkxMTCq0Jrm4uPC3v/2Nfv36qStszMzM2Lp1K4aGhgwbNoymTZty7tw5Ro0aRUxMDNnZ2Xh4ePDdd9+xa9cuAMLCwvjoo4/o27evchwpZS6EEEIIId4GMsarmsjMzMTPz4+WLVty7949Hj16pMx3Vb68urOzM/Xr1yciIgINDQ21z8OUnp7OnDlzcHJywt7enqysLNatW0edOnWwt7dHW1ub3NxcfH190dPTU/ZTd9xCCCGEEEK8TpJ4VSOZmZl4eXmRk5NDcHAwffr0qVCwYtKkSVy/fp1du3Yp3RGrgvT0dGbNmsWAAQOYPXs29+7d49ixY6xZs4bbt29TWlrK119/TbNmzdQdqhBCCCGEEG+EJF7VzIULF/D29qZly5aMGzcOKysrACZOnMi1a9f46quv0NbWpri4mBo1aqg52v+Xnp6Op6cngwYNYvz48RgbG1NQUEBMTAxXrlxh2bJl0sIlhBBCCCHeWpJ4VUOZmZn4+vrSokULJkyYQGRkJBcvXqyySVeZjIwMPD09GTx4MC4uLpiZmVXoJindC4UQQgghxNtKEq9qKjMzE39/fy5fvoyJiQnJyclVOukqk5GRwaxZs+jRoweenp4YGxurOyQhhBBCCCHeOEm8qrFz586xfv16QkJCqFGjRpVPusocP36cjRs3EhkZWakl7oUQQgghhFAXSbzeEtUl6SpT1sWwfHEQIYQQQggh3laSeAm1KT++SwghhBBCiLeZNDUItZGkSwghhBBC/FVI4iWEEEIIIYQQb5gkXkIIIYQQQgjxhkniJYQQQgghhBBvmCReQgghhBBCCPGGSeIlhBBCvKWkcLEQQlQd1WfiJyGEEH8Zfn5+fPnll/92fd26dTl58iQfffQRAHFxcZUV2mv1OuNPTU1l+fLl5OTk8OGHHzJ69Gjmzp3Lli1b/uNjCyGE+M9J4iWEEKJKatCgAREREb+6rmzC+AULFlRmSFXaokWLaNq0KcuWLcPY2Jjdu3dz+vRpdYclhBDi/0jiJYQQokrS0dGhQ4cOv7lNy5YtKyeYauDBgwfY29vTtWtXdYcihBDiV8gYLyGEENXWRx99pHTXA3j8+DHz58+nW7du2NjYMGvWLGJjYzE3N6+w34EDBxg2bBhWVlbY29vzj3/8g6dPnyrrw8PD6devH2lpaQwePJh27drh4ODwUvfHuLg4HB0dsbKyokePHixcuJDHjx8r64uKili9ejV9+/bF2tqagQMH8sUXX1Q4hkqlIioqit69e2Ntbc3IkSP58ccfX4rX1dUVGxsb2rVrh6OjI/Hx8QCcPHlS+f+tXr0ac3Nz/Pz8lNZCc3NzwsPD/+wlFkII8ZpIi5cQQogqq7i4+FeXa2lpoaGh8dLyadOmcf78eWbNmkXjxo1JTExkxYoVFbbZvXs33t7eDB48mJkzZ3Lz5k1CQ0O5dOkSMTExynHv3bvHp59+iru7OyYmJmzYsAE/Pz+sra1p0aIFKSkpBAUF4evri7m5OVeuXCEoKIiCggKWLVsGgK+vL9988w3u7u60b9+eI0eO4O/vj5aWFkOHDgUgIyODwsJC5s2bR2FhIUFBQUyZMoVDhw5Ro0YN0tLSmDZtGqNHj2b69OkUFBQQHx/P4sWLadOmDW3btiUpKYmRI0cyfPhwRowYQYMGDdDS0mL79u0kJSXRqFGj1/hTEUII8WdI4iWEEKJKunnzJm3btv3VdTNmzGDq1KkVlh0/fpwTJ04QHh5O//79AejZsyeDBw/m0qVLwIvWpZCQEHr06EFISIiyb9OmTfn44485dOgQvXv3BuDZs2cEBgbSrVs3ZZs+ffpw6NAhWrRowcmTJzExMWHUqFFoamrSpUsXatWqRV5eHgAXL14kJSWFgIAARo8eDUC3bt24desWJ0+eVBIvHR0d1q1bR926dYEXrXZz587l0qVLWFhYcOnSJYYOHUpAQIASr42NDV27duX777+nY8eOSpfMRo0aVXgN/G53TSGEEJVDEi8hhBBVUoMGDYiMjPzVdcbGxi8tO3HiBNra2vTt21dZpqmpiZOTk9LV7sqVK9y5c4fJkydXaE3r3LkzBgYG/POf/1QSL6iYtJQlMmVdEu3s7EhKSmLYsGH079+f3r17M3jwYKXFLD09HYB+/fpViDMsLKzC+5YtWypJF4CpqSkA+fn5AEyYMEE577Vr17h69arSFbGoqOhXr48QQoiqRxIvIYQQVZKOjg5WVlavvH1eXh5169ZFU7Pi8OV33nlHef3gwQPgRQXARYsWvXSM7OzsCu/19PSU12XHLZsba8CAAZSWlpKYmEhERASrVq3CxMSE2bNnM3DgQOVc9evX/824a9WqVeF92XlKS0sBuH//PgsWLODAgQNoaGhgZmZGp06dKsQihBCi6pPESwghxFvB2NiYvLw8SktLKyRfubm5yuvatWsD4OPjQ5cuXV46Rp06df7QOQcNGsSgQYPIz8/n6NGjREVF8cknn2Bra6uc6/79+xXGWF25coX79+9ja2v7Sufw9vbm8uXLxMTE0LFjR3R0dHj27Bnbtm37Q7EKIYRQL6lqKIQQ4q3QpUsXiouL+fbbbyssP3DggPK6efPm1K9fnxs3bmBlZaX8a9SoEStWrOD8+fOvfL6ZM2fi4eEBgKGhIU5OTkydOpWSkhKys7OVVqny5wcIDQ1l8eLFr3yejIwMHBwcsLOzQ0dHB4DDhw8D/98q9mv+teVPCCGEekmLlxBCiCqpsLCQM2fO/Nv1rVu3rvC+c+fO2NvbExAQQE5ODo0bN2b79u389NNPyrgrLS0tZs2axfz589HS0qJPnz48evSIzz//nLt37/7bYh6/xs7OjgULFhAUFETPnj159OgRERERNG3aFAsLC7S1tXF0dCQkJISCggLatm3L0aNH2b9//0vjvH6LtbU1u3fvpm3btjRq1IjTp0+zdu1aNDQ0ePbs2b/dr6zF7auvvqJ9+/Y0adLklc8phBDi9ZPESwghRJV07949Ro4c+W/Xb9++/aVloaGhLFu2jBUrVlBcXMz777+Pi4sLO3fuVLYZMWIE+vr6rF+/nqSkJGrVqkXHjh0JCQn5Q8mJs7MzRUVFbNmyhcTERHR1denWrRuffPIJ2traACxfvpyIiAji4uLIy8ujWbNmhIWF4ejo+MrnWbZsGYsXL1ZayZo2bcqiRYtITk5WCnj8mv79+7Nr1y78/PwYPnw4CxcufOVzCiGEeP00VDIyVwghxFvg5s2bnDlzhvfffx9dXV1luaenJ9evX39p8mMhhBCiMkmLlxBCiLeCpqYmfn5+vP/++wwfPhwtLS0OHz7Mvn37WLp0qbrDE0II8RcnLV5CCCHeGidOnGD16tVkZmZSXFxMixYtGDt2LIMGDVJ3aEIIIf7iJPESQgghhBBCiDdMas0KIYQQQgghxBsmiZcQQgghhBBCvGGSeAkhhBBCCCHEGyaJlxBCCCGEEEK8YZJ4CSGEEEIIIcQbJomXEEIIIYQQQrxhkngJIYQQQgghxBsmiZcQQgghhBBCvGH/CwXpUmjwa1F1AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# absolute\n",
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.barplot(data=df, x='Eigenschaft', y='Anzahl fehlerhafter Einträge')\n",
"axes.set_xticklabels(axes.get_xticklabels(), rotation=45, horizontalalignment='right')\n",
"text = axes.bar_label(axes.containers[0], label_type='edge', rotation=90, fontsize='small')"
]
},
{
"cell_type": "code",
"execution_count": 233,
"metadata": {},
"outputs": [],
"source": [
"if SAVE_FIGS:\n",
" fig.savefig('NaN-absolute.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 234,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAAMoCAYAAAATOgvFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT5cPG8TuhQMuSli2KDLVsEFkKykZEQDaKDBmy9x4iILKRLcgGAdkIskRQhhPZqBSUvSxIGS2UtrR53j94mx8VjA20PQl8P9fFRXNOxt00685zznNsxhgjAAAAAMB92a0OAAAAAACejNIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKUwK5deuWwsPDrY4BAAAAIIFRmh7A33//rTZt2uj48eO6du2a2rRpoxdffFHFixdXly5dFBoaanVEAAAAAAmE0vQAPvjgA/n6+ipTpkwaMWKEYmJitGzZMi1ZskQ3b97URx99ZHVEAAAAAAnEZowxVodIasYYORwP/muXLl1a27Ztk5+fn1599RV9+eWXSp/eX5J07do1VatWTT///HNCxQUAAACQCOx2m2w223+ezycJsngch8PoypWbD3z51KlTKzj4ip54Ir1SpUqt69cj5XDcub6wsAilTJnyoa4fAAAAQOILCEitZMn+uzSxed4DePXV8nr//b46f/6cGjduppEjP9SFC+f1559H9f77fVS6dBmrIwIAAABIII/l5nkxMY6HGgmKjIzUiBFDtH37t0qbNp3CwkIVezcWLlxUo0aNV5o0aRIqLgAAAIBEcGek6b/HkShND+HKlRAdPXpEYWGhSpEihXLmzK2cOXMlQEIAAAAAiY3S5EJClSYAAAAA3iu+pYl9mgAAAADAhcdy9ryHNWLE0P88z4ABg5MgCQAAAIDExkjTA0iVKrU2bVqvW7duWR0FAAAAQCJjpOkBdOvWS9evX1OaNGnVs2dfq+MAAAAASESMND2grl176dtvv9bVq1esjgIAAAAgETF73kO4deuWUqRIoWTJkiVAKgAAAABJKb6z57F53kPw8/OzOgIAAACARMbmeYng0qWLVkcAAAAAkEAoTYmgSZOGVkcAAAAAkEAoTYlg7NhJVkcAAAAAkECYCAIAAADAYym+E0Ew0vQA1q1bE+f0kiWL9N57zdSpUxtt2fKVNaEAAAAAJApK0wOYMmWC8+fFixdoxYolqlChiooXL6lJkz7WmjWrLEwHAAAAICEx5fgDuHuLxg0bvtTw4WOUL18BSVLx4iX10UeDVbt2PaviAQAAAEhAjDQ9AJvN5vz5xo0bev75vM7TBQsWVkhIiBWxAAAAACQCStMDiI6+rc2bN+rUqZMqXLiofvvtkHPdnj2/KHPmzBamAwAAAJCQ2DzvAVSvXlMrVy7V8ePHFR19W2FhYZo0aZrWrFmpKVMmqHv3PlZHBAAAAJBAmHL8IURHR+v48WM6e/a0Xn21gnbv3iVjHCpbtlwCpAQAAACQmOI75TgjTQ9o7tyZWrt2ta5eveJclitXHjVq1NjCVAAAAAASGqXpAXz22Vzt2LFNXbr0lM1m05IlC/X66zVkt9s1Z84MRUVFMXseAAAA8IigND2AL7/8Qp98MktZsmSVJOXPX0CDBw/QjBnzlC/fnZ8pTQAAAMCjgdnzHsCNGzeUPr2/87S/v7/OnTsjSQoMzKurV5lyHAAAAHhUUJok2e02+fjY4/0vX778mjp1vCSHfHzs+uyzOXruuUD5+Ni1adOXevrpHG5d3/3+2e22/8wNAAAAIPE99rPn2e02Bfinks0e//74559/qnXr1rp+/bqSJ08uX19fzZ49W1FRUWrVqpWmTZum4sWLP1RG43DoytVwORyP3Z8HAAAASBLxnT3vsS9NPj52+funVujW7xVzNTTe1xEeGalDZ07KYYyK5Mil1L6+io6JkTFGyX0eblexZP7plK5yWV29elPR0Y6Hui4AAAAA98eU426KuRqq6MtX/vuM/y+FpOL+me+cuBGu6BvhkiSbpOiEjwcAAADAIuzTBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcsLw03b59WxMmTFD58uX1wgsvqHHjxtq3b59zfVBQkJo0aaKiRYuqfPnymjNnjoVpAQAAADxuLC9N06dP16pVq/TRRx9pzZo1yp07t9577z1dvHhRV69eVYsWLZQzZ06tWrVKnTt31qRJk7Rq1SqrYwMAAAB4TPhYHeCbb75RjRo1VLZsWUlSv379tGLFCh04cECnTp1SihQpNGTIEPn4+ChPnjw6ffq0Zs2apXr16lmcHAAAAMDjwPLSlD59em3btk1NmjRRtmzZtGzZMqVIkUL58uXTypUrVaJECfn4/C9m6dKlNWPGDIWEhChDhgwPfLs+PncG2ZIls3yw7V95cjYAAADgcWF5aRo4cKC6d++uSpUqKVmyZLLb7Zo0aZJy5Mih4OBgPf/883HOnzlzZknShQsXHrg02e02+funfujsiS1dOj+rIwAAAACPPctL0/Hjx5UuXTp98sknypIli1asWKG+fftq0aJFioiIUIoUKeKcP2XKlJKkyMjIB75Nh8MoNDRc0p3RHE8tJ6GhtxQT47A6BgAAAPBISpfOL15bd1lams6fP6/evXtr/vz5Kl68uCSpUKFCOnbsmKZMmSJfX19FRUXFuUxsWUqVKtVD3XZ0tOeXkZgYh1fkBAAAAB5llu40c+jQId2+fVuFChWKs7xIkSI6deqUsmbNqkuXLsVZF3s6S5YsSZYTAAAAwOPL0tKULVs2SdLRo0fjLP/jjz/0zDPPqESJEtq7d69iYmKc63766SflypXroSaBAAAAAID4srQ0FS5cWMWLF1ffvn31888/69SpU5o4caJ++ukntWnTRvXq1dONGzc0cOBAHTt2TKtXr9aCBQvUtm1bK2MDAAAAeIzYjDHGygDXr1/XxIkTtX37dl2/fl3PP/+8evTooZIlS0q6swnf8OHDdfjwYWXKlEktW7ZUkyZNHuo2Y2IcunLlpqQ7U4/7+6fW1RUbFX35ykP/PgnBJ2OA/BtU19WrN9mnCQAAAEgkAQGp4zURhOWlyQqUJgAAAADxLU0cPRUAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuPDQpSkyMlLGmITIAgAAAAAe54FK04kTJ9StWzeVLFlSL7zwgg4fPqwhQ4Zo4cKFCZ0PAAAAACzldmkKCgpS/fr19fvvv6tmzZrOUabkyZNrxIgR+uKLLxI8JAAAAABYxcfdC4wePVoFCxbU3LlzJUmLFy+WJA0cOFARERH67LPPVKdOnYRNCQAAAAAWcXuk6cCBA3r33Xfl4+Mjm80WZ1316tV16tSphMoGAAAAAJZzuzSlTJlSERER91137do1pUiR4qFDAQAAAICncLs0lSlTRpMnT1ZwcLBzmc1m082bNzV37ly9/PLLCRoQAAAAAKzk9j5NvXv3VqNGjVStWjXlzZtXNptNo0aN0smTJ2WM0fjx4xMjJwAAAABYwu2RpmzZsmnt2rVq3ry5jDHKkSOHwsPDVaNGDa1evVpPP/10YuQEAAAAAEu4PdIkSf7+/urevXtCZwEAAAAAj+N2aVqzZs2/rrPZbEqdOrVy5Mih559//mFyAQAAAIBHcLs0DRw4UA6HQ5KcB7aV5Jx+3Bgjm82mUqVKafr06fLz80ugqAAAAACQ9Nzep2n27Nny8/NT9+7d9e233+rQoUPavn27+vbtKz8/P40YMULTp0/XyZMnNXny5MTIDAAAAABJxu3SNHr0aL333ntq06aNnnzySaVIkUJZs2bVu+++qw4dOmjRokUqX768OnfurM2bNydGZgAAAABIMm6XphMnTqhw4cL3XZcvXz4dO3ZMkpQzZ05dvnz54dIBAAAAgMXcLk1PP/30v44gbdmyRdmyZZMkBQcHKyAg4OHSAQAAAIDF3J4IonXr1urfv79CQkL02muvKUOGDAoJCdGWLVu0detWffjhhzp58qQmTpyoV199NTEyAwAAAECScbs01alTRzabTZMnT9Y333zjXJ4jRw6NHTtWNWrU0IYNG5QnTx717NkzQcMCAAAAQFKzmbvnDXfTmTNndOXKFWXNmlVZs2ZNyFyJKibGoStXbkqSfHzs8vdPrasrNir68hWLk93hkzFA/g2q6+rVm4qOdlgdBwAAAHgkBQSkVrJk/73Hktv7NMW6fPmykidPrsyZM8vhcOjcuXP6888/tWTJkge9SgAAAADwOG5vnnfkyBH16NFDJ0+evO96m82mt99++6GDAQAAAIAniNdIU6VKlXTkyBFJ0pgxYxQWFqa+ffuqZMmSKlu2rAYNGqRy5crJZrPps88+S9TAAAAAAJCU4lWaSpYsqdSpU0uSDh48qG7duundd9/VG2+8ofDwcDVu3FiffvqpKleurIULFyZqYAAAAABISvEqTSNHjtTTTz8tSYqKitIzzzwjScqdO7eOHj3qPF/dunV14MCBhE8JAAAAABZxe/O8J5980rk/0zPPPKMbN27o3LlzkqQUKVLo+vXriRQVAAAAAJKe25vnVa1aVaNHj9ayZcuUKVMm5c6dWxMmTNDRo0c1d+5c54gUAAAAADwK3N48r1OnTnr55Zf17bffSpL69++vrVu3qnbt2vr555/VuXPnxEsLAAAAAEnM7SnHIyIiNHnyZN2+fVuS9Morr2j9+vX67bffVKBAAeXIkSPBQwIAAACAVdw+uG2DBg20ceNGJU+e3Lns6aef1uuvv05hAgAAAPDIcbs0Xb9+Xf7+/omRBQAAAAA8jtulqVmzZhozZox+/vlnXblyJTEyAQAAAIDHcHufprVr1+rChQtq0aLFfdfbbDYdPnz4oYMBAAAAgCdwuzTVrFlTNpstMbIAAAAAgMdxuzT915TiwcHBDxwGAAAAADyN2/s05cuXT4cOHbrvuj179uj1119/6FAAAAAA4CniNdI0d+5chYeHS5KMMVqxYoV27tx5z/n279+vFClSJGxCAAAAALBQvEpTVFSUpk6dKunORA8rVqy45zx2u11p06ZV+/btEzYhAAAAAFgoXqWpXbt2ateunSQpb968Wr58uQoXLpyowQAAAADAE7g9EcSRI0cSIwcAAAAAeCS3S5Mk/fDDD9q2bZtu3bolh8MRZ53NZtOIESMSJBwAAAAAWM3t0jR79myNGzdOKVOmVEBAwD3HbOIYTgAAAAAeJW6XpsWLF6tmzZoaPnw4M+UBAAAAeOS5fZymkJAQ1a9fn8IEAAAA4LHgdmnKnz+//vzzz8TIAgAAAAAex+3N8wYMGKBu3bopVapUKlKkiPz8/O45z5NPPpkg4QAAAADAam6XprffflsOh0MDBgz410kfgoKCHjoYAAAAAHgCt0vTsGHDmCEPAAAAwGPD7dJUt27dxMgBAAAAAB4pXqVpzZo1KleunPz9/bVmzZr/PH/t2rUfMhYAAAAAeIZ4laZ+/fpp+fLl8vf3V79+/Vye12azuV2a1qxZo5kzZ+rs2bPKkSOHOnXqpNdff13Snf2jhg8frt9++03p06dX06ZN1apVK7euHwAAAAAeVLxK0zfffKNMmTI5f05Ia9eu1YABA9S3b1+VL19e69evV48ePZQ1a1blzJlTLVq0UOXKlTV06FAdOHBAQ4cOVfr06VWvXr0EzQEAAAAA9xOv0pQ9e/b7/vywjDGaNGmSmjdvrubNm0uSOnbsqH379umXX37RL7/8ohQpUmjIkCHy8fFRnjx5dPr0ac2aNYvSBAAAACBJxOvgtmPGjFFwcHCcZRcvXlRMTEycZUePHlXNmjXjfeMnTpzQ+fPn77nMnDlz1LZtW+3Zs0clSpSQj8//ul3p0qV18uRJhYSExPt2AAAAAOBBxWukad68eapWrZqyZs0qSYqJiVH58uW1cuVKFShQwHm+iIgIHTt2LN43furUKUlSeHi4WrVqpcOHD+upp55S+/btVbFiRQUHB+v555+Pc5nMmTNLki5cuKAMGTLE+7b+ycfnTl9MlixevdESnpwNAAAAeFzEqzQZY+K1zF03btyQJPXt21edOnVSr169tHnzZnXo0EHz5s1TRESEUqRIEecyKVOmlCRFRkY+8O3a7Tb5+6d+8OBJJF06P6sjAAAAAI89t4/TlJCSJ08uSWrVqpXq1KkjScqXL58OHz6sefPmydfXV1FRUXEuE1uWUqVK9cC363AYhYaGS7ozmuOp5SQ09JZiYhxWxwAAAAAeSenS+cVr6y5LS1Ps5n7/3ATv2Wef1fbt25U9e3ZdunQpzrrY01myZHmo246O9vwyEhPj8IqcAAAAwKPM0p1m8ufPr9SpU+vgwYNxlv/xxx/KkSOHSpQoob1798aZcOKnn35Srly5Hmp/JgAAAACIL0tLk6+vr1q3bq1PPvlE69ev15kzZzR9+nT98MMPatGiherVq6cbN25o4MCBOnbsmFavXq0FCxaobdu2VsYGAAAA8BiJ9+Z5K1eu1M6dOyXdmQTCZrNp2bJlztnspDvTkLurQ4cO8vPz04QJE3Tx4kXlyZNHU6ZMUalSpSRJs2fP1vDhw1WnTh1lypRJffr0ce7/BAAAAACJzWbiMQ1e3rx543+FNpuCgoIeKlRii4lx6MqVm5LuTD3u759aV1dsVPTlKxYnu8MnY4D8G1TX1as32acJAAAASCQBAakTbiKII0eOPHQgAAAAAPBGHD0VAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALrhdmq5fv54YOQAAAADAI7ldmho0aKCNGzcmRhYAAAAA8DgPNNLk7++fGFkAAAAAwOO4XZqaNWumMWPG6Oeff9aVK55xMFgAAAAASCzxOrjt3dauXasLFy6oRYsW911vs9l0+PDhhw4GAAAAAJ7A7dJUq1atxMgBAAAAAB7J7dLUqVOnxMgBAAAAAB7J7dIUa8eOHfrxxx/1999/q3v37goKClKBAgWUPXv2hMwHAAAAAJZyuzTdunVLHTt21I8//qg0adLo5s2batWqlZYsWaLDhw9r0aJFeu655xIjKwAAAAAkObdnzxs/frx+//13zZ8/Xz///LOMMZKkMWPGKEuWLJo0aVKChwQAAAAAq7hdmjZt2qQePXqodOnSstlszuWZMmVS+/bttXfv3gQNCAAAAABWcrs0hYaG/ut+S0888YTCw8MfOhQAAAAAeAq3S9Nzzz2ndevW3Xfdt99+y/5MAAAAAB4pbk8E0b59e3Xq1EnXrl1ThQoVZLPZtHv3bq1evVpLly7Vxx9/nBg5AQAAAMASNhM7k4Mb1q1bp48//ljBwcHOZRkyZFC3bt3UoEGDBA2YGGJiHLpy5aYkycfHLn//1Lq6YqOiL1+xONkdPhkD5N+guq5evanoaIfVcQAAAIBHUkBAaiVL9t8b3z3QcZpq1qypmjVr6sSJE7p27ZrSpUun3Llzy253e2s/AAAAAPBobrecZs2a6fjx45Kk3Llzq1ixYnr22Wdlt9t15MgR1axZM8FDAgAAAIBV4jXStGfPHufxmH755Rft3r1bV67cuynbtm3bdPbs2YRNCAAAAAAWildpWrlypdasWSObzSabzaahQ4fec57YUlWjRo2ETQgAAAAAFopXaRo4cKDq1q0rY4yaN2+uDz74QM8++2yc89jtdqVLl44pxwEAAAA8UuJVmt5++22NHj1aBQoU0MiRI1W6dGlly5YtsbMBAAAAgOXiNRHE6dOnFRISIkkaMGCA/v7770QNBQAAAACeIl4jTc8++6x69+6t559/XsYYDRkyRGnSpLnveW02mxYsWJCgIfHwQkIuK0OGjFbHAAAAALxOvEaaxowZo1KlSjkngpDuTPxwv38OBwdj9UR16lTXokXzrY4BAAAAeJ14jTQ999xzmjx5siQpb968GjJkiAoXLpyowZCwfHx8tHnzRh04sE/9+g1SxoyZrI4EAAAAeAW3D2575MgRl4UpLCzsoQIhcfj4JNeMGfPl7x+gt96qo2nTJunixWCrYwEAAAAeL14jTXeLiorS/Pnz9csvv+j27dvO4zMZYxQeHq5jx47p4MGDCR4UDy9VqlQaOHCIatR4U3PnzlLDhm+qUKEiKlq0mDJmzKTatetZHREAAADwOG6XpjFjxmjRokV6/vnndeXKFaVMmVIBAQH6448/dPv2bXXq1CkxciIBFSnygiZNmqbz589px45vdejQAX333XZKEwAAAHAfbpemr7/+Wu+++6769eunGTNm6PDhw5o0aZIuXryoJk2aMBGEh4odEbxb9uxPqXHjZmrcuJkFiQAAAADv4PY+TVeuXFG5cuUkSYGBgfr1118lSVmyZFGbNm20cePGhE2IBDFu3GSrIwAAAABeye3SlDZtWkVFRUmScubMqb/++ks3btyIcxqep0iRolZHAAAAALyS26WpePHiWrhwocLDw/XUU0/Jz89PW7ZskSTt37//Xw96CwAAAADeyO19mjp16qR33nlHbdu21cKFC9W4cWN98MEHWrhwoY4ePaq33347MXLiIY0YMfQ/zzNgwOAkSAIAAAB4F7dLU2BgoDZt2qQ//vhDktSzZ0+lSZNG+/btU8WKFdWmTZsED4mHlypVaq1atUzly1eSn5+f1XEAAAAAr+F2aZKkTJkyKVOmTJIkm82mdu3aJWgoJLxu3Xrp+vVrSpMmrXr27Gt1HAAAAMBrPFBp+uOPP/TLL78oNDT0ninGbTabOnbsmCDhkLC6du2ld96pp5Yt35O/f4DVcQAAAACv4HZpWrt2rfr37/+vx2OiNHmu9OnTa+XK9UqRIoXVUQAAAACv4XZpmjZtml588UUNHz5cTz/9tGw2W2LkQiJhfyYAAADAPW5POf7XX3+pffv2ypEjB4XpEXLp0kWrIwAAAAAeye3SlCtXLl26dCkxssBCTZo0tDoCAAAA4JHcLk09evTQxIkT9cMPPygiIiIxMsECY8dOsjoCAAAA4JHitU9T3rx542yKZ4xR69at73tem82mw4cPJ0w6JJkiRYpaHQEAAADwSPEqTR07dmT/pUfAvn17tHbtKp05c1qRkZFKl+4J5c2bX3Xr1leOHDmtjgcAAAB4pHiVps6dOzt/XrNmjUqXLq2sWbMmWigkvB07tmnEiCGqUuV1FSpURN9887XKli2nS5cuqnXr5hozZoKKFi1mdUwAAADA47g95fjIkSM1fPhwSpOXmT9/lsaMmeTcDK9y5de0dOlijRgxVt9+u1XTp0/RjBnzrA0JAAAAeCC3J4LIkCGDQkNDEyMLEtGFC+dVqFBh5+kCBQrp0KH9kqRy5Sro1KkTVkUDAAAAPJrbI00NGzbUhx9+qF27dum5555TxowZ7zlP7dq1EyIbElC2bNn11VcbVL16TUnS99/vVIYMmSRJJ0+eULp0T1gZDwAAAPBYbpemUaNGSZLWrl173/U2m43S5IFatWqjQYP6afPmTfLz89Xu3bv0wQfDdPLkCbVv30qdOnWzOiIAAADgkWzGGOPOBc6fP/+f58mePfsDB0oKMTEOXblyU5Lk42OXv39qXV2xUdGXr1ic7A6fjAHyb1BdV6/eVHS0I8GuNyjod+3YsU0Oh0PlylVUgQIFFRYWprNnTyt//oIJdjsAAACANwgISK1kyf57jyW3R5r+WYgiIyOVIkUKpiT3AvnyFVC+fAXiLGvY8E1t2vStRYkAAAAAz+d2aZKkEydOaPLkyfrxxx9148YNrVixQitWrFCePHnUtGnThM6IBDBixND7Lo+IuOVcN2DA4KSMBAAAAHgFt2fPCwoKUv369fX777+rZs2ait26L3ny5BoxYoS++OKLBA+Jh3fhwnlt3rxRkZERcZYzQggAAAC45vZI0+jRo1WwYEHNnTtXkrR48WJJ0sCBAxUREaHPPvtMderUSdiUeGiTJ3+quXNnaufObRo8eLjy5HlWkvTddzsYYQIAAABccHuk6cCBA3r33Xfl4+NzzyhF9erVderUqYTKhgRkt9vVunU7de3aS/369dTq1SusjgQAAAB4BbdHmlKmTKmIiIj7rrt27ZpSpEjx0KEQP3a7TXa7e5vXlSpVSnPmLNDQoe9rz55dMsYhHx+3u/N9ORxGDodbkzECAAAAHs/t0lSmTBlNnjxZxYoVU6ZMdw6OarPZdPPmTc2dO1cvv/xygofEvex2mwL8U8lmd7/w+Pun1oIF8/Xpp5/q3Lkz8vdPnSCZjMOhK1fDE7U4GWN06tRJpUyZUk8+6dlT2wMAAODR4PZxmv766y81atRIoaGhyps3rw4ePKgSJUro5MmTMsZoyZIlevrppxMrb4J4FI7T5My9Zbmir/6dxAnvk8c/k/yrNEzwY0t16tRGU6fOlCT9/fcl9e7dTceP/ymbzabixUtq6NCRSps2bYLdHgAAAB4fiXacpmzZsmnt2rWaP3++fv75Z+XIkUPh4eGqUaOGWrRoocyZMz9QYDyY6Kt/K/ryBatjJJo//jjq/Hnq1Al65pmcmjhxmqKiIjVhwhhNnvyxBg4cYl1AAAAAPPIe6DhN/v7+6t69e0JnAe5x90DogQP7tHDhcqVL94QkqW/fQWrcuJ5V0QAAAPCYiFdpWrNmjVtXWrt27QeIAtzr7hka/fxSy8fH567TfnJz61IAAADAbfEqTf369Yv3FdpsNkoTEkxExC117dpegYH5lCVLVn3xxUq9805zhYeHa8aMqcqfv6DVEQEAAPCIi1dp+uabbxI7B3Bfn346V0eOBOnIkcO6du2K9u7do3feaa5582Zpx45tmjDhE6sjAgAA4BEXr9KUPTtTO8Ma+fMXjDOaFLs5XqNGjfXee+05LhgAAAAS3QNNBLFjxw79/PPPCg0NlcMRd3ppm82mESNGJEg44J+io6O1e/cuJU/uo8KFi1odBwAAAI8Bt0vT3LlzNWbMGCVPnlwZM2aMs6O+pHtOAw/jxIljGjCgt3x9/fThhyPVt293Xb78t2w2u9KnT6/x46fqqac8+7hgAAAA8G5ul6aFCxeqWrVqGjlypPz8/BIjE+A0ZcoElS1bTjabTZ07t9Urr5RTt269ZbfbNX36FE2ePF5jxkywOiYAAAAeYf99+Nt/CAkJUaNGjShMSBJHjx5Ru3ad9N577XXt2lV17NhNPj4+stvtat26nQ4f/tXqiAAAAHjEuV2a8ufPr5MnTyZGFuAeyZP7KCoqUhERt2SM0c2bN53rwsPDlSxZMgvTAQAA4HEQr83zLly44Py5WbNmGjp0qHx8fPTiiy/ed8TpySefTLiEeKy98kp5DRzYR9HR0UqXLp1mz56umjXrKCYmWtOnT1HJki9ZHREAAACPuHiVpooVK8aZ4MEYow8++OBfJ30ICgpKmHR47HXu3ENz5szQ6dMnNWzYaEVH31avXl1040aYihR5QR06dLU6IgAAAB5x8SpNI0aMYFY8WCJlypTq0KFLnGXr1n2tW7duKW3atBalAgAAwOMkXqWpbt26iZ0DiDcfHx9nYbp06aIyZ85icSIAAAA8ytyeCEKSoqKi9Pnnn6tTp05q1KiRjh8/riVLlujQoUMJnQ9wqUmThlZHAAAAwCPO7dJ05coV1atXT8OHD9fp06d16NAhRUREaMeOHWratKn279+fGDmB+xo7dpLVEQAAAPCIc7s0jRkzRjdv3tTGjRv1xRdfyBgjSZo0aZIKFSqkyZMnJ3hI4N8UKVLU6ggAAAB4xLldmrZt26auXbvqmWeeiTM5RMqUKdWyZUv9/vvvCRoQ2Ldvj44d+1OStHDhfLVo0Vhdu7bXtm1bLU4GAACAx0G8JoK4W2RkpNKnT3/fdcmSJdPt27cfNhPgtHLlUk2fPkV2u121atXVt99uUYMGbysqKlIffzxK0dHRqlKlmtUxAQAA8AhzuzQVKlRIn3/+ucqVK3fPunXr1qlgwYIJEgyQpFWrluuTT2bp6tWr6tu3u2bN+kyBgXklScWKFdfHH4+iNAEAACBRuV2aunbtqnfffVdvvvmmypUrJ5vNpvXr12vKlCn6/vvvNXv27MTIicdUSEiI8ubNr4iICNlsNj377HPOdYUKFdHFi8EWpgMAAMDjwO19mooXL6558+bJz89Ps2fPljFG8+fP199//60ZM2aodOnSiZETj6mAgAz688+j8vX11cKFy+Os27lzu7Jle9KiZAAAAHhcxGukafDgwWrVqpVy5MihCxcuqGjRolq6dKkiIiJ0/fp1pUmTRqlTp07srHgMNWz4trp166CVK9crR45nnMsHDx6g77/foWHDRluYDgAAAI+DeI00ffHFF7p06ZIkqVKlSgoKCpIk+fr6KkuWLBQmJJq6dRvo/feHys/PL87yAgUKatq0OXr55bIWJQMAAMDjIl4jTRkzZtS4ceNUtmxZGWO0YsUK7dy5877ntdls6tixY4KGxOPtpZfuLUbz5s3Wpk3fWpAGAAAAj5t4laZevXrpww8/1IEDB2Sz2bRixYp/PS+lCQlpxIih910eEXHLuW7AgMFJGQkAAACPmXiVpurVq6t69eqSpLx582r58uUqXLhwogYDJOnChfP69deDKl++olKm9HUuv/vAygAAAEBicnvK8c8++0x58uRJjCzAPSZP/lRz587Uzp3bNHjwcOXJ86wk6bvvdnjlCNOlSxeVOXMWq2MAAADADW6XppIlSyZGDjxG7Hab7Pb4jhTZ1a5dBxUvXlz9+/dU48ZNVb9+Q9lsko+P2zPm35fDYeRwmAS5rv/SvPnb7IsFAADgZdwuTcDDsNtt8vf3k92ezK3LValSQcWKFVafPn20f/9uGWPk758wszY6HDG6evVWghanLl3a3Xd5ePhN57rJkz9NsNsDAABA4qE0IUndGWVKplPfjFPE1XNuX75XtTRasf24nvB16MjKbg+dx9f/KeWs1Et2uy1BS1OmTJm0devXqlmzjgICApzLf//9VxUtWizBbgcAAACJj9IES0RcPadbl48/0GVrFrKpZqHsD3z5pDBo0DC98EJxLVgwV7169VOpUi9JklasWKqWLdtYnA4AAADuoDQBiaRGjTdVoEAhDRkyQHv3/qI2bZiKHwAAwBvFqzRVrFgx3lM822w2bd269aFCAY+KXLlya+bM+ZowYazatWsphyPG6kgAAABwU7xKU8mSJTkuDvCAUqb0Vb9+g/T111/pq682WB0HAAAAbopXaRo1alRi5wAeSfv379WxY3/q1q1wpU6dWk2aNFdMTIySJXNv9kAAAABY54H3abp586bCwsLkcDjuWffkk08+VCjA2505c1rvv99HFy8G66mncsjX11cRERE6d+6MAgIyaOzYSXrqqaetjgkAAIB4cLs0nTlzRj169NDvv//+r+cJCgp6qFCAtxs3bqRKlCil9u27yMfnf0+z6OhoTZ8+RWPHjtSkSdMsTAgAAID4crs0DR06VGfOnFHbtm319NNPy263J0YuwKsFBR3WuHGT4xQmSfLx8VGbNh1Uq1ZVi5IBAADAXW6Xpn379mnw4MGqXbt2IsQBHg1p06bVhQvnlTNnrnvWnT17Rk88kT7pQwEAAOCBuF2aUqdOrUyZMiVGFuCRUa9eQ/Xo0Ul16tRXnjzPydfXV5GRETp58oRWrlymRo0aWx0RAAAA8eR2aXrzzTf12WefqXTp0swABvyLd95proCADFq3bo0+/3yhwsNvys/PT7ly5VHLlm1Uo8abVkcEAABAPMWrNPXv39/5c3R0tL777jtVqVJFhQsXlp+fX5zz2mw2jRgxImFTAl7o9ddr6PXXa1gdAwAAAA8pXqVp165dcU5nzZpVknTo0KF7zstBcIH/dunSRWXOnMXqGAAAAIiHeJWmb7/9NrFzAI+VJk0a6uuvd1gdAwAAAPGQ4POFHz9+PKGvEnjkjB07yeoIAAAAiCe3J4K4du2axo8fr927d+v27dsyxkiSjDEKDw/X9evXObgt8B+KFClqdQQAAADEk9ulaeTIkVq/fr1effVVnThxQn5+fsqZM6f27t2r0NBQffjhh4mRE/A6+/bt0dq1q3TmzGlFRkYqXbonlDdvftWtW185cuS0Oh4AAADiye3N87777jt16tRJ06dP11tvvaWsWbNq4sSJ+uqrrxQYGKhjx449cJiTJ0/qhRde0OrVq53LgoKC1KRJExUtWlTly5fXnDlzHvj6gaSyY8c29e/fU2nTPqFChYro+vVrKly4qK5du6rWrZvrwIF9VkcEAABAPLldmkJDQ/Xiiy9Kkp577jn99ttvku4c9LZly5bavn37AwW5ffu2evXqpfDwcOeyq1evqkWLFsqZM6dWrVqlzp07a9KkSVq1atUD3QaQVObPn6UxYyapV69+6tGjr0aO/Fjnzp3VkCHD1a/fIE2fPsXqiAAAAIgnt0uTv7+/wsLCJEnPPPOMQkJCdPXqVUlSlixZdPHixQcKMmXKFKVOnTrOsuXLlytFihQaMmSI8uTJo3r16undd9/VrFmzHug2gKRy4cJ5FSpU2Hm6QIFCOnRovySpXLkKOnXqhFXRAAAA4Ca3S9NLL72kTz/9VOfOndNTTz2l9OnTOzen27Ztm/z9/d0OsXv3bi1btkyjR4+Os3zPnj0qUaKEfHz+t+tV6dKldfLkSYWEhLh9O0BSyZYtu776aoPz9Pff71SGDJkkSSdPnlC6dE9YFQ0AAABucnsiiK5du6pp06bq16+fFi1apDZt2mj06NGaMWOGwsLC1LFjR7euLzQ0VH369NH777+vbNmyxVkXHBys559/Ps6yzJkzS5IuXLigDBkyuBvfycfnTl9MlizBZ11PMK6yeWru/8rlrbnd1aZNOw0Y0Edff71Jfn5++uWXXRoyZJjOnj2lDh1aqUuX7s7HIAAAADyb26Upe/bs2rhxo06dOiVJatGihTJmzKh9+/apcOHCqlOnjlvXN2TIEBUtWlQ1a9a8Z11ERIRSpEgRZ1nKlCklSZGRke5Gd7LbbfL3T/3fZ7RYunR+VkdwmzdmlhI+95tvvqHcuXPo66+/lsPhUJcunZQrVy7dvn1bCxYsUOHChf/7SgAAAOAR3C5NFy5cULZs2ZQ3b17nspo1a6pmzZq6cuWK1qxZo9q1a8frutasWaM9e/Zo3bp1913v6+urqKioOMtiy1KqVKncje7kcBiFht6ZcCJZMrvHftAPDb2lmBjHfdd5am5XmSXvze2uyMhIbdr0tQICMqh69Rrq37+Xfvlll5InT66aNWsrW7Yc8vFJnmC3BwAAAPelS+cXry2O3C5NFStWVLly5fTxxx8rTZo0cdadPXtW/fv3j3dpWrVqlUJCQlS+fPk4ywcPHqw5c+boySef1KVLl+Ksiz2dJUsWd6PHER2dcB+QE0tMjMMrct7NGzNLCZ978uQJOnBgn6KiorRly2bZ7XbNnDlfkZGR+uSTSZo9e5Zat26XYLcHAACAxON2aZKkn376SQ0bNtS0adOUM2fOB77xcePGKSIiIs6yqlWrqkuXLqpevbo2bNigpUuXKiYmRsmSJXPedq5cuR5qfyYgsW3f/q3mzVuskJDLatWqqb74YqMyZMgoSfrww5Hq3LkdpQkAAMBLPNCe6OPGjZOvr68aNmyo77777oFvPEuWLHrmmWfi/JOkDBkyKHv27KpXr55u3LihgQMH6tixY1q9erUWLFigtm3bPvBtAkkhIuKWAgIyKHfuZ5UhQ0alTZvOuS5jxky6cSPMwnQAAABwxwOVpqxZs2rJkiUqU6aM2rVrp7lz50qSbDZbgobLkCGDZs+erZMnT6pOnTqaOnWq+vTp4/ZkE8DDsttt8vGxx/tfzpy5tGXLRqVMmVzr1n2lVKl8/3+2PIdmz56uAgUKuHV99/tntyfs8w0AAAD390Cb50l3ZrGbMGGCpk2bprFjx+rIkSNq0qTJQwc6evRonNOFCxfWsmXLHvp6gQd1Z7ZFP9ntyeJ9mT59eqtdu3aqXbtmnElLXn/9dUVGRmrWrFkPPYOjwxGjq1dvyeEwD3U9AAAAcO2BS1OsDh066Pnnn1efPn108ODBhMgEeBS73Sa7PZkObB+jG9fOxvtyI3uX0r6v+8ZZ1qhaRj2dLY3++nWi/vr1wTOlSf+0ipbvI7vdRmkCAABIZA9dmiSpcuXKWrJkidq3b58QVwd4pBvXzio05LhblwmNO8+JMqeRIsNC9OBHGQMAAEBSc7s0HTly5L7LAwMD9cUXX9yzeR0AAAAAeLMHGmkyxigoKEjh4eEyJu6mQQk9GQQAAAAAWMnt0nTo0CF17dpVwcHB96wzxshmsykoKChBwgEAAACA1dwuTSNGjJCPj49GjhyprFmzym5/oFnLAQAAAMAruF2aDh8+rPHjx6ty5cqJkQcAAAAAPIrbw0QZMmRgdAkAAADAY8Pt9tO4cWPNnDlT4eHhiZEHAAAAADyK25vnnT59WsePH1eZMmX03HPPydfXN856m82mBQsWJFhAAAAAALDSA5WmvHnzOk//c8rxf54GAAAAAG/mdmlauHChy/XR0dEPHAYAAAAAPE2Czehw/vx5TZgwQeXLl0+oqwQAAAAAy7k90nQ3Y4y2bdumpUuX6ocfflBMTIxy586dUNkAAAAAwHIPVJouXbqkFStWaOXKlQoODla6dOnUqFEj1a5dW4ULF07ojAAAAABgGbdK0w8//KClS5dq27ZtMsaoVKlSCg4O1tSpU1WiRInEyggAAAAAlolXaZo9e7aWL1+uM2fOKFeuXOrSpYvq1KmjlClTqmTJkomdEQAAAAAsE6/SNG7cOAUGBmrhwoVxRpTCwsISLRgAAAAAeIJ4zZ5Xq1YtnTlzRq1bt1bbtm21adMmRUVFJXY2AAAAALBcvEaaxowZo5s3b2r9+vVavXq1unfvrieeeEKVKlWSzWaTzWZL7JwAAAAAYIl4H6cpderUatSokZYtW6YNGzaobt262rlzp4wx6tu3ryZMmKA//vgjMbMCAAAAQJJ7oIPb5smTR3379tWOHTs0depUPffcc5ozZ47efPNN1apVK6EzAgAAAIBlHurgtsmSJVPlypVVuXJlhYSEaPXq1VqzZk0CRQMAAAAA6z3QSNP9ZMiQQe+99542bNiQUFcJAAAAAJZLsNIEAAAAAI8iShMAAAAAuEBpAgAAAAAXKE0AAAAA4EKClqbjx4+rWbNmCXmVAAAAAGCpBC1NUVFROnfuXEJeJQCLXbp00eoIAAAAlkrQ0pQvXz59++23CXmVACzWvPnbVkcAAACw1EMd3BbAo6NLl3b3XR4eftO5bvLkT5MyEgAAgEeIV2maOnVqvK/QZrOpY8eODxwIgDUyZcqkrVu/Vs2adRQQEOBc/vvvv6po0WIWJgMAALAWpQmAJGnQoGF64YXiWrBgrnr16qdSpV6SJK1YsVQtW7axOB0AAIB14lWajhw5ktg5AHiAGjXeVIEChTRkyADt3fuL2rThCxAAAICHmggiLCxMx48fV1RUlGJiYhIqEwAL5cqVWzNnzldoaKjatWsph4PnNgAAeLw9UGnatWuXGjRooJIlS6pmzZr6888/1bNnT40aNSqh8wGwQMqUvurXb5AaNnxbBQoUtjoOAACApdwuTT/99JNatWolX19f9erVS8YYSVL+/Pn12Wefad68eQkeEkDSiI6O1s8//6jly5do4cL5unXrltq1YxM9AADweHN7yvGJEyeqUqVKmjRpkqKjozV27FhJUps2bXTjxg2tWLFCLVq0SPCgABLXpUsX1bVre12+fFk2m01RUZHKnTuPpkwZr7x582vkyI+VNm1aq2MCAAAkObdHmoKCglSvXj1Jd2bKu1uZMmV0/vz5hEkGIElNmjROr7xSXps3b9dXX23T2283VblyFbVmzVfKnDmLJk/+2OqIAAAAlnC7NKVNm1Z///33fdf99ddffBMNeKn9+/epTZsOstvtstvtatHiPa1fv1Zp0qRRt2699dNP31sdEQAAwBJul6ZKlSppwoQJ+vXXX53LbDabgoOD9emnn6p8+fIJmQ9AEkmZMqUuXDjnPP3335cUHR0tSUqePLlz/0UAAIDHjdv7NPXs2VMHDx5Uw4YNlTFjRklSjx49FBwcrGzZsqlHjx4JHhJA4qtYsYr69Omhli3fU8qUvvrss7kqX76SrlwJ0fDhQ1Wy5EtWRwQAALCE26XpiSee0IoVK7RmzRr9/PPPunbtmtKmTaumTZuqbt268vPzS4ycABJZmzYdFBMTrU8+mSiHw6h8+Upq166TLl26qGzZnlSHDl2sjggAAGAJt0vTkCFD9Oabb6phw4Zq2LBhYmQCYIGUKVOqW7fe6tatd5zlTz+dQ7169bMoFQAAgPXc3qdp3bp1ioiISIwsADzYpUsXrY4AAABgCbdLU6FChbRz587EyALAgzVpwsgyAAB4PLm9eV5gYKAWLlyozZs369lnn1WGDBnirLfZbBoxYkSCBQTgGcaOnWR1BAAAAEu4XZq2bNmizJkzS5KOHTumY8eOxVn/zwPeAng0FClS1OoIAAAAlnC7NH377beJkQOAB/j114NKnjy58ubNr927d2nt2tVKnjy5qlZ9XS+9VMbqeAAAAJZwe58mAI+mtWtXq2vX9urcua2WL/9cAwb0Vtq06ZQmTVoNHTpQW7dutjoiAACAJdweaQLwaFq2bLEmT/5UktShQ2uNHj1eL71UVpJUsWJlTZw4VpUrv2ZlRAAAAEtQmgBIkkJCLqtgwcKS7uybWLLkS851L7zwoi5eDLYqGgAAgKXYPA+AJClTpsw6evSIfvvtkBwOh/bv3+tct3v3zwoIyODi0gAAAI8uRpoASJLefbe1OnV6TzExDhUtWkybNq3T9u3fKCYmRlu3fq127TpZHREAAMASlCYAkqTKlV9TnjzP6cyZ0ypd+iVFRkZqzpwZCgm5rG7deumNN2pZHREAAMASlCYAkqSrV69q+vQpOnTogPLly6+uXXupe/c+zvVVq5bT11/vsDAhAACANdinCYAkaerU8TLGofffH6qMGTOpQ4fWOnnyhHO9McbCdAAAANZhpAmAJGnPnl+0cOEKpUuXTmXLvqo5c2aob9/umjNnkdKmTSubzWZ1RAAAAEsw0gRAknT7drRSp07tPN2qVVs999zzGjp0oCRGmgAAwOOL0gQ8wux2m3x87PH6FxiYVwsXzlWyZP+7zAcffKi//rqg0aOHyWZTvK/r3/7Z7YxWAQAA78PmecAjym63yd/fT3Z7snid//33B6h169b6888jmjlzpiTJ3z+1Zs+epebNmysiIkL+/qn/41pcczhidPXqLTkcjFoBAADvQWkCHlF2u012ezJt3zlK16+fiddluvUooGvXIrV2XYc4y9u2f1a7d6e+Z7k7nngih8q/2k92u43SBAAAvAqlCXjEXb9+RiFXjsX7/PZkUsiVe5cXKCi3rgcAAOBRwT5NAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAeSREREbp165bVMQAAwCOA0gTA64WEXFbv3l11+vQphYZeV+/eXfXaa+VUrVp5vf9+H4WFhVkdEQAAeDFKEwCvN3bsCKVM6auAgAyaNOljxcTEaMaMeZo2bY7Cw8M1ceJYqyMCAAAv5mN1AAB4WAcPHtAXX2yUr6+v9uzZpc8+W6YnnkgvSRoyZLgaNapjbUAAAODVGGkC4PXSpEmjyMgISVLq1GlktydzrrPZ7PL19bUqGgAAeARQmgB4vVdfLa/33++r8+fPqXHjZho58kNduHBef/55VO+/30elS5exOiIAAPBibJ4HwOu1adNRI0YMUePG9ZQ2bTqFhYXq++93SJIKFy6qjh27WpwQAAB4M0oTAK+XMmVKDR06UleuhOjo0SMKCwtVihQplDNnbuXMmcvqeAAAwMtRmgA8Ei5duqijR4P03HN5lTVr1jjrtmz5SlWqVLMoGQAA8Hbs0wTA6+3du1uNG9fTyJHD1KjRm1q4cH6c9WPHjrQmGAAAeCQw0gTA682Y8Ym6dOmpWrXqaN++Pfrgg37y8/NV/fpvSZKMMRYnBAAA3oyRJgBe78yZ06pZs7YkqVix4hozZqJmzpyu/fv3SpJsNpuF6QAAgLejNAHwen5+fgoJuew8nT9/QXXp0l2DBw/QxYvBFiYDAACPAkoTAK9Xvnwl9e/fS7t2/eRcVqNGbZUt+6o6dnxP0dG3LUwHAAC8HaUJgNdr376zChYsrO++2x5nea9e/VW27KuKiYmxIhYAAHhEMBEEAK+XIkUKde3a857ldrtd3br1VosW71mQCgAAPCosH2m6du2aPvjgA7366qsqVqyY3n77be3Zs8e5PigoSE2aNFHRokVVvnx5zZkzx8K0ALxRZGSk1REAAIAXs7w09ejRQwcPHtT48eO1cuVKFShQQK1atdLx48d19epVtWjRQjlz5tSqVavUuXNnTZo0SatWrbI6NgAv0qRJQ6sjAAAAL2bp5nmnT5/WDz/8oCVLlqhYsWKSpIEDB2rnzp1av369fH19lSJFCg0ZMkQ+Pj7KkyePTp8+rVmzZqlevXpWRgfgRcaOnWR1BAAA4MUsLU3+/v6aOXOmChYs6Fxms9lkjNH169f122+/qUSJEvLx+V/M0qVLa8aMGQoJCVGGDBke+LZ9fO4MsiVLZvlg279ylc1Tc/9XLm/M7amZJe/MbUWuF18sluS3CQAAHh2WlqZ06dKpXLlycZZt2rRJZ86cUdmyZTVhwgQ9//zzcdZnzpxZknThwoUHLk12u03+/qkfLHQSSpfOz+oIbvPGzBK5k1JiZd63b5+SJ0+uQoUK6ccff9TSpUuVPHly1apV657XGQAAAHd41Ox5e/fu1YABA1SpUiVVrFhRI0eOVIoUKeKcJ2XKlJIebsduh8MoNDRc0p1vvT31g2do6C3FxDjuu85Tc7vKLHlnbk/NLHln7v96jDyINWtWafz4sUqWLJnatu2gmTOnq0qV1+Tj46MePXqob9+BqlLltQS9TQAA4P3SpfOL11YwHlOatm7dql69eqlIkSIaP368JMnX11dRUVFxzhdbllKlSvVQtxcdnbAf2hJDTIzDK3LezRszS+ROSomR+fPPF2ny5E8lSR06tNbo0eP10ktlJUnly1fWxIljVaFClQS9TQAA8PjwiNK0aNEiDR8+XFWqVNG4ceOco0tZs2bVpUuX4pw39nSWLFmSPCcAzxQSclkFCxaWdGe/yJIlX3Kue+GFF3XxYrBV0QAAwCPA8j3FP//8cw0bNkzvvPOOJk6cGGdzvBIlSmjv3r2KiYlxLvvpp5+UK1euh5oEAsCjJVOmzDp69Ih+++2QHA6H9u/f61y3e/fPCgjg9QIAADw4S0eaTp48qREjRqhKlSpq27atQkJCnOt8fX1Vr149zZ49WwMHDlTr1q116NAhLViwQEOHDrUwNQBP8+67rdWp03uKiXGoaNFi2rRpnbZv/0YxMTHauvVrtWvXyeqIAADAi1lamjZv3qzbt29ry5Yt2rJlS5x1derU0ahRozR79mwNHz5cderUUaZMmdSnTx/VqVPHosQAPFHlyq8pd+5ndfbsaZUq9bKioiI1Z84MhYRcVrduvfTGG7WsjggAALyYpaWpXbt2ateuncvzFC5cWMuWLUuiRAC8Ve7ceZQ7dx5Jd0aqu3fvY3EiAADwqPCIiSAA4GEcOLDvP89TtCgHuAUAAA+G0gTA640aNUwXLpyXMea+6202m3bu/CWJUwEAgEcFpQmAR7HbbbLbbW5dZtas+XrvvXfVtm2HRDmIrcNh5HDcv5ABAIBHH6UJgMew221K7++nZPZkbl3O3z+1Ro8epd69e6t+/dqy2xP2aAoxjhhdu3qL4gQAwGOK0gTAY9jtNiWzJ9Oan0fpcuhZty9fpGJ6TfmirVKnTfHfZ46njOmeVu3S/WS32yhNAAA8pihNADzO5dCzCr56zO3LZXxeCos+o7CriRAKAAA8thJ2GxYAAAAAeMRQmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAEAAACAC5QmAAAAAHCB0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAAgAuUJgAAAABwgdIEAAAAAC5QmgAAAADABUoTAAAAALhAaQIAAAAAFyhNAAAAAOACpQkAAAAAXKA0AQAAAIALlCYAAAAAcIHSBAAAAAAuUJoAAAAAwAVKEwAAAAC4QGkCAAAAABcoTQAAAADgAqUJAAAAAFygNAGARS5duqjvvtuu4ODge9Zt2fJVkucBAAD3R2kCAAvs3btbjRvX08iRw9So0ZtauHB+nPVjx460JhgAALiHj9UBAOBxNGPGJ+rSpadq1aqjffv26IMP+snPz1f1678lSTLGWJwQAADEYqQJACxw5sxp1axZW5JUrFhxjRkzUTNnTtf+/XslSTabzcJ0AADgbpQmALCAn5+fQkIuO0/nz19QXbp01+DBA3Tx4r37OAEAAOtQmgDAAuXLV1L//r20a9dPzmU1atRW2bKvqmPH9xQdfdvCdAAA4G6UJgCwQPv2nVWwYGF99932OMt79eqvsmVfVUxMjBWxAADAfTARBABYIEWKFOratec9y+12u7p1660WLd6zIBUAALgfShMAWOTixWAlS5ZMGTNm0okTx7Vp03r5+PiocuXXlCfPs1bHAwAA/4/N8wDAAjt2bFPDhm/qrbfqaNu2rWrbtoWOHftDx479obZt39Xu3busjggAAP4fI00AYIH582fpww9HSZKGDBmg3r0HqHr1mpKkbdu2aubMT1SiRCkrIwIAgP/HSBMAWOCvvy6oXLkKKleughwOh6pWfd25rnz5Sjp79qyF6QAAwN0oTQBggbRpn9D58+d0+vQpORwOHTv2p3Pdn38eVdq06SxMBwAA7sbmeQBggQYN3lKHDq1kjJQ797NaunSRnn32OcXExGj16uWqXbu+1REBAMD/ozQBgAUaNnxbOXI8o1OnTqhKlWqKiorShAljdenSRdWqVVfNmrW0OiIAAPh/lCYAsEjp0i+rdOmXnafHjJlgYRoAAPBv2KcJADzQli1fWR0BAAD8P0oTAHigMWNGWB0BAAD8P0oTAHiIGzduKDo6WpK0ZctOi9MAAIBY7NMEABaIjIzQokULlCFDBlWrVkMDBvTWnj275OOTXDVrvqnOnXvIx4eXaAAAPAHvyABggWnTJuvAgX2KiorS1q1fy263a+bM+YqMjNQnn0zS/Pmz1bp1O6tjAgAAUZoAwBLbt3+refMWKyTkslq1aqovvtioDBkySpI+/HCkOnduR2kCAMBDUJoAwAIREbcUEJBBTzyRXhkyZFTatOmc6zJmzKQbN8IsTAcAAO7GRBAAkADsdpt8fOzx/pczZy5t2bJRKVMm17p1XylVKl/5+NglOTR79nQVKFDArev75z+73Zbgv+M333wth8OR4NcLAICnY6QJAB6S3W5Ten8/JbMni/dl+vTprXbt2ql27ZpKlSqVc/nrr7+uyMhIzZo1S/7+qR84U4wjRteu3pLDYR74Ov5pyJCB2rx5kz74YJjSpEmTYNcL1/bv36tjx/7UrVvhSp06tXLlyqMiRV5QsmTxf7wlNW/MLHlnbm/MLHlnbm/MLJE7oVCaAOAh2e02JbMn05i9U3Um7Hy8L1fyo4rq88uwOMsy1H9aaZ96QhPOzpbOPlieHGmzq8+LnWS32xK0NKVMmVLp0qVT06YN1a1bL5UrVzHBrjsxjRgx9D/PM2DA4CRI4p4zZ07r/ff76OLFYD31VA75+voqIiJC586dUUBABo0dO0lPPfW01THj8MbMknfm9sbMknfm9sbMErkTGqUJABLImbDzOn79lHsXuv6P0xmlkIgwKSKhUiUcuz2Z3n9/qDZuXKcxY4Zr0aL5atDgbZUrV1EpU6a0Ot6/SpUqtVatWqby5SvJz8/P6jjxNm7cSJUoUUrt23eJM/18dHS0pk+forFjR2rSpGkWJryXN2aWvDO3N2aWvDO3N2aWyJ3QKE0AALdUr15T5cpV0IoVSzVz5jSNGTNcgYH5lDFjJg0dOsLqePfo1q2Xrl+/pjRp0qpnz75Wx4m3oKDDGjdu8j3H6/Lx8VGbNh1Uq1ZVi5L9O2/MLHlnbm/MLHlnbm/MLJE7oTERBADAbalTp9G777bWypXrNHnyp3r11fJKnz691bH+VdeuvfTtt1/r6tUrVkeJt7Rp0+rChftv7nn27Bk98UT6pA0UD96YWfLO3N6YWfLO3N6YWSJ3QmOkCQAQL8bcf/+o/PkLKn/+gkmcxj3p06fXypXrlSJFCqujxFu9eg3Vo0cn1alTX3nyPCdfX19FRkbo5MkTWrlymRo1amx1xHt4Y2bJO3N7Y2bJO3N7Y2aJ3AmN0gQAiJctW3ZaHeGheNP+TJL0zjvNFRCQQevWrdHnny9UePhN+fn5KVeuPGrZso1q1HjT6oj38MbMknfm9sbMknfm9sbMErkTGqUJABBvly9f1pdfrr5nGtjXXqvukbMwxfLW3K+/XkOvv17D6hhu8cbMknfm9sbMknfm9sbMErkTEqUJABAvP/74vT74oJ+KFCmmXLlyO6eBDQr6XUuWLNTw4WNVqtRLVse8h7fmlv697FWr9oayZ3/K6nj35Y2ZJe/M7Y2ZJe/M7Y2ZJXInJEoTACBepk2brP79P1ClSvfOXPTNN1s0bdokjywf3prbG8ueN2aWvDO3N2aWvDO3N2aWyJ3QKE0AgHi5ePEvVahQ+b7rypevqDFjPkriRPHjrbm9sex5Y2bJO3N7Y2bJO3N7Y2aJ3AmNKccBAPHy5JPZ9cMP958MYufObXryyexJnCh+vDX3f5W94OC/kjjRf/PGzJJ35vbGzJJ35vbGzBK5ExojTQCAeGnXrpPef7+vihR54Z5pYPfv36uRI8dZHfG+vDV3bNl75ZXy96zz1LLnjZkl78ztjZkl78ztjZklcic0ShMAIF5eeqmsFixYqk2b1uvkyRPOaWCfey5QnTt3V44cOa2OeF/emtsby543Zpa8M7c3Zpa8M7c3ZpbIndAoTQCAeHvqqaf13nvtrY7hNm/M7Y1lzxszS96Z2xszS96Z2xszS+ROaJQmAECC2LLlK1WpUs3qGG7z5NzeWPa8MbPknbm9MbPknbm9MbNE7oTERBAAgAQxZswIqyM8EG/NvWXLV1ZHcJs3Zpa8M7c3Zpa8M7c3ZpbI7S5KEwDAbTdv3tDly38rPDzcuWzLlvvPUOdJvDX3/Xhj2fPGzJJ35vbGzJJ35vbGzBK53cXmeQCAeHE4HFq27HOtXr1cFy8GO5dnypRZNWvWVvPmrWSz2SxMeH/emvtuN2/e0K1bt5QqVWqlSpVKkueXPW/MLHlnbm/MLHlnbm/MLJE7IXhFaXI4HJo6dapWrFih0NBQvfjiixo8eLCeeeYZq6MBwGNj6tQJ+uWXXWrXrpNy5cqtlCn/N6PRggVzFB4erg4dulgd8x7emtsby543Zpa8M7c3Zpa8M7c3ZpbIndC8ojRNmzZNS5cu1ciRI5UlSxaNHTtW7733ntavX68UKVJYHQ8AHgtff/2VZs6cf88xMnLnflb58hVQu3YtPbJ8eGtubyx73phZ8s7c3phZ8s7c3phZIndC8/jSFBUVpblz56p3794qV66cJGnChAl65ZVXtGXLFr3xxhsWJwSAx0N0dLQyZMh433Xp0/vL4YhJ4kTx4625vbHseWNmyTtze2NmyTtze2NmidwJzeMngjhy5Ihu3ryp0qVLO5elS5dO+fPn1+7duy1MBgDez263ycfHHq9/L75YXGPGfKTr16/EWR4Wdl3jxo3Uiy+WiPd1/ds/uz3hN7l44YUXNXr0RwoJuRxn+dWrVzV27Ai98ELxBL/NhOCNZc8bM0vemdsbM0vemdsbM0vkTmg2Y4yx5Jbj6euvv1bnzp118OBB+fr6Opd37dpVERERmjFjhtvXaYyRw3Hn17bZJLvdLkd4hIzDkWC5H4bNbpc9la8cDof+7a8Tmzsm/IbkCQ96ezIlS5XGZWbpf7lv37omExOddPn+LU8yHyX3Sx+v+zry1jUZh/WZJclm91HKeOa+deuaHB6Q2273kV88M9+MuKYYD8gsScnsPkrtG7/c1yKvK9oDno8+9mRKn/KJ/3w+SndKU3y3Db9y5Yq6deum3bt364knnlCqVKl069YtXbt2TS+++KImT56sgICAh8p+9+uzK+5szn7lyhX16NHDmdvPz08RERG6du2aihUrpkmTJiVA7vidz53cnTp1UqpUqdS7d29lypTJufzKlSsaOXKkoqOjNWHCBDeT/o83Zpa8M7c3ZpbIHcsbM0vk/jf/zBzf90GPL01r165Vnz59FBQUJLv9fwNjffr00aVLlzR//nzrwgHAY+jMmTP6888/dfPmTaVKlUrPPfecV0zM4225k6KkJjRvzCx5Z25vzCx5Z25vzCyRO6F5fGnavHmzunTpct+RpqioKE2fPt3CdAAAJC5vK3uSd2aWvDO3N2aWvDO3N2aWyJ1QPL40HTp0SA0aNNCWLVuUI0cO5/K3335befPm1eDBgy1MBwAAAOBR5/ETQeTNm1dp0qTRrl27nMtCQ0N1+PBhFS/umTvvAgAAAHh0ePyU4ylSpFCTJk00btw4BQQEKHv27Bo7dqyyZs2qKlWqWB0PAAAAwCPO40uTJHXp0kXR0dF6//33FRERoRIlSmjOnDkc2BYAAABAovP4fZoAAAAAwEoev08TAAAAAFiJ0gQAAAAALlCaAAAAAMAFShMAAAAAuEBpAgAAAAAXKE0AAAAA4AKlCQAAAABcoDQBAAAgUXA4UDwqKE0unD59WleuXImzjCc/ACChxMTEWB3hgURFRUny7vdEb8l+9uxZRUREWB3DbYcOHZIk2Ww2r7mvHwXe+priDShN/yIqKkorVqzQpk2bJEm//fabpDtPfm/gcDisjuA2b31R9dbc3ubAgQP6/fffJf3vPveGx7k3Pj7OnTunkJCQOMu88ffwBpGRkXFOe8Nj+uLFi9q0aZNu3brlNe+J0p3chw4d0uXLlxUaGuo1H+bnzJmjESNGSJL279+v0NBQixP9t1GjRql379769ttvJXlPcfKGjP908eJF/fbbbzp79qwkKVmyZBYnenT5WB3AU6VIkUJhYWGaPXu2Nm/erNu3b2vOnDlKlSqV1dH+k8PhkN1+pw+fOHFCuXPntjjRf7s7c1hYmNKmTWtxovgxxtzzoeHu38VTxWa8X35Pdfz4ca1YsUKjR49WUFCQqlWr5vH38933b3BwsLJmzWpxov8WHR2tzz77TClTplTPnj21Z88e5cuXT6lTp7Y62iNlypQpCgoK0okTJ1SgQAGVLVtWderUkd1uV0xMjEd/8Pn99981ceJEORwOnTt3Tvny5VPlypWtjuVS3759deTIER07dkzp0qVT9uzZ1bdvX5UoUcLqaP+pePHi6tOnj/bs2SO73a7FixdbHek/NWrUSL/88otmzZolh8OhypUrO4uTp77neMN79z/17dtXJ06c0K+//qqAgAA988wz6tatmwoVKuQVn1c9+fFwP9716Egi0dHRkqShQ4fqueee0y+//KLixYsrZcqUFif7b3c/6WfOnKmuXbsqLCzM4lSuGWOcmefOnauuXbuqXbt2+uabbzx6kwSHw+F8sm/cuFHDhg2TJGcZ8VR339+HDx+2OE38PfHEE0qZMqWaN2+ubt266caNGx59P9/9+Ni0aZNGjx7t3FzFk/n4+Oi5557TrFmzVLduXY0YMUK3b9+2OtZ/+rcRGk98jDRv3lzbt29XtmzZVKtWLR09elTjx49X+/btJd35ptiTR5wqVqyoF198UaNGjdLcuXOVLVs2SZ55X0tSkyZNdOLECXXq1Elr165Vhw4d5OfnpxYtWmjx4sUe//iuUaOGSpUqpRMnTihXrlx64oknrI7kUlRUlHLlyqXp06crIiJCCxcu1NatWyV57ojT3e+Ln332mXr27KlJkybpjz/+cK73NO+8845OnDih9957T59//rm6d++uqKgoderUScuXL/f4Ecm73yOvXbum69evO9d54v0tUZruYYyRj8+dAbgvvvhCYWFhql69uubNm6clS5boxo0bFif8d3cXplGjRmn8+PE6efKkbt26ZXGyf3f3k2by5MmaOnWqcuTIodOnT2v48OFas2aNR+a/+77+/vvvtXnzZq1du1YzZsyQ5LlvDHff37/++qvq1aundevWWZzKtdjtsytXrqynn35awcHByps3r86dO+ex31Dd/fjYvn27vvzyS23dulXz5s1zbmLoiWI/qDdo0EBFihTR4cOHFRgY6PEf0u7+wLNx40YtXbpUW7ZskeR5z8W33npLYWFhmjFjhgYNGqQOHTpo4cKFatSokfbs2aN33nlHkmd++eJwOJyZ8uTJo9DQUKVLl06///67bty44XH3tXTn/g4PD9esWbNUpUoVPfvss2ratKk++ugj1a5dWyNHjtSGDRskee6mkTdu3FDevHnVtWtX7dixQx988IHVkf6Vw+FQihQpJN3ZOqBYsWLatWuXpk+frm3btknyvOek9L9dL6ZMmaKpU6cqJCRE69ev1/Dhw/Xrr796XOa3335bt27d0ty5c1W1alUVK1ZMDRo00OLFi1W8eHGNHz9emzdv9uj9m2Jfs6dMmaLmzZvr3Xff1fLlyyV55mNEojTFcfcw4Zw5czRv3jxNnjxZ48ePV/369TVq1CitWbPmnpEbT/jDxsTEOB+AI0aM0OrVqzVx4kTlzp3bo0drYjNfuHBBhw8f1qxZszRkyBBt2rRJ+fPn17x58zyyON1dTkeNGqUbN24obdq0WrZsmcaPHy/J8570d3+wnD17tlasWCFJ6t27t1auXGllNJdiN1Pau3evMmfOrPfff18BAQEaMmSI9u7da3G6+4u9n8eMGaNBgwYpS5Ysev311/XDDz9o/vz5HjvidPfzsXDhwnrvvfe0Zs0affzxxx79hVHs6/a4cePUv39/zZ49W927d9fUqVOd6z3hudiiRQtFRUVp6dKlypgxo6Q7Wzb4+/urRYsW6tKli44dO6YhQ4ZI8rx9aO12u2w2m3bu3KkXX3xRGzduVMmSJTVz5kx98cUXHlec2rRpo2vXrmn16tVKnz69jDHOYhS7GdNrr72moUOH6sSJEx6zadY/y1uqVKnUt29ftW/fXh9++KG++OILjytOsX/z2PtwwoQJ6t69u7JkyaLOnTsrNDRUc+fO9bgvM+6+r6OionT58mV9+umnmj9/vnr16qXo6GiNGTPGo4pTixYtFBERodWrVytt2rTOTMYY+fr6avr06SpRooSmTZuma9euOdd5iruzLF68WEuXLlXFihX19NNPa/DgwVqwYIEkz3mMxGFgHA5HnNNffPGF6dWrl9myZUuc5UOHDjUFChQwixYtMsHBwWb79u1JGfO+Ll++bKKiopynR4wYYYoWLWr++OMPExkZaUqUKGF++eUXY4wxMTExVsV0adGiRaZMmTLmjTfeMKdOnXIuj4mJMR07djSvvfaaWbJkibl586aFKe+1ZcsWU6ZMGXPw4EETExNjwsLCzKRJk0y9evXM+PHjnef75+PLapMmTTKlSpUyq1atMosXLzYDBgwwgYGBZsmSJVZH+1crV6401apVc57esmWLadq0qWnUqJHZs2ePhcn+3f79+025cuXM/v37nct27Nhhateubbp3725+//1368K5sGDBAtOsWTMTGRlpjDFm6dKlJm/evGbcuHHmxo0bcc5r9WP77te0kJAQ07hxY/Prr7+aY8eOmVmzZpnAwEAzZcoU53mszDt8+HATGBhofvzxx3vyxP4fFhZm+vfvb6pWrWpOnjxpRcz/9Pvvv5vAwMA4j9/u3bubSpUqmUWLFplbt25ZmO5/tm/fbgoXLmx69+5t/vrrL2PM/f/+e/fuNeXKlXM+TjzpMb1s2TIzcuRI07hxYzNv3jzzxx9/GGOMWbt2rSlcuLAZNGiQuXz5stmwYYMJCQmxKrK5cuWKMeZOdofDYU6fPm1ee+01s23bNud5zp07Z5o1a2YaNWoUZ7mV9/fd9/XWrVvN559/bqpUqRLnPWXDhg2mcePGpkmTJubXX3+1ImYc3333nXnppZdM69atnctu377t/Dk6OtoYY8zp06dN6dKlzejRo5M8oyv//By6bNkys2HDBmOMMZcuXTIff/yxCQwMNPPnz3eex+rn5N0842sVi939bd7Zs2c1Z84crVu3zrl9ZezUqh988IEaNGig4cOHq379+po7d66lLfjKlStavHixTp06JUn65ptvdPDgQS1ZskTPPfecwsLCZLPZFB4eLul/3wDt3LnTqsiS7v3G480331RAQICOHTumoKAg53Cy3W7X1KlT9fzzz2vcuHH68ccfrYj7r86ePats2bIpX758stlsSpMmjd555x0VLVpUK1as0PTp0yV51rclISEh+vHHHzVo0CDVrVtXjRs3Vt++fdW9e3cNGTJEq1evtjqiJMX55kySsmTJorCwMOchACpXrqxmzZopZcqUGjt2rLZv36558+Y5H+ue4Pbt27LZbMqQIYPz28xXX31V3bp10+bNmzVnzhz9+uuvFqe818mTJxUREeHcxKZRo0YaOnSo5syZo08//VTnz5/X+vXrnaMKVrl7E8iDBw9q165dSpcunZ555hnlyZNHdevWVbdu3TR16tQ4I05WadeunbJnz65x48Zpz549zi0b7v4/TZo0at++vc6fP+8xo5H/HPXw8fGRn59fnC0Yxo8fryJFimjevHmaPn262rdv79yHxSrlypVTly5ddOTIEU2aNEmnT5++79+/WLFievbZZ7V//35J1o/uxT6mx44dq8mTJyt58uR6/vnnNX36dA0aNEjh4eGqVauWPvroI61du1YVK1bU559/rvTp01uSd8yYMerUqZOCg4OdI5F2uz3O60N0dLSyZ8+usWPH6tSpU5o1a5a+/PJLSdbe33ff1127dtWCBQt05swZHTt2zHme6tWrq2nTppLuTLpw/PhxS7LGKlq0qLp166YLFy6obdu2un37tnx8fJyfm2K3zMiRI4cKFCigv/76y8q4cZi7tnZZvHix+vbtqzFjxuj8+fOSpEyZMumdd95RmzZtNHLkSC1cuFCS9c/Juz3WpenXX3/VsmXLNGvWLG3cuFEnT57U008/rb59+yp37txasGCB88ND7LSwgwcP1ogRI9SsWTPNmTPH0g/Efn5++uqrr9SjRw/1799fBw4c0NSpU5U3b17FxMQoQ4YMCggI0OXLlyXdecC+++67GjBggIwxluS+e5+aqKgo3bhxQ2nSpNHSpUuVM2dOTZgwQXv27InzRj1p0iQ1btxYFSpUSPK8se53XzkcDkVERCg8PFw2m00Oh0MZMmRQ/fr1FRYWpi+++MIjPqzd7fbt2/rjjz/i7PicLl06NWjQQMWLF9eAAQO0Zs0a6wIq7maysf8/+eSTCgkJ0aVLl5znq1y5spo0aaIUKVKoW7dumj9/vmWTtdxvX4jIyEhdunRJoaGhstvtzi9fypUrp6eeeko//fSTli1bZumb2t2P69ifX375ZYWGhury5cvOfVgaNmyooUOHatasWapTp46WL19u+cxMsW++o0ePVseOHTVo0CB99913zh23AwIC1LBhQ3Xv3l3Tp0/XqFGjLMm5fv16nTlzRgEBAVqxYoWuXr2qjz76SPv27bunOEl3JjwJCAhwTkhktdj7OfZx+vzzzyswMFBBQUGS/jdx0scff6wXXnhB27ZtU0hIiMqXL29J3hEjRmj27NmSpFatWqlWrVr69ddf9emnn+r06dNxzhv7vH3iiSeck1l4gu+//16bNm3Sp59+qp49e+qNN97QrVu31KZNG507d05Xr15VzZo1tXz5cvXp00fz58+3bB84f39/RUZG6qOPPlJwcLCkOx/cY2JinMU/dkbIzJkzK2/evM5ZDD3BkSNH9OOPP2rp0qWaNGmSWrZsqaFDh8Z5H6xWrZrq1aunkiVLKmfOnJbk7NKli7Zs2aI0adKoRo0aatasmc6cOaNOnTrp9u3bzvtc+t9redq0aeXr62tJ3n+6+zVu6tSpGjlypG7duqUbN27ohx9+cL5uZ8mSRU2aNFHbtm01fPhw52F/PEYSjmp5lO7du5vGjRubV1991dSvX98EBgaaqlWrmhkzZhhjjPnpp5/Mq6++aurWreu8TERExD3Xc/ewqBVu375tSpQoYQIDA81XX311z/o33njD+Tu1atXKVK9e3bk5X1IPed59e7NnzzatWrUyrVq1Mhs3bjTG3Nk0pUqVKqZ69epm165d992cMHboOSndnePGjRvOx8Fvv/1m8ubNa6ZMmRLndzt8+LBp2rSpGTBggGnUqJEJCgpK8szG3H9zzBs3bpimTZuajz76yLlJRaz+/fubKlWqmEKFCjn/Jlb65JNPTN26dc2kSZPMtGnTTN26dc22bdtMWFhYnPMFBwebXbt2OR8bSb0Z6t23d+bMGXP27Fnn6ZYtW5pKlSqZM2fOOJddvXrVdOzY0UydOtUULVrUrFmzJknz3s/s2bPNlClTzNatW838+fNN6dKlzfHjx+853969e81nn33mfN2zYrOJu2/zm2++MdWqVTNbtmwxW7duNaVKlTJNmzaNs+lYSEiIGTdunHnrrbeSPO+XX35pAgMDzcSJE825c+eceSpUqGDefPNNs2fPHmem2MfvsWPHTKNGjcy+ffuSNKsr06ZNM6VLlzZ169Y1gwYNMiVLljTDhg0zFy9evGeTzQsXLjifE0n9en3u3DnTsmVLU6tWLbN48WLn8lmzZpk33njD9OvXz7kJeGzGa9eumebNm5uFCxcmaVZXNmzYYN566y1jjDHr1683L7zwglm4cKEJCQkxLVq0MFu3br3nMkn9WeTu59KiRYtMnTp1TPv27Z2P8/nz59+z2XdUVJTp1KmTWbVqlUfsLjBjxgzz/vvvm969ezuXXb9+3YwYMcLky5fPfPHFF/e9XFI/ri9dumRat25t8ufPb3bs2GGMMebmzZtm6dKlplq1aqZNmzbOz3Wx/1+5csU0a9bMLFq0KEmz/pegoCDTuXNn5+vbb7/9ZgoVKmTatWvn3PzUGGP++usvs2TJEss/Y/+TzRgP2W4oCb377ruKiIjQoEGD9PTTTytdunQ6cOCAFi1apE2bNundd99V79699dNPP6l///7KmDGjc0f56Oho5+x6VnM4HPrjjz/UrFkzpUuXTqlTp9aoUaOUL18+56YrzZs318svv6yjR4/q999/1/r165U8efIk/z3MXd8yTJw4UYsWLVKFChV04cIF7d27Vx999JHq16+vGzduqF69ekqRIoX69u2rMmXKWDpKc3fumTNn6ueff9bVq1fVuXNnVaxYUQsXLtSoUaPUtGlTVaxYUQEBARo5cqQyZMigrl27qkaNGnr//fdVr169JM1996ZLu3bt0vXr11WgQAFlz55dc+fO1ZQpU9StWzfVrFlTAQEBCg8PV7du3fTyyy/r2LFjunz5ssaNG6fUqVNbcv9HRUXpo48+UlhYmP766y8FBwcrODhYTzzxhLJkyaKCBQsqa9asypYtm1577TWlS5dOkiw9vs3EiRO1du1aGWP0/PPPa+bMmQoKCtIHH3ygc+fOqWfPnpLuzO52/fp1rVq1Su3atZO/v79GjhxpSWZJOn/+vPr06aPr16/r5MmTCgwM1OHDh5U9e3ZVrFhR6dKlU/HixeXr66sXXnjBeTmrXwt/+OEHffPNNwoICFCnTp0k3Zmt66233lL+/PnVt29f5c+fX5IUGhqqtGnTWnKcmAkTJmjNmjWqU6eO6tevr6eeekpXrlxR/fr1lS5dOg0aNEhFixZVsmTJFB0drU6dOik6OlozZ870mIkJvvvuO50/f1779u1TTEyMtm/frps3b6po0aI6ffq0ChYsKF9fX7333nsqXLiwpKQ/5k3s7R05ckSzZ8/W0aNH9dZbbzlnI5w9e7bWrFmjQoUKqU2bNsqVK5ccDofat2+va9eu6fPPP7fktePux2Psz3PnztXq1avVp08fde/eXT169HD+HuXLl1f9+vWdj3kr3f03XrRokVavXq2sWbNq8ODBypQpk0aNGqXPPvtMVapUUdq0aXX27FmFhIRo3bp1zpGRpLzP//mYnDNnjsaOHasnn3xS8+fPV44cOSTdeb2YNm2aFi9erIEDB+qtt95Ksoz/5syZM5oyZYrWr1+vTz/9VOXKlVN4eLjWrVvnzD5lyhSlSJFCt2/fVqdOnXT9+nUtXrzYY475tm7dOq1atUohISGaM2eOMmfOLOnO5tVNmzZV2bJl1aNHDz377LNxLmf1e00c1vU1a8yZM8c0bNgwzk6Tsd8anD9/3owaNcoUK1bM+Q3Dzp07TaVKlUyFChWsiHuP+307ExUVZcLCwswbb7xhatSoYYKCgpzn6927twkMDDQ1a9Z0fgORlM09dmfyWL/99pvp06eP2bt3rzHmzijB0KFDTWBgoFmxYoUx5s6I0wsvvGB69uyZZDnv5+77evz48aZEiRJm0KBBpkmTJqZgwYJm1apVJjw83Kxdu9a8/PLL5qWXXjIVK1Y0DRs2dI5GNWnSxHz77bdW/Qpm9OjRpmTJkqZQoUKmQoUKZtWqVcYYY8aMGWNKlSplmjdvbvr3728aNmxoatSoYYy58+1bo0aNkvRbeVffOl6/ft1cvnzZtGzZ0tSsWdMsW7bMtG3b1pQtW9a88847ln1jeff98/nnn5uSJUuaJUuWmIkTJ5ry5cs7vyk+f/686devnylTpoypVauWad++vfPx0bp1azNz5swkzf1v99ft27dNcHCw+fXXX82bb75pqlevbtq1a2fKlStnXnjhBdOkSROP2Gnb4XCYK1eumIYNG5p8+fKZDh06xDnfsWPHTIkSJUyLFi3MwYMH46xLyvx3fxs9fvx4U7ZsWTNhwgTnSGTsiFOtWrWck8m0adPGvP76687Xaise2/+8zft9q/7ll1+asmXLmnXr1pk5c+aYgQMHmpYtW1qyJYAxd0Z4N2/e7Pz7nj592nTv3t3UqFEjzjftsSNOAwYMMKdOnTIdOnQwVatWdd7fSZ3/n1sxxI6iX7582bzyyismMDDQrFy50nmekJAQU6tWLbNu3bokzflP//a4XLhwoalTp47p2LGj+fvvv40xxnz99demTZs2plu3bmb48OHOzx9WjjRt2LDB+dlk9erVJjAw0AwbNsw5YYgxd953+vfvbxo3bmxVTGNM3Nes06dPm549e5q8efM6JyK7efOmWbZsmalWrZpp166diYyMdE6gZdXj+n7ZjTHm4MGDpkmTJqZAgQL3TDx18OBBU7RoUfPWW2/F2TLD0zx2palXr15myJAh/1ocTp06ZRo1amQ6duxojLnzoX/Lli2mc+fOlj3wYt39IrN27VozcuRIs2LFCucDLDg42LzxxhumVq1azk3CevXqZWrWrOn8fZOyMPXo0cN8/fXXztOxm9JUrlzZOYRvzJ3NOWKLU+yH+vDwcMvv71h///23+fDDD+PMqPPRRx+ZAgUKmOXLlxtj7tz3x44dM/v373e+UI0fP96UK1fOXLhwIcmy3v0Y2bBhg6lQoYLZvn27OX78uGnfvr2pVKmS8z7etGmTGTZsmGnXrp0ZPXq08/7+8MMPTY8ePe67OWpiuPvvvGPHDrNy5Uoze/Zss2vXrjjnW7x4sXn99deNMf/7Pf/5vxW+//57M2LECLN+/Xpnlh07dphXX33VNGrUyHm+ixcvmmvXrpnQ0FBz69YtM2HCBFOqVClz4sSJJMnpcDji3NeHDh0yP/zwg3Pmotg3uKioKNO5c2fz0UcfGWPuvAb+8ccfHvN8jN286syZM6Z9+/amQoUK97wBHz9+3PlByAqx9+Xdr7djx4791+JUp04dU79+/TgfdKzeLGXlypVmxIgRpkmTJmbJkiXO95SYmBjz448/mjJlypjg4OB7LmfF4+TLL780NWrUMNu2bTOzZs0yx48fN3/88Yfp0aPHfYtTzZo1TdGiRU21atUsu7/vfs2aPXu2adKkiWnWrJn5/PPPjTHGLFmyxLzyyiumXbt25sCBA2b79u2mbdu2pk6dOpY+F+/OvXPnTrNixQqzdu1a57LYTfU6dOjgfO/753uJlY/toKAg89JLL5kWLVo4i9Pnn39uAgMDzYgRI+I8pm/cuHHPDJdJKfY2777PT5w4YXr06HHf4vTGG284dzXxlNcRY+4MVnz//ffGmDtfajVv3tzUr1/ffPnll3HOt3v3btO0aVOP2HTz3zw2pSkmJsbcuHHDlC9f/j+38VyyZIl58cUXnU/4u1+gPKGxjxo1ypQoUcLUrVvXFCpUyAwaNMj8+eefxpg7H96rV69uypYta+rWrWvGjx/vzJyUT57bt2+boUOHxhlp2r17t2nXrt090+4ac2f71WHDhpnAwMA405Fa/UEtdp+EihUr3jPd6PDhw02BAgXMihUrnPft9u3bTefOnU3jxo1NmTJlLJtWesOGDeaTTz6JM4rhcDhMhw4dTKVKlcyKFSucL6o3b940p06dMrt37zbjxo0zxYoVM0ePHk30jMuXLzeXL192nh47dqwpX768admypalRo4Z5+eWXzeTJk+P8TkWKFLmnhCb1C+zdz8UDBw6YGjVqmMKFC8d53EZFRZnt27ebChUqmPr16zuXBwUFmapVq5ratWubihUrJtnj48iRI3FOjx8/3tSoUcNUrlzZVKhQwVSvXt3s27fP+XybP3++ee211+7Zf8zq5+O3335rAgMDnYeDOH36tHnvvfdM/fr1nV9gxDp//rwlHxjufjzGbgUQ634jTleuXDHFixc3lSpVsuyDzqhRo8zp06edp0ePHm3Kly9vBg0aZMaMGWMCAwNNjx49zNWrV40xxty6dcuULl3aI/bHM+bO1gmNGzc2L7/8silatKg5duyYMebO8+1+xWnq1Kmmffv2lnyZ+E+jRo1y7iPWrVs3U7JkSeeWLl9++aWpWrWqKViwoKlWrZpp3bq15aMHsUaNGuU8VMiQIUNMeHi4c11scerYsWOcfTyt8M+yc+vWLbN06VJTo0YN06pVq3uK06hRo8z58+fjXMbqEd+wsLA4ZS44ONh069btnuI0b94807dvX494XMe6efOmad68uSlcuLDz8DdBQUHO6ef/WZxieWpxemxKU+wT56233jJDhgwx0dHR9zyZYv9IO3fuNCVKlIjzJmKlux/48+bNM2XKlHFu3jZs2DBTtGhRM2jQIOcbRWhoqHn//fdNz549nZdNyhfYfz7YFy1aZD7//HPjcDhMUFCQeffdd02ZMmXMzz//HOd8586dM3PnzrX0if7Px8TFixdN165dTb58+ZwvTnefZ+TIkXGK3p9//mk++ugjM2/evDjHnEpsd+94HXt8rsDAQNOvX78453M4HM6h+zlz5piIiAhz5swZ07dvX1OuXDnTqFEjc/jw4UTPW6dOHdOyZUvnB4CVK1c6j3llzJ1jpRUqVMjs2LHDWZIuXrxoihQp4twR1mqxH4hnz55tSpYsadq3bx9n/e3bt83OnTtNwYIFzcCBA53LN23aZHbt2nXfb+kTQ82aNU39+vWdj9s5c+aYkiVLOl9DFi1aZAIDA82BAwecHyA2bNhg8uXLd89kIVa7fPmy6dWrlylatKj55ptvjDF3Rp5at25tGjRo4NzE925J+Xpy92vfvHnzTIsWLUyTJk3M7t27ncvHjh1rypQpYyZMmOAccQ8LC7Pkyy1j7rwnVqlSxfm337Fjh3nllVfMoUOHjDF3NqnOly+f2blzpzl27JgJDQ01ERER5sUXXzSzZs1K0qz/FBMT47zPR44cafLmzWtee+01s3nzZufvE1ucatasGWdyiPuNBiZV5lixWwPc/boXGBhoSpYsGSfroUOHzF9//eW8rNUfhufPn2/KlCljgoKCTFhYmAkNDTXBwcHm22+/dR6na/HixaZ8+fJm3LhxluX8t9GhiIgIs3z5clOtWrU4xWnJkiUmMDDQfPbZZ0kZ06WpU6eaevXqmZIlS5omTZqYdevWmaioKPP333+b7t27x5kc4tatW5Y9rmPdr+wEBwebLl26mGLFijk/98V+FmzcuPE9X3h5ssemNMUaOnSoeemll+47ihT7YFuyZIlp0aJFnIPGWmHatGnOn6Oiokx0dLRp3769mTNnjjHmf99y9+vXz7z44otmwIABcWYfiWXVm4LD4TAxMTGmUaNGpmLFiuaLL74wDofD/P7776ZNmzamQoUK92yCFcvqN4VVq1Y5N/n5+++/TevWrU3JkiWdb253vxgvWLDA8ryxYjf1unHjhqlTp4559dVXzffff3/P4/ydd94x3bt3dy47ffq0+fvvv821a9cSPWOjRo1MgwYNTGhoqHPZqFGjnMViw4YN5oUXXjBLly41QUFBpl+/fuavv/4yly5dMl27drX8G1Zj7jw3Bw0a5NzULvbLjL59+8Y5X1RUlNm/f79lj4+33nrLNGrUyDnaER0dbXr16uXcBOjrr782xYoVMytWrDAHDhwww4cPN8bcmSWvdevWHrMZ0N2nQ0JCTN++fU2hQoXiFKe2bduaihUrWroPYayxY8eal19+2UycONHMmzfvngNzjxs3zpQrV84MGzbMXLp0ybk8qe/vJk2amEaNGsXJt3btWtOyZUtjzJ3nYtGiRc2iRYtMaGioqVevnvMLouXLl1v6unf3fXX06FHz7bffmr1795qmTZuaWrVqmbVr1zrfw4OCgkzPnj3NSy+9ZDZv3uy8XFJucnX3qHLs/TZ+/HjTuXNnY8ydctqkSRMzffp055ehS5cuved6POEb+MGDBzu3Avj111/NsGHDzEsvvWQCAwNNs2bNnOf76quvLHkNiX29i72vli5dagYPHhznPBEREWbp0qWmYsWKpn379s7HypYtWyx9XN/9912wYIEpUaKEWbJkifnyyy9NkyZNzOuvv25mzZploqOjzblz50yvXr1MYGBgnIOoe8LBYGOLaOzvExwcbDp16mSKFSvm/NwXFBRkatWqZQYNGmRZTnc98qXpn9O5nj171lSqVMnUrl37vvtsREZGmtatWzu357fK3r17TWBgoGnbtq1z2eXLl02VKlXMihUrzMWLF83AgQOdRzEfPny4yZ8/v6lTp45z21FjrH3yxH6jEBkZadq2bWuqVq1qVq1aZRwOh/ntt99M27ZtTeXKlc13331nWcb7uXbtmmnYsKGpU6eOczOJ2IkISpUqdd/iZIyxvGR//fXXpnDhws6p5/9rCncr3nw7dOhgihYt6jwd+xxs166dmTBhgtm/f78pWrSo80N9UFCQCQwMvGd0yeriNHfuXBMYGGhGjx5twsLCTHh4uJk3b56pUKHCPaN7sZI6c+z+PrEfIBwOh4mMjDQ1atQwCxcuND/88IMpWrSo8xvtr7/+2pQoUcIcP37cREZG3vPamVT++YFl3rx5zk187i5OvXv3NoUKFXKOAB87dsyMGjXK8sfGnj17TNWqVZ0fYs6fP282b95sOnfubIYOHeo835AhQ0y7du0se42O3VQ69gNMbI6FCxeaqlWrmg0bNphixYo5Hx+3b982FStWdB7CIlZSf8A8cOBAnNPLly83VatWdf7dr1y5Yt555x1Tq1Yt8+WXX8aZHGLSpEmWPT6GDRvmnFRg79695saNG2b8+PGmb9++Jjg42AwfPtyMGTPGOBwOs2PHDhMYGGgCAwPN1KlTLckb637vc+3atTN16tQxH330kSlRooR57733zKJFi8yBAwdMYGCg+eGHH+JcJinv85CQEPP+++87v0AODQ01H3zwgXnttdfuGfVyOBxm0KBBJjAw0DRo0CDOe7jVX4T++OOPZt68eXFGzyMiIkyvXr3Ma6+95izhx44dM1OmTLE0719//RXnb7xq1SrzwgsvOL+EjX3d/uuvv0zbtm1NqVKlnFs6nDp1yiO+CIivR7o0/XPb8tgPaOvXrzcvv/yyqV69utmzZ4+5cuWKiYmJMYcPHzZt27Y1tWrVsvQ4JMbcGWbduHGjKVWqlGnTpo1z+ZIlS8yBAwfMxo0bTdu2bZ2bfXz88cfOY9pY9aZw9/199OhRExgY6HyDjS2jdxen33//3TRs2ND5TZtV7vc3PnHihGnTpo2pX7++Wb16tTHmTnFq1aqVefnll+NMCuEp9u3bZzp16mQqVKjgnIAjtjjVqFHD/PLLL5YWp3feeccULVrUlC1b1ln2Yy1btswEBgaavHnzOicmMOZOaapRo0aSbDL4b/7tPordlGPUqFFxilOlSpXu2VQvqb399tsmMDDQ1KhRwxw8eDDONu4ffPCBqVu3rilWrFicCRQ2b95sXn/99TgjH0n9+nf06NE4M4OdPXvW1KpVy5QsWdK5dUDs3+PixYumXr16pnTp0vcco86KzZFj76utW7eaN99804SGhprt27ebFi1amKpVq5omTZqYokWLxpmcwqqdzBs1auSczbFLly5xvqU+fPiwqVGjhsmXL1+cfSKvXr1qqlev7pzwxArjx483b7zxRpwJhqZOneqccCX22+1r166ZJk2amFq1apm5c+ea3r17x9lPMykfH7H7bW7ZssWULl3alClTxpQqVcoYc2dfw6NHj5qgoCBTv359576+P/zwg2nXrp3ZsWOH5R/eY82YMcP52hwUFGQaNWpk6tSpY+bNm+fcleHcuXOmXr16lr5eh4SEmCZNmphq1aqZDh06mKlTp5qLFy+aUaNGmTfeeMOMHj06zvkXLlxoOnToYPkXLne/z8ROZBMYGGjmzZtnjDFx9mWrUKGCGTFixD3XYcVjJTIy0vTv39+ZMygoyGzfvt288cYbpmrVqs7iFHvfbtmyxfm7/fbbb87rsfrLrvjyjINAJIK75+OfP3++2rZtq1atWunw4cOqUqWKhg8frtSpU6t169aqXbu2KlasqKFDh8oYo5UrV8rHx0cxMTGWHSPI19dXFStW1AcffKADBw6oVatWkqS33npLRYoU0VdffaXMmTOrePHikqQ//vhDtWvXVufOneMcGTqpGGOc9/cnn3zyf+x9d1hU19b+kqiJV1OMiaaZ5CbeOwKWERDpCMoA0kEYuoI0aSKgYEGNiIIiiog1igp2Q7N37B3EhgUbCKLSizK09/cH3+zMgOa79/5u5jD5fJ/nPjeeOTOz2LPP3nut9a530bZt24iIKCEhgVasWEE9e/ak5ORk+uGHH2jdunWUlZVFioqKFBsbS8uXL5eprR0h/o3FHe+JiP7+979TZGQkffrpp7Rt2zbKzMykfv36UVxcHH311Ve0du1arswlot872UtixIgR5OPjQ8OGDaMFCxaw7uHp6enU3NxMQUFBdO/ePan3yKqPilAopJaWFkpPTycHBwfasWOH1O+upaVFlpaW1Lt3b+rduzfV1tZSaWkpLV++nD755BPi8XgysfNtEI/RvXv3qLm5mV13dHSkOXPmUEpKCiUnJ1NLSwsJhUKysbGhDz744K2/kSwgFAqJiOj06dPU3NxMs2bNory8PGpra6Pu3buTiYkJPXjwgH788UdSUVEhIqKqqir67bff6IcffqAvvviCfZas17/GxkYKDw+nDRs20IYNG+jmzZs0b948+umnn2j8+PH0/PlzUlBQIAD05Zdf0vfff09/+9vfKDU1lYja1yEikmlfEvH8EHe0V1RUpMLCQnJwcCBfX18aMGAATZs2jVJTU2ns2LHMRiLipG+UtbU1tbS00NmzZ8nf35+ePHlCv/76K+Xn5zP7x44dS9999x0VFBRQfn4+nTt3jiIiIuijjz4iExMTmdnaEbq6uvTZZ59RamoqHThwgIiIevToQZ999hkREfXs2ZOIiD799FNKSkqivn370rZt2+jevXv0008/sc+R1fwQCoWUmZlJRERjx46lkSNHUnl5OX399ddERMTj8eif//wnFRQUUF1dHf3zn/8kovaeR3369CFdXV3q3r07tbS0yMTed0EkElFBQQGFhobSkSNHaPDgwayXlJubG/Xt25eqq6spOjqaevTowel6/fnnn1NoaCi9fv2aTpw4QQMHDqT+/fvTpEmTSFtbm06fPk3x8fHU1tZGTU1NdPnyZRo+fDhFRERwcnYSQ7yOHDp0iBobG2nZsmXUr18/unnzJhER66/5wQcfkJKSktQ6IgYXvYx69uxJ3333HcXGxpJQKKS4uDji8/n0yy+/0Icffki2trZUXV3NnrnPP/+c3N3dKTIyUmqedJVeUv8rOHTYZIKO3PKOalBHjhxBZmYm0tPTpfobcRXd6Rh5FGecVFVV4e3tze6LjIyEpqYmtm7dChcXFylZcS4pecnJyRg1ahQOHTqEffv2ITk5GYqKikhISADwO1VPVVWV0WoA7nnaaWlpcHZ2ZuouYhQWFsLBwQHGxsYsAl5TU8O5vWJkZWV16kWTn5+P4OBg6OrqsvqO2tpazuqBUlJSYGRkhPr6egDtEvMJCQnQ1tZm8wJopzWFhYWBx+NBS0sLxsbGUpQJrmXFxT1TOq4NW7ZsgaKiIhITE1FeXi5FbZO1zXPnzoWdnR1qamoAtP/uAoEAZmZmuHTpErP9xIkTUFdXh7GxMcaNGwdbW1tYWlpyPtZNTU3Ys2cPlJSUwOPxmIpVfn4+hEIhtLS0mIBGa2srgoKCcOPGDU7WPMkxEtOSxBmvmzdvIjk5WUoAAmjP8CQmJsrUTklcuHABU6ZMkdoH9+7dCysrKwQEBCA3N5ddT05Ohp2dHctYStb5crGOiH/j69evw9nZGc7Ozjh//jx27doFTU1NZGVl4ebNm3j9+jXLOIlEIhQWFkoJ5cgShw8fZgyX58+fY/369diyZQu0tbXh4uLC7jty5Ah4PB5cXFxYv0Uu9/OO2VOgnfYYFRUFZWVllumrqKhASEgIxo4dC3Nzc87Xa7G9Fy9ehImJCezs7DBu3DimfPvq1SvExMTAwMCAlWmYmppyNtaSY9Ta2ooXL15AWVkZO3fuBNDOiho6dCgWLVrE7GttbcX48eOlat67AmxsbMDj8VhpS2trK65cuQILCwsIBALcvXuXtYmQpLB3lUzqv4q/tNP0Lm55QEDAH/bv4OrAIPm95eXlePnyJVtwDx48CBUVFUyaNAlAOz/bw8MDtra2CAgI6BIypPX19Zg4cSKrRxEjIyMDgwcPZtxskUiERYsWdal07Pnz56Gvrw8/P79OB53z589j2LBhMDc3Z1LHAPeO3oMHD2Bubg4nJ6dO0tXXr1+HsbExdHV1O9FpuBh3sRytZFHo2xynmpoaXLp0Cenp6Th16hRnimJvo01FRUWBz+cjPT1divteUVEBTU1Nqc2u43tlhRs3brCxFq8ddXV1zHG6ePEiG8sbN25g69atiI+Pl3IGud7E9uzZw6iaq1evZtfz8/Ph4OAAFRUVzJkzB+PHj4eFhQWbI7J8HiV/2w0bNmDu3LmMciJJL3z06BG2bt2KI0eOMCl9rsa3o1qjZDsIScdJXGsAtM+dGzduoLS0lPOAIvD7uOfm5sLJyQm+vr5wc3ODoqIiNDU1oa6uDm1tbbi6uiI0NFSq/knW80NynV25ciXmzZvHfoOjR49CU1NTynHaunUrYmNjsXTpUk5Ub9+GjjUplZWVmD17NpSVldleWFBQgA0bNuDAgQOcrdcdf9vXr1+jtrYWly5dgpubG4yNjRkVrKKiAvv27UN0dDQSEhK6zFiL53ZiYiKsrKxYo919+/Zh2LBhbE57eXlJ9RfjCpJrYEVFBaZOncrWQTGtt7W1FZcvX4a9vT14PB5Gjx4NCwsLzm3//8Ffymn6d7nlYqWorgDJCZiYmAhHR0eMHDkSnp6erCP4oUOHMGLECPj7+7N7X7x4wbnEpBgVFRVQV1fHpk2b2LXW1la0tbUhNDRUqsZJDC46sHdcYMXjd+XKFRgaGsLb21tK1e/8+fPw8/PDli1bOHWU3vbd2dnZcHFxgaurqxQ/GGgXAjAzM2M1Y7K2vaCgQKp2SSxFK8a7HKeOkPUckTxMNjU1SY3bL7/8AmVlZSkno6ysDPPnz8e+ffs423hLSkqwb9++dzaRfJfj1BFc2N9xXpaWluLJkyfYvn07Bg8ejOXLlwNof07v37+P2bNnw8nJCdOmTeM8WCRuULxr1y5s2rSJZUrFAjJnzpxhPfP8/f05s7elpQXR0dGsJkX8+0uO/bsyTpLgul8N0DnjNHz4cISEhKC2thb5+flYsWIFpk+fjgkTJnSJvoplZWXYtWsXeDweFi1ahIqKCgDt5xMtLS04OTmhqqoKR44cwatXr9j7ZL2fFxcXS619+/btA4/HY60zJEVYpk+fDj6fL9WbTgwu9nQxxP0JJeXaT58+DXd3d5iamrIGzeLfQAxZj7WPj0+nhtziv+PSpUswNzdnTJzGxkbs378fOjo60NbWxqFDhzgPYEiOuZhBIv7dV65cCR6PJ9WOoKGhAUePHsXBgwc5c6z/W/hLOU1iiBs5lpSUQFlZGSYmJqxnjTg6Eh4ejvnz53NpJoPkBExLS8OoUaOQkZGBTZs2Ydq0aVBWVmYy4wcPHoS6ujrs7e2lPoPLtLIkpkyZAj8/v04N7RYuXAhzc3PweDzONPk7HtrT09PZBnvhwgUA7dH3MWPGwMfHB4cPH0ZFRQX8/PwQGxvLGeWq43fevn1bqsfVkSNHIBQK4erqyub+69evMWXKFBw9epQzumZRURH4fD6CgoKQkJDQKUMD/O446erqckpbAtqfLUls3LgR/v7+cHV1RUREBKO8LViwAMrKyli1ahWOHTsGHx8feHh4sPdxcVA7evQoDAwMkJmZiaSkJCnZ7Y6O07tEQbiApA2XLl3C4cOHWYS1tbUVKSkpGDx4sFSTY3EvMjG42nxfvHgBe3t7qXlTVVWF5cuXg8fjMQrTy5cvUV5ezmlwq7KyEr6+vrC2toaTkxPc3NwAoFO/wr1798La2hpBQUGdMu5coKNTl5ycjKCgIBw/fhxv3rxBYWEhHB0dYWhoKEX3lgSXh/iYmBgYGhoCAHbv3g0ej4eYmBh2aD9+/Dj09PTA4/FgZWXF2TPZ1taG2bNnM3W5Gzdu4Ny5c3B0dISmpiZznMRjee7cOZZZ7dhvUdZ2ixEbGwtVVVVYW1uDx+NJyVifOXMGbm5u0NbWhkAgYHQ3LiAW0BCfRzZt2oQjR45INXoPDg6GtbU1+7dIJMLBgwfB5/NZa46uwIjavHkzfH19ERQUhPz8fLS0tKC5uRnJyckYPHgwfv31V9TX1+PMmTNSez/XWb3/H/wlnCZ55Ja/Dbdu3UJkZKRUlKSsrAzLli2Duro6zp07h9bWVqSnp2PSpEld4qEpKipCfn4+CgsLIRKJcPToUejp6SE2NpY5Tq9fv4aXlxfS0tKQkJAAc3NzqUOELCDueyHm8i9YsACjRo2Cn58fHBwcoKSkhLi4OLS0tOD69esYN24c1NTUoKurK5VO5rr/QXx8PLS1taGoqAgbGxs2r8WOk4mJCZYuXQoXFxfY2dlxQl0SQyQS4eTJkxgyZAh4PB6KiooAdD40iuc4j8eTorfJEjt27IC6ujrjiW/cuBEqKipYuXIloqOjYWRkBCMjIzx48ABA+wY9ZMgQGBgYwNHRsUvMj5CQEKirq4PP5zO6ZseDel1dHUxMTKChocGpwhUgPVbi2lM+nw9tbW0cOXKE1YalpKSAx+Nhzpw5CAkJQWZm5ls/Q9YoLi4Gn8+XUnsE2usmxHSUjo44l/Up9+/fh5GREZSUlJCcnCxlk6Rd+/btg46ODpYuXSpzWyVtkkRcXBwMDAwQEhKCkJAQ8Hg81nfn5s2bcHFxwYQJE1iG712fI0vk5+cjKChISplQnHFasGABc5yePXuGffv2cV6TvG3bNvB4PFhaWsLBwQE1NTW4ffs2XFxcoK6ujsePH7N7CwoKsHDhQuzevbtLZAx+/fVXaGlpsdqlxYsXd3KcLl68iEWLFiEoKIgzepi7uzvs7e1ZdqaoqAienp7g8Xjw9PRkJQw3b97EhAkTpNaP5uZm7N+/H6qqqggJCeHEfknExsZCRUUFs2fPxpgxY2BiYoKcnBzmOK1atQo8Hg8jR46El5cX52en/xbk3mmSR255R7S1tSEvLw9Dhw6FkpKSFL0NaF9Ux48fL1UTJIasD8OS471s2TJYW1tDXV0dVlZWEAqFePPmDdatWwdjY2OYmJjAz88P1tbWMDc3B9Cu329nZyf1N8gC4pS3sbEx7t+/D39/f9bxHmhfdFVUVBgX98GDBzh69Cj279/PaTpZ8vfdvXs3tLW1sX//fpw9exYWFhYwMjJijtPp06cREhICS0tLqY1B1nNE8vsOHz4MFRUVjBgxQkpavuNYlpSUYMeOHZxEoEQiEcrKyjB37lwmSRsSEiJVv/b8+XMIhUKYmZmxa3fv3sWDBw84pUpI0k2TkpIwePBg6OvrY/fu3VL9mSTtq62tRUhISJeJ9iUlJUFTUxM5OTmsj5SVlZVUk8kdO3ZAIBDAwcGB8+dQjNraWjg7OyMuLo5lIcUIDw+HgYEBhg4d+lYKk6wguV5nZ2fD09MTrq6usLGxQXZ2ttR9kveeO3euy8yPQ4cOQVtbmwUC8vPzwePxcPbsWSZ1nZeXBxMTE6k+WFxCnIlRU1PrJNQjdpwWLlzIsqpicH0mEbcqmD59Ort269YtuLi4QFNTE5cuXUJhYSH8/PykmqPL0u6OjI83b94gICCAlTHk5eXBzMwMCxYsAJ/Px7x58976ObIea29vb/B4PBw4cKDTa5cuXcL8+fMxcuRIjB8/HrGxsXB0dGTUZDFaWlqQkZEBHR0dvHjxQlamd0J6ejr09fWZjH9OTg54PB5MTExw+vRp9tucPHkSK1eu5Dwg8N+E3DtNYsgLt1yMt23C27ZtY4dLsWqUGD4+Piwt2xWwdu1aaGho4PTp02hubmbOqrjw9tq1a1izZg0iIyORnJzMHpaFCxfC19dXqgP9n4nZs2fj7NmzaGtrw+XLl2Fubg41NTWMHTsWxcXFUr/DihUrMGLEiE4F0wD36eScnBykpKRIdYhvbGzEuHHjpBwnoF1MgSsqkOSiuHjxYkRGRuLu3bs4duwY1NTUpJo1v2tMZTnWDg4OLEhRWlqKqKgoWFhYQFVVlUWIJSP12trabHOWBBeZPMlxys3NxbVr11BYWIjQ0FAYGRkhLS2NRTTFv0vHYIWs57Xk4bytrQ2lpaWwtbVldMJbt24xCo2GhgaOHj3KbK6srOSk4a7kb3v58mWcOHGCrRErV66EiooKtm3bhtraWgDtmXVvb29s3rwZ06dPR2BgIBoaGjilUC9ZsgSjR49GaWkp7t69C39/f1hZWUkFFoHO4yrr+REeHo6srCypa2lpaSyyvnfvXvD5fKSlpaGsrAxCoZBlTO/fv895DZPkb5yQkAAej4c1a9YwcRYxxFS9LVu2yNTOjpC0t7a2FlFRUYiPj2fMCzHy8/NZRkRfXx9WVlacZGuamppQWVkpda2iogKjRo3C9u3bUVlZiRkzZiA5ORkikYg1rnV1de0kliRLODo6wtzcHBERERg+fLhUQE78GzQ1NaG8vBxRUVEICgoCj8eDsrKyVH010P5MdlSBlgUk50pcXBzL4uXl5UEoFCIjI4MpDefk5HQKJHEdEPhv4S/hNMkTtxyQ3syePn0qdeBNS0uDrq4ukpOTWRSqvr4eQqFQqrCOK7S1taG+vh4eHh6sU/WpU6fA5/ORnZ2Na9euYcOGDWxBFYlEuHfvHo4ePcrSueJizD8bRUVFiIqKkjoo5ubmws3NDUOGDGHNMsXc4tLSUmhoaLAGg10FL168gKKiIng8nlRRPNDuOJmbm8PExERKbQ7gVt3v1KlTMDc3Z2MpLmYdOXIk/Pz82H1VVVUcWdiOjIwMKfGEV69eYe7cuVBSUsKSJUuk7q2ursbYsWORmpoqazOlcO7cOal/Z2dnQ1tbW4oiGBQUBCMjI2zdurWTOERXwq1btzBq1Cg8fPgQRUVFmDp1KtLS0gCA1V/FxcVJ8f25mtdxcXHQ0NDAkCFDIBAImMPxyy+/QFNTE5MmTcK8efMgFAphYWEBoD0QI6mQxgXy8vKYKqikiIK/vz9sbGwYvbBjcbysUVpaimXLlnVy7BctWgShUIgzZ85gxIgRjL5eX18PdXV1KTo7wG0NU8casUWLFkFRURG7du3q5GQcP36c04OkpN0dD7hpaWlQVFSUcpyamppw/vx5nDhxghP2xZIlSzBhwgQYGhpCKBRix44drARg3759uHHjBg4dOoSgoCAmZBIXFwdvb28EBwdz5lCPHz8ednZ2eP36NRoaGhAZGYkhQ4bg+PHjADpnzlpbW1FTU4Ndu3bB3NycMYy4sL+0tBT5+fkoKytje3VLSwsmTZqEqKgo1NfXIzo6mu2VZ86cAY/Hg6GhIWt2+1fILkniL+E0yQu3vOP3JiQkQCAQYOjQoVizZg27npKSAi0tLTg6OmLmzJnw9fWFubm5zClt78Lr169hZWWFvLw8nDx5Enw+n21cq1evhpGREVMBKisrQ2xsLPT19eHh4SEzh6nj77t7926WdczNzWUUIHEkHgCePHmCsWPHSnHQucDbDoU3b97EmDFjIBQKO6kZNTY2YtSoUVJ0CS6RlZUFOzs7ODo6Si30b968wf79+6GmpgZXV1d4e3t3UhCSFTrOj6SkJERHR6OxsREVFRWs35Gkg/T69WtYW1tzJmQCAKtWrYKBgYGUDWlpaTA1NQUAKQcpODgYY8eOxfLly+Hv7882aS6QkpKCOXPmwN3dHWvWrGH90N68eYNp06bhwYMHSElJQWRkJG7evInW1la4uLhAV1cXM2fO5Fx8JTs7GwYGBjh58iQKCgrg6ekJgUDA5PwzMzMRFRUFb29vxMTEsHk/b948TJ8+nZO1W5xd5/F4UFRUZGI3YogdJwMDA6ioqEjRZ7nG9u3bmdx8Xl4eDAwMoKioKJWZKS0thbGxMc6cOcOVmZ1EnEJDQ+Hq6opp06bh5cuXANprP5SVlbF79+63Zme4pptu3LgRnp6ecHd3x/nz59lcTUtLg5KSEhYvXozq6mocPXpUKmMmy0O8m5sbbG1tsXLlSmzZsgWenp7Q0NCAi4sL7t+/z+zx9PTElClTALQ7eZ6enkhPT+fEZqA90DZz5kypc0ZFRQVmzJgh5TiJ0XFf2rZtG7S1tVkWW5aYPn06LC0tMWzYMKioqMDd3Z1lyEpLS5GXl8f65509exZAu3rhpEmTsG7dOs7ZOX8W5M5pkldueUesXLkSmpqaOH78OO7evYvq6mrU1dWxtGtGRgaUlZVhamoqJdss65T428a7qakJNjY2sLKygpqamlTxfkZGBmxsbKQyCJWVlaitrZVaOGSFtrY2VFRUwMbGBra2toxPnJubC1tbW5ibm+P06dM4fPgwPD09pcQTuIDk73vjxg0UFBQw3n5+fj5GjRqFSZMmMfqm+PcRiUScU1PEyM3NhaOjIwYPHixFJwTaD/VHjx6Fu7s7nJ2du0y/huTkZPB4PCQkJEAkEuHly5eIioqCsbExwsPDkZSUBG9vbxgbG3MaHX706BF8fHzg4ODA+qHt2bMHrq6ub71/6tSpMDc3x/jx4zmz28PDAzY2NvDz80NgYCD09fWhpqaGX3/9FUD7+t3c3Aw7OzuWZXr9+jX8/PyQk5PDqWol0C6ykpycjI0bN7JrIpEIXl5eEAgEyMrKYs9efX09ioqKcP36dcTHx0NFRYXx/rnChg0bwOPxEB0dzQ7yYty6dQsbNmzAvHnzusSz2NbWhqqqKgQGBsLY2JgF4xYsWAADAwMsXLgQz549w/Xr1+Hr6wsHB4cucTiLj4+HhoYG4uPjMXv2bBgZGcHAwIDVMy1YsADDhg3Dli1buhRNSaw4t2DBAtja2kJfXx8HDx5kjtPWrVuhqKgIPp8Pd3d3ToLNYrW5jpnQlJQUmJiYwNzcnAn0/PLLLxAKhUhJSYGnpydsbW27BKOo47/FNMK3OU7A73vq5cuXYWJiIiXCIQuIhaSOHj2KBw8eIC0tDRMmTACPx2MZJKC9LEZc59vW1gZfX1/Exsay17vCs/nfhlw5TfLKLZesT2pubsbLly8hFArZAf7+/ftYu3YtDAwMYGBgwA5D27Ztg66uLubPn9+pYFQWkIyO3rx5E9evX2eNDy9evAhDQ0M4ODiwe0UiESZOnIgpU6ZwmpJ9G7/8zp078PT0xPjx41lGMi8vD1ZWVuDxeJg0aRJiY2M5q3VLSkqS4lzHxcVBU1MTI0eOhLW1NaO55efnQ11dHV5eXoxeKPl3ytLuPXv2oLq6ulPjWqBdJMHV1VVqvCUh7t8FcN8IUQzx4TI+Ph4ikQivXr3CvHnzMHz4cJiYmGDt2rWcNkIU211UVARvb2/Y2tpi79692Lt3L9TU1LBhwwZcuHABL168kIoISzYmlbXdjo6OsLW1xYsXL9izlZubixkzZoDH40mJ2xgaGmLOnDl49OgRJk2aBFtbW07VH4H2PYTP53dS4gJ+d5zMzMywZcsWNDU14cmTJwgPD4eenh7s7e1lplAYHx+PXbt2obm5mY2Z5PotVrJKTk7uVBMiCS4OmG+bk4WFhZgxYwaMjY1ZT7TFixfD0NAQPB4P48aNg6urKyfrdUdKsbiRuCTNvqysDM7OzhAIBOx3iIyMhKurK+d0JfH3Z2dnY/To0SxTc/HiRfB4POjp6eHQoUNsbK9evYoNGzZwUszv5uYGOzs7lkFva2uTcu737NmDsWPHIiwsDE1NTTh+/Djc3d1haWkJX19fTmvX33YOkbTjf3Oc6uvrMXXqVKioqEjRk/9siJ1UcWNjMe7du4fZs2dLtY05fvw4hgwZgkmTJsHBwQHm5uZdQkn2z4RcOU1iyBO3vLm5GZGRkax4vKqqCvX19XB2dkZCQgJ27NgBExMTCIVCLFu2DEFBQdDX12dCCVu2bIGenh4iIiKYZPOfjaCgICbZDrTzsvX09KCvrw8ej4fw8HCcOXMGO3fuBJ/Ph5WVFSZMmAChUMj5QyN5uCouLkZhYSFzWouKijBx4kTY29uzg/y1a9dgYWGByMhI9j5ZHxwuX74MgUAADw8PPH36FCdPnoS2tjbOnz+PXbt2MQqNOAWen58PLS0t2NnZSTVDlCUiIiLA4/Fgb2+PiIgIXLt2rVOkOj8/H66urnB2dpZSDJLcOLgsjr969SqOHj2Kbdu2sSzo5s2bwePxsHTpUohEItbpfPHixZyIEHSE+LufPHkCb29vuLu7Y+LEiVBSUsKYMWOY5LiVlRXc3d2lqEuydjxcXV1hb2/PagYlf+vS0lLExsaCx+OxtXHt2rVQUVFhNFQu1B/f9l0VFRUwNTXFmDFjcPHiRal7RCIR7OzsEBYWxq49fPhQqgbgz0Z6ejpTjBUKhYiJiUFZWVknSuCKFSvA4/GwevXqP3ScZIWOz/7t27eZOhsAlJeXIyIiAgKBgM0RcaN6rlQrHRwcsHnzZqlrBw8exJgxYzqN6f3796GpqSkVmX/bQVoWuHfvHhtXMRISEphKnrhR8P79++Hr6ws9PT0cOHCgk0KbLMc6LS0NPB5PquecGB1FTlRUVNjfJ2a2cFm7LmlfU1NTpx6RYlRWVmLmzJng8/lvVdW7ePGiTDPVnp6eMDExYf+WVGcF2s9QoaGhGDlyJG7evImamhqkpqYiJCQE0dHRbKy7Ujb1vw25cJrklVve1taGN2/eYMaMGdDU1IRQKMTEiRPR0tKC8PBwmJqasoJzceHihQsX4OTkJHUYFkt4d6RW/Bl49eoVfH19oaioiDNnzqCwsBDa2trIzc3F06dPce7cOWhrayMoKAgPHjxAQUEBIiMj8csvv0hF4rl4aCQ3opUrV8LKygq6urpQVVXFrFmz8OLFCxQWFmLixIlwcHBgi1RBQQGbJ1xFRzIzMyEUCuHp6YmwsDAp7n5ubi78/f0xevRo5jhdvXoVXl5enEXgDx48CDMzM3Zw5/F48PX1xbZt2yASidiB9/r163B1dYWLi0unHipcIj4+HuPGjWP/GzlyJHMwNm7cyKh64honySJdWaPjd4qfraKiIvj4+IDP58PDwwONjY148uQJtm3bhri4OPj5+XG2eYWHh4PH40nJLXd8tp48eQJfX1/Y2dmhtrYWdXV1KCoqQm5uLicHYslxzsvLQ25uLjuwlJeXQ19fH9bW1rh27ZrU39LU1MSp6MqNGzfg5OSEtWvXIjQ0FDo6OlBXV0dkZCRycnKkbEtMTISioiKWLFnCSZ2EGOHh4VJ1xosXL4a2tja0tbUxdOhQBAYG4s6dO6isrERERARMTEyknA+unsfs7Gx2hhBT6ffv3w9dXd1OWUWxcIy4Mb0YXMyVdevWYe7cuaiursapU6cAAKGhoQgPD0dDQwNiYmKwePFitLS04Nq1ayzjtHbtWgDc7Iv19fXw8/ODtrY2zpw508kG8Tg2NTVBT0+P1cBJji/X63VKSgo8PDzg6urKznhA54xTYGDgOynWsoI40zh79mw8e/bsD+/T0dFhc6Mj/soOEyAnTpMY8sQtDwwMZKIHz58/h5mZGRQVFaUaBhYWFjKervhBmzhxIgICAjr1zeiYKv0zUVRUhIiICAwePBjTpk1jtBSxPTdu3ACfz0dCQsJb3881jzU5ORmampo4efIkWltbMX36dIwYMYI1vnv48CE8PT0xduxYKaU8LuyW/M709HQ4OztDWVlZ6oAAtDtOgYGBMDQ07JTK52JjKCgogKurK5KTk1FcXIzU1FSMGTMGSkpKsLGxwcKFC1lm9NGjRzAzM8OcOXNkbufbsGXLFowaNYrJ4//222/g8Xi4dOkSiwj++uuv4PF4UkIVXG/Av/32G2JjY+Hm5oYdO3agvLwc5eXl8PX1ha6u7judUi7mdXp6OnR0dDB79uw/FH/Jzs6GsrIyq0mQBFcZpqVLl7IDvImJCXOmX716BT09PdjY2CA3N/edhzguIA5eiEQiPHz4ELNmzYKuri54PB6Cg4OxatUqNg9WrVoFBwcHzgJEzc3NcHd3h7q6OnJycnDs2DHo6+vjwoULqKiowL59++Ds7IwJEybg8ePHKC0tRUREBMzMzN6atZEF2trapH7fpKQkzJ8/H9XV1Xj+/DlUVVUxbdo0qcxMTU0NHBwcpPphcYXU1FSoq6vD0tIS+vr6aG5uRlVVFfLz81FQUIDx48ezeX7ixAn4+Phg06ZNnO/ljY2N8PX1hYaGBs6dO/fW37y6uhqGhoad+ltyDXHD7uXLlyMlJaVTmxXJ+VRbW8vp+iGGuCRkzpw5ePjwodRrkmMfEBDAmFuSTtJflZInCblxmuSFWw60O2wRERGMh3vv3j14enrC398f2trarGYJaE/hz5s3D0FBQXB2du5EbxM/SLKYjJIP7ePHjzFr1iwMHjwY/v7+ANoPX+Io29q1ayEQCFBTU8M5h1WyULyurg7u7u7sAHns2DGoqqoiIyMD58+fR2ZmJoD2AugFCxZwuim8bZE8deoUTExMMG7cONy9e1fqtby8PLi6uiIwMBAA9wvUwoULMXLkSHZQqKqqYv1HlJSUoKamhhkzZuDUqVN4/vx5l+mJNmvWLBb9PXz4MEaMGIFdu3bh9u3bmD59OhvX/fv3d5ki4ri4OIwePRqzZs3CokWLwOPxmFris2fP4OPjA6FQKBVQ4hpZWVnQ1tZmvbokIf77KioqwOfzu4xIz7Jly6Curo5Tp07h3LlzsLe3h76+vpTjZGBgAD09Pc4FHoDfx/Hu3bvg8/msOTfQ3jBT3GCVx+NBIBAgNDQUb9684YwmJolp06ZBVVUVUVFRnZrSnjhxAuPGjWOBucLCQkRGRsLKyuqtfdL+bEiO08uXLxl1TCy1fPr0aSgrK7Mmq6dPn4aHhwesra05dzzEcHFxgaKiIoKDg1k9LNCehTIwMADwezG/ZENYLnq5Sf5/Y2MjvLy8OjlO4v8vKiqCi4sLTp8+LXWdS1y9ehUCgYAp8ZaUlODw4cMICgrCggUL2H1/JBYhS3RUgdTW1sbcuXPx6NEjdl0cyG9tbUVISAhmzpzJhamco8s6TfLILX8btm7dikuXLqGxsRHPnj3DjBkzoK2tzQrpWltbMW/ePERGRiI+Pp4zetvbxrukpASzZs2CsrIyo4WJF6SUlBQ4OjpyHh3pGK0Ry28/evQIly9fBp/PZ07q6tWroa+v34l7zmVRP9B+uFyxYgUWLFiA+vp6HDp0CEKhEB4eHp0OZvfv3+8yY/78+XPo6elJPXNmZmaYOHEidu/ejcjISCgpKcHOzo6zeiDJDfTevXsQiURwcXFBUlISzpw5IyWXf/bsWaioqDCxEzG4phvk5ORAR0eHZUpv3bqFwYMH49SpUyxD8/TpU9jb22PWrFmcHxokvz8jI+OtjpN4Dl2+fBnjx49nMvpc4sGDB7CxscHVq1cBtGd3tbS04ODgAAMDA5aVfvnyJQICArrMYRhoj7a7u7vDzs4Ozc3NaGtrY8Xwt2/fxp49e+Dm5gZ7e3vOqMh3797Fvn37sGXLFpw/fx4lJSWsrs3T07PTeMbHx0NfX59lfx89egQnJydMnz6ds+bGCxYsgEAgAPB7zc3ixYvx+vVrXL58GWZmZlBXV4eFhQW8vb05EyLYvn07FixYgNmzZ7MarIiICJZFlcwkiPdJe3t7jB8/ntO65I61QOLsTFNTk1TGSVIgxtfXl5U9cIWOwe1jx47BysqK1eB5eHhAIBDA1dUVfD4fCxcu5MzWjnjb3rx58+a3Ok5A+1ozceJEVkLA9X4ja3RJp0leueUd0djYCBMTE+jq6jJu/8OHDzFz5kzo6Ogwx6njpOSyOd/JkyeRmpqK/fv3o62tDUVFRZgxYwbU1dVx5swZvH79GpWVlZg4cSKCg4M5fWAk7V68eDEiIiIgEong6ekJoVAIPp8vFZVct24dHB0dOT0EdxyvuLg46OnpwdvbG/7+/qzoNSMjg9XAidWNJNEV5rlIJEJoaCjMzMxQUFAAc3NzODo6SnUrLygo4MzWjj3RJk6ciOLiYsTGxmLcuHFQUVGRaox5/vx5CAQC1jCRC3SsZwPa54KXlxeA9iaOfD4faWlpqK6uhp2dHYuwlpWVyTQz3RHv+p3T09Pf6jiJRCL4+voiKCiIE3s7fue1a9cwcuRIPHr0CE+ePEFQUBA2bdqE/Px86OnpQVdXV4olAHCrytURJ0+exODBg5Geng4bGxs4Ozt3qoPlSr49NDQUzs7O0NTUhL6+PkaOHIkxY8bgxo0biI2NxbBhw1jvLjG2b98OZ2dnqTrkiRMnwsnJSaYNmyVp6QEBAVK1KWLhmMWLFwNor3MqLi5GcXExZ0IE4gyXv78/xowZI9WgFminJ4sdpydPnqC5uRkZGRmYP38+Fi5c2CUCt5K1QOIg1ps3b1jGSRw0F7eB4EI05m0Qr28lJSVQVlaGiYkJeDweIiMjWY+j8PBwzJ8/n0szGSTHq6ysTIpKLZlxkhQREbe86EpBI1miyzlN8swtf9tmVltbCycnJ4wePZrVUIgdpxEjRoDP5zP6G9cQU4AMDAyQkJDA/p7S0lJW2K2jo4OpU6fCxsaGc1qeGOJo9c2bN9Hc3Ixff/2VqSiK0dzcDE9PT4SHh3NoqTTEGQSxY9GxQ/uRI0cgFAphZWUlM+XEt+GPnqfCwkLw+XwoKSnB09OTZfE6zgkuF9iTJ09CKBSyTEFhYSG0tLRgbGyMq1evorm5Ga9evYKPjw+n4hrV1dVYt25dJ7GaX3/9Faampjh06JCUo9fU1ITRo0d3KsjluvYqPT0dixcvxrRp09g8yMzMhLa2NiIiItgG7O3tLRXVlqXdHdsRiEQiFBYWIjo6Gk+ePMHGjRsxd+5c1h/F3t4eRkZGEAqFXSZQ1FGVq6amBs7OzuDxeJgwYYIUw0Ly+ZP1/JgwYQIcHBxw/fp1JnB06NAheHh4QEVFBefOnUN0dDRGjhyJ8+fP4/nz56iqqoK7uzujIgPtBfNTpkyRas3wZ6G4uFjqAHn69GnweDyMGjWq0/eLHaf4+PhOanOyHmuxsIrYWX6X8JXYcYqKikJBQUGnht1cBhb/qBaopaUF3t7e0NbWhoWFBUxNTdn6wbVK3vXr18Hj8Zjy8M2bN5GcnCwlRQ+0S3onJibK1M63QdL2FStWwNzcHKqqqlJBu9TUVGhpaWH+/Pl4+PAh/Pz8IBAIOJVy5xpdzmkSQ1655UB7jcHDhw/ZoltXV9fJcXr69Cl2796NhQsXdommgqmpqdDU1GQUoFevXuHp06c4cuQI6urq0NDQgLlz54LH4yEzM5NTOU9J7N+/H+rq6pg0aRLrTSMSifDLL79AIBDA3NwcU6dOhZ2dHae0g7CwMFZPJcaePXtgZ2eHhoYGqflz4cIFjB49Gg0NDcjIyEBUVFSX4DqLD8ORkZGM31xfX4/Q0FBoaWl12hy6Ak6ePAkbGxsIBAKpQ+StW7egp6eHsWPHsgCMtbU1ZxHLjvNx+/btiI6OBtCeiTY2NoaioiJrCAv8TleWVCHjGrGxsdDU1ISfnx9iY2Olso7Z2dnQ1tbGjBkzIBQKpTZfrlTyjh8/DkdHR/ZsVlVVoa6uDiYmJqw+rLy8HBMnTsTp06c5rQX63yLxwO8CJuKWClwfapKTk+Hg4NCpMSnQTu+dOnUqRo4ciYKCAkRFRWHw4MEYNWoUAgMD3xqYk4X6bXh4OExMTKCsrAx7e3vm5C9cuJA19+yY6UpNTe0kHCNrnDt3DkKhUCpT3traijdv3iAlJQVLly5lPeiA3ylYo0aNgqmpKedZGuDdtUCBgYFsPWxtbYWHhwdMTEw4dZgk14ANGzaw8xGPx2NtcID29Xvr1q04cuQIPD09YW5uzvm5SRKJiYnQ1NTE/v37cfHiRdTU1EAkErG1Y9euXdDV1cWIESMwbtw4Tse8K6A7dUEUFhbS6dOnadWqVaSqqkp5eXlUUlJC3333Hc2ZM4diYmJIU1OTdu7cSb/88gv9/PPPnNoLgBQUFIiIKCkpic6dO0fFxcX00UcfkZqaGs2fP59Wr15Nfn5+NHXqVFq2bBkNHz6cvv/+e/YZLS0t1L27bH6Op0+fUnNzMw0aNIhdu3//Pvn4+NCQIUPoxo0blJWVRYcOHaLGxkb64osv6LfffqMJEybQ999/T+bm5tStWzcCIDObxQDAvhsAffTRR/TDDz/QjRs3qKqqinr16kU9e/akyMhIOnbsGJ05c4ZaW1tp9OjR5OfnR927d5fpWBMRlZWV0cCBA8nU1FTq+suXL+nx48f00UcfkYKCArPrm2++odevX1NhYSFZW1uTlZUVdevWjdra2tg8kxXE3xcXF0dZWVk0fPhw+vHHH+n169fUu3dv6t27N5mamtL+/fuppKSE1NTUOLFTDPH8EGPgwIHE4/EoIyODfv31VwoPDyciImVlZUpLS6Pr169TaWkpDRw4kIyNjemDDz6Q+fwgIimb37x5Qzdu3KBr167RypUrKTAwkGxsbGjnzp109+5dunXrFtXV1dGmTZvob3/7GxkZGcnU1nchMzOT9u3bR6mpqfTzzz9TVVUVFRUV0bFjx0hPT48sLCyIiGjatGk0ePBg2rdvH/Xo0UOm4y05N3fv3k2XL1+mvLw8qqioIAUFBTIxMaG6ujpqbW2lnj170r179ygxMZFaWlpIS0uLs+eQ6PdnMT4+njIyMsjBwYE+/fRTGjx4MLtn4sSJlJmZSbt27aJx48bRBx98IHM7JXHr1i3S0tKizz//nF0TP6NfffUVBQQE0JMnT2jVqlW0cOFCUlBQoB07dpCTkxNpaGhIrYtERD179vxT7XVxcaHW1lYKDw+n8vJy2rx5M82YMYN27dpFM2bMoObmZlq6dCn17duXzMzMmF2urq70xRdf0NixY/9U+/4I1dXVVFtby8aosrKSTp48SWlpaVRQUEB9+vShlpYWOnPmDGVmZpK7uzspKirSq1evSCAQkIKCgszntvj7xHOiurqaevXqRT///DOdOnWKNm/eTCUlJdS/f386c+YMKSgo0MyZM2nVqlXUs2fPTvNDlhCv2cuXL6cdO3ZQWFgYzZgxg27evEnh4eHU0tJC1tbWVFJSQqtXr6b+/fvTV199Renp6dS9e3dqbW3l/PksLS2lnJwciomJIQMDA3r48CFlZGTQzp07iYgoIiKC7O3tqaGhgU6ePEkbNmzg5AzVpcCdv/Y75JVb3hFJSUksO1ZcXIyoqCjweDzGcxVnnIYOHfrWOhVZoKmpCYmJiQgJCUFtbS2OHTuGuro61ktq+fLlGDlyJLy9vZGSkoKcnBxoaWnh0qVLUp/DxXhLZuQkoxyXL1+GsbExTExM3tlETgyu58n27duRnJwMoD0jOWbMGISFhUlFLp8+fQpzc3OW9eMaGRkZ0NHRkWoeePv2baxYsQJ5eXloaWmBl5cXxo0bJ5VZkDUkf9uKigrWh6asrAwzZ87E2LFjpdTF/rfPkBXe9p0vXrzAokWLIBAIWP+RDRs2wMLCAjweD+bm5pg4cWKX6HgvxpYtWxAREQGgXUQhLCwM2traUFFRAZ/PZ5n3ixcvct4EMTExEerq6ti0aRO2bt0KoVAIe3t7pro5ffp0KCsrw8DAAOPHj+8ydJQ/UuWKjo5GS0sLkpOToaSkJBMa27vQ2tqKiooK6OjoICcnB8C7x27hwoUwMjIC0D4fli1bJlXoLys4OjrCxsZGag3LysrC0KFDpfqNzZ07F0OHDkV2dvZb5y9Xczo7Oxvq6urIzMzE8ePHMWHCBCgpKcHCwgIZGRl48OABbt68CUNDw7e2J+Bybv+rtUAdVRa5zo69ePEC9vb2Utn+qqoqLF++HDweD0eOHAHQLh5TXl7OOUOn43iVlpbC3NwcO3fuREZGBiwsLGBnZ4eFCxfC1dVVKgPJte1dBZy7ipCIDBcUFNDPP/9Mn376KVlaWpKCggKdOHGCPv/8c9LX16cff/yRBgwYQNXV1ZSVlUWOjo7svVx77NXV1XT16lVasGAB6enpUU5ODh08eJDi4uKourqadu3aRQ4ODrR69Wpavnw5/fTTTzK3sa6ujj7++GMaOXIkrVq1igoKCqi5uZl2795Nnp6eVFtbS4cOHaKAgAAyNjamr776isrKyqhfv36dogqyHO+nT5/SDz/8QD169CAioq1bt9KlS5foyy+/JFNTUxo5ciQtWLCAZs6cSXZ2dpSenk4ffvghNTU1dYpMcjlPampq6Ny5c/TgwQP6+OOPyc3NjVxdXWn37t0UEhJC4eHhVFtbS+vWraNPPvmElJSUOLETHbI1dXV1pK2tTT///DPl5eXR1q1b6eLFi/TmzRtKSUmh7du309ChQ6mlpYX+9re/ydze/Px8UlJSYvMjOTmZzpw5Q+Xl5eTr60u2trYUHBxMK1asoMzMTOrWrRt5eXkREXWK9slyfoi/W/yd165do/r6evrb3/5GQ4cOpSlTphAASk9PJyIiPz8/8vDwoNzcXPrqq6/o66+/7hKRVvG68ubNG9q3bx/V1dXRiRMnyMjIiMLCwsjGxoZGjx5NFy9epMGDB9OoUaOISLbZdUhkqEtLS+nQoUO0YMEClqWzsrKimTNn0rp166hPnz4UFxdHTk5O1NLSQiNGjOAsA/nvROJPnTpFn376KVlbW9O1a9eIx+PJ1FZJKCgo0Oeff04ff/wxXblyhfT19Ts9W+L5r6urS5mZmVRWVkZfffUVhYSEEJFs54e7uzs1NzfT9u3b6cMPPySRSEQffvghff311/TJJ59I7SPz5s0jIqI5c+ZQY2Mj2draSv1tXEXgLSws6NChQxQREUFERN9++y0JhUKaMWMGWxurq6upR48eBKDT+2W59klmtPLz80koFFJiYiIZGxvTjh076PTp06Surk5qamrsPcXFxaSlpSX1OVwxGsRoamqiBw8eUFtbG7v22WefkYuLC507d46CgoJo+fLlZGJiwl4HBwwd8feKx+vIkSM0fPhw+vrrr+nLL7+kFStWUHl5Obm7u9PYsWNJXV2d9u3bR+np6fTmzRvq3bs3Z+yiLgeuvDVAfrnlb0NFRQV0dXVx9epVnDp1iilcAe1S15aWligvL5d6jywjOxEREYiLi2PfOWHCBCb1KmlXc3MzXr9+jdraWlRUVMDX1xdOTk6cRXRmz56NiRMnsqzLsmXLMGLECEyZMgUaGhpwcnJikagrV66wOqb/LeMkC7xtzMQiIMbGxti5cyeA9qallpaWUFZWhrm5OVxdXbuEGpA4U7N27VooKyvD398fgwcPRlBQENLT0wEAurq6UvL5kv8vC2zatAk8Ho/NgVWrVkFdXR2JiYkIDAzE4MGDkZSUhObmZpSVlWHWrFkwNzfH8uXLZWbj2xAcHIzNmzez53Hx4sXQ0NDA2LFjoaioiAkTJuDs2bMQiURYuHAhBAKBVDNpLsa643cD7bUcrq6urAA+Pj4ekZGR2Lt3L5s/9fX1sLOzYwXSXNoLtGcetbS0cOHCBQC/18k0NTVhzJgxMDExwb59+6QiqlxnmP7VSPzcuXOl3seV3W1tbRCJRAgMDIS9vX2nRpmSSE5OhoeHhwytk4ZYOlysXCo5ZhMnToSzs/Nb3xcaGgo3NzeZ2PguvE0u+vDhwzh58qSUKq94Lj979gzu7u44d+6cbA2VgLzWAr1tra2trYWzszPi4uJQU1Mj9Vp4eDgMDAwwdOhQzvvQSdpeVFTE1g6xyMb169dRUlIi9R53d3epdiLv0Q7OXEZ55pa/7XsB0DfffEObNm2iixcvUkREBDk6OrLXe/bsSZ999pnUe2QV2QFAGhoaZGZmxr5TR0eHDAwMKC4ujhYsWEBBQUH0008/UU1NDa1fv55+++03VnO1Y8cOUlBQ4ISDq62tTXFxcfTrr7+SkZER5eXlUUpKCg0fPpzu3btHCxYsoA0bNhAAMjIyooULF5K3tzfNnj2b4uPjZWqrJCTnyOPHj6muro569+5NP//8M4WGhlJ8fDylpKRQW1sbOTo6kq2tLeXm5lK/fv1o4MCBnGQQJG1OS0ujw4cP09KlS8nHx4fq6uqovLyclixZQvr6+vTxxx9TQ0MD9e/fn3r37k1ExAkn3tXVle7cuUORkZE0b948evToESUnJ7MI5apVq2jFihVE1J6pCQoKopiYGCouLu6UUZMlevfuTUuWLKE+ffpQ//796eDBg5SUlERKSkp069YtWrduHSUlJdGMGTMoMDCQWltb6fjx40RENHXqVJZ9kPX6J/n7njp1il69ekVXrlyhBQsW0Lx58ygsLIyIiF68eEEvX76koqIiWrlyJbW2tnJS7yE5RnFxcdSrVy+aNGkSERFduHCBNDQ0qGfPniwrPWjQILpx4walpqbSgAEDSE1NjQDIfN37/43Ei+c2V5n1bt26Uc+ePcnX15ecnJxow4YNFBoaSv369ZO6TyQS0fXr12no0KGc2ElEZG1tTWfPnqWoqCiKiYkhfX19IiIKDg6mFy9esPqOjvvf0qVLpTIMsobkHGlra6PGxkbq3bs3CQSCTvd2796dGhoaaM6cOdTS0sKyvVxAHmuBJMf6ypUrVF9fT0pKSjRgwADS0tKijRs30sCBA8nc3Jxl3WtqamjixIl0+/Zt+u2330hdXZ169eol8z1Hcg1cunQplZeXU58+fSgjI4Pq6upo/vz5NHz4cHr06BEtWLCA2tra6MGDB1RdXU2//vor+wyu9souB668NTHklVsOAE+ePMGdO3dQXV0NoD1jwOPxEBwczJTcGhoa4OnpicjISE5sfJsql7+/P5OGzsnJgaKiIqZOncpkre/fv489e/bg0KFDbJy5jPCcPHkS+vr6cHFx6dQH6NatW3B1dZXKOBUUFHA6PyTHPDExEWZmZtDX14eGhga8vb1RWFiI4uJiREZGYty4cSyTKglZZxAkvy8nJwcJCQng8XgICgqSUr4qKytDYWEhbt26BT8/vy7R8b6lpQWhoaFQVFSEiopKJxW/5ORk8Hg8rFy5Es3NzaioqOCsn5Hkc7Rw4UIoKysjLCwM06ZNk7rv2rVrsLGxwezZswG0j3tMTAwsLCywfv16mdr8NsTHx0NdXR1xcXEICwuDuro6JkyYgJKSEohEIixbtgx8Ph+mpqZwd3fnfN2+du0aDA0NmfpqSkoKRowYgZSUFHZPa2srJk+ejH379sHCwgIhISGc2Cqvkfh3YefOnVBWVsbUqVNx8eJFAMDr16/x6NEjtoaI7eaKOdLY2AhfX19oaWkhNzcXQUFBMDc3Z0p0f2QX19nedykp7t27F1OmTMHBgwdZNs/S0rJLsBjkrRZIjLi4OGhoaGDIkCEQCATsefzll19Ym5N58+ZBKBTCwsICQLuct4uLC5dmA2ifJ6NGjcL58+dx9epV5OTkQE1NDQEBAXjx4gWqqqoQEhKCyZMnIzo6mvO6064KmTtNkrS6Z8+ewdTUlD0gQDuVIzg4GKampuwQnJeXhytXrnB6gP/ll1+kFqQlS5bAwMAAampq0NDQwJw5c1BUVISUlBRGewsKCoKjoyOnUtcdkZSUBDMzM0ydOpX1zDh16hSUlJQwZcoU5OfnY9OmTZ16I8gaHZswnjx5ElpaWhgxYkSnQ/Ht27cxYcIECAQCqQaJXB/m165dC01NTXZQmzt3Lvh8PptHpaWlmDFjBjQ0NJhEMNeQl8Nwxw2/ra2NSQLv2bOn0xqxevVq9tq7PkMW6CiZvGjRIvB4PNjZ2TFKqXjub9myBaqqqsxpffXqFby9vTF58mSZSC+/C7du3YK+vj47AAPtlA8dHR14enqirKwMQHtvG8nmxlxtvuvWrYOZmZlUj7bi4mIsWrQIysrKCA4ORnR0NJydnZkgwYYNG+Dm5sbpGrJs2TKMGjUKu3btwqZNmxAWFgYej8cCimfOnIGOjg5sbW3h7+/PuWP6LrS2tuLAgQMYNWoUtLW1YW5uDoFAABcXF3h4eHBmd0eKf2NjIyZNmgQejwcDAwNOe+P9q/ijnkb5+fmws7ODiooKhEIh5s+f32UOwsXFxeDz+Z32vVevXsHe3h48Hq9TKwWuZf6zs7NhYGCAkydPoqCgAJ6enhAIBNi3bx+A9l50UVFR8Pb2RkxMDJvP8+bNw/Tp0zldswFg6tSpUhRvoD1ArqqqitDQ0E70QqDrrSVdATJ1muSVW15XVwcDAwMYGxujoKAAe/fuhba2NnJycvD06VOsXbsWtra2CAoKQk1NDQ4ePIjIyEiEhIRgxYoVXaLDtuS1zZs3w9zcHFOmTJFynIYOHQp1dXXY2Nhw+rB05N8+e/YMIpEI169fh46ODoKCgqTUjIB2Tu78+fO7xEMu5vN7eXmxurZjx45BRUUFGRkZuHjxImsg9+DBA6xevbpL2C0vh2HJ+XHjxg0cO3YMBQUFqKurw8yZM8Hn83HkyJFOY5qens7ZYWHPnj2YO3cuxo8fj6CgIKxatYrZt2LFCgwePLjTAWL//v0YP3486uvr2YEhMDAQ5ubmqK+vl/nfIMb58+ehq6vLnDnxmN67dw/Dhg3D1KlT2VwRg8uo9okTJ6CiogIdHR08ePCAXa+oqMDRo0fh5uYGf39/zJ07l/0tYWFhiIyM5Oy5lNdI/B+htLQUBw8eRFJSErZs2YIrV650iTWkqamJORsikQhhYWFQU1PDpUuXOFdn+yP8UU+juLg4dl9xcbHUgZ3rABcgP7VAYhw5cgTJyclSrBDxHi8QCJCVlcXGtb6+HkVFRbh+/Tri4+OhoqLCaS/RtrY2NDY2wtTUVEp9UDwnxAHFyMhIVofalec915CZ0yQZJYiNjUViYiLq6+uhpaUl5f2Kf0hfX19oampCKBSyzAKXWZqKigqMHz8eAoEACxYswLJly6Re37VrFwQCATskd2xYy+VCdeHCBRw+fBg7d+7E8+fPAbQXv1paWko5Tnfv3sXBgwc5kXsVQ/I3Xr58OaytrTFq1CjW2O7EiRPQ09N7q+MkBtey0S0tLczRvnPnDq5cuQI+n89k8jdt2oRRo0Z1Olhy7TjJ22F4yZIlMDIygqamJiZPnox79+6htbUVoaGh73ScANkf0Ly9veHo6Ijg4GAkJSXByckJ6urqMDc3Z7LQMTExGDJkCLKysvDw4UOUlZXBw8MDXl5e7Jmoq6vD/PnzcevWLZnZ/rbf9+7duxg6dKgUQ6C1tRWVlZUwMDAAj8eDv78/e02W6/a75uOZM2fA5/MxZcoUvHz5stPrbW1tePToEQoLCxEbGwtVVVXO2kIA8hOJ/2+ASyry26htb968gZeXFzQ0NHDu3LkuM64dKcXHjh2DlZUVamtrkZOTAw8PDwgEAri6umL48OFSzWDFkPXfIvndly9fxokTJ9gesnLlSqioqGDbtm3ssP769Wt4e3tj8+bNmD59OgIDA9HQ0MDpb/D69Wvw+XzweDxERUVJvSZ2nMzMzLBlyxY0NTXhyZMnCA8Ph56eHuzt7XHnzh2Z2vuu52nFihUwMTHpxNTZtGkTnJ2dMXz4cMyfP18WJso1ZE7PkyduudgWMcrKyuDl5QUej8dqECQf5qlTp2L8+PGdrnOJ+Ph4GBoaQigUQkdHBwYGBtizZw/a2tqQkpICKysrTJ06tdNBgusD/Nq1a6GhoYHz58/jwIEDLJoGtDuBenp6CAkJkaJMcgXJOZKRkcH6GU2aNAkCgQB8Pp+pzQHtDvb48eM57Wkkb4fhjtixYwe0tLRw7do1VFRUSEXyxM6FiooKsrOzOXXs/Pz8YG9vj9LSUhZIqa+vx6lTp2BhYYExY8awuono6GjweDwMGTIEwcHBcHBw6ETrlaXDJzluDx8+xMuXL1FVVcX+LldXV5w9e5bdU1dXh4CAAGRlZWHEiBH/a0+s/zYko+mnTp3Ctm3bsHHjRuaYnjlzBsOHD0d4eHgnxdCysjLY29tj7NixsLa2Zj2lZIG/QiT+X4XkmsH1HvlH1LaWlhb4+PhAW1sbJ0+e5NxWSfyrSopd6QAsT7VAb3seKyoqYGpqijFjxuDixYtS94hEItjZ2UkpzYkDX+L1UlaQtCszMxPLli3Drl27UF5ejvv378POzg4+Pj6s72ZtbS28vLywYcMG7N+/H2pqauz88h5vh0ydJnnjlktOwJiYGMydOxcvXrzAhAkTYGBggMePH0vdv2rVKkyaNEnGVr4b27Ztg5aWFsvI7NmzB8rKyjh//jzbIFJSUqCrq4vExEQuTZVCfX09PD09WdZOEunp6bh9+zauXLkCJSUlzqWjJefIypUrwePx2FhmZ2dDIBDA3t6e3SMSiVi9G1cbsbwdhiXR1taGtrY2REZGIiYmptPrR48eRUJCAhobG+Hj44OJEydyYGU7Tp48CaFQKCX9K5nFvXXrFosMiyGmShw9epRTypXk3ExISMDo0aOho6OD0NBQlJaW4saNG+yAk5ycjKysLEyYMAFWVlZobW1FUFBQJ/nrPwvbt2+X+ndcXBz09fVhaWkJgUAAHo+HzZs3A2gXORk+fDgiIiJYhl2MsrIyFBUVMWEfWeCvEImXR/wRtU0yQ2Nvbw8fHx8OLZWeI9evXwePx2Py/Tdv3kRycnKn7IFQKOR0T5fXWiBJu/Py8pCbm8sCcuXl5dDX14e1tTWuXbsm9cw1NTVxTmnryOZSVVWFkZERdHR04Ofnh6qqKly6dAmurq5QUVGBubk5TExMmIDMtWvXYG5u3qk1zntIQ6aS44MGDaLnz59TTU0NFRYW0qBBg+i7774jHx8fUlNToy1btlBLSwv94x//oM2bNxMR0Z07d+jbb7+VpZkMYpnGgoICunLlCs2ZM4f69+9PCQkJ5OXlRcHBwZSQkEBffvkl9ejRg86ePUvfffcdJ7a+Dffv3ydLS0saNmwYHThwgBYuXEhRUVHUu3dvWrRoEc2bN4/c3d3piy++IFNTU67NZXjz5g3l5+fT6NGj2bW2tjZqaWmhEydO0IULF2jx4sW0efNmGjFiBGd2SkqfRkdHU1ZWFn3//fdMhlYgEFBJSQllZGSQoaEh/f3vf6eqqipqbm6m9PR01ixOllKekJAfXbZsGWVnZ1NLSwupq6tTeHg4+fv7U0xMDMXFxZGJiQl99913lJ6eTtXV1WRubk7Hjh2jkpISmdnbEeKxqqyspIaGBnZd/FtcvXqVTpw4QQEBAbR27VpOJYHv3r1LTU1N9OWXX7Jr4vmioKBAgwcPpokTJ1JSUhLl5eXRiBEjyM/Pj3r37k2jR49mbRVk3UxQck5u376dduzYQTNmzKB79+7R1atXadasWbRo0SKKiYmhnTt30ubNm2ngwIH0xRdf0O7du0lBQYGamproiy++6PR5/21kZWVRTEwMKSsr09ChQykjI4Oys7MpKSmJeDwevXnzhrZs2UKLFy+mTz/9lKysrCgxMZF8fX1p4MCBFBAQwGwcMGDAn2LjH0H8LC5evJgyMjKovr6evvnmGwoKCqKAgACqqKigpKQkOn78OA0cOJAKCgro9evX5O7uTklJSXTp0iVOGkrLG/6dJsFnzpwhBQUFmjlzJqWlpXHazFNyvd64cSMVFRUREdGUKVMoPj6ezM3NaciQIfT48WPatm0bffnll7Rjxw5qaGggf39/zuwW23z06FEqLi4mNzc3tp+vXr2aAgICaMWKFdTa2krm5uZkZWVFDQ0NVFlZSbdu3aJjx45RdnY2bd++vVOD+j8LkrLiCQkJrKn4xx9/TLNmzSIdHR3as2cP2dnZ0YIFCygqKor4fD5169aNNQ/mqg2O5Bp78eJFunbtGm3cuJF4PB5lZ2fTjh07KDIykhYuXEhJSUl07do1KigooAEDBpC9vT0RER0/fpx69+79vnnt/4Y/yxv7q3DLU1NToa6uDj8/P6mIR0VFBWxtbaGmpgZjY2P4+fl1GZW8lpYWNDc3QygUYv369bh586ZUTU1+fj54PJ6U0pz4fbLGu+aJv78/Jk+ejGfPnkldj4qKwpQpU6SucU0lXLRoEVRVVVFaWorY2FgEBwez1xobG3H58mVER0dj7ty5WLduHWfCIJJzctu2bVBXV0dGRgZiY2Mxfvx4eHh4MEnxmJgYqKurw87ODr6+vmxe+/r6IikpqdPn/Vl41/yIjY3FmDFjcP36danf/8SJE3B1dZWiPnIVAYyIiICfn98f3lNWVoYRI0a8VT2R66L+/Px8TJ8+HdnZ2exaVlYWHBwcMGHCBDx58gRAe2a4urqareeLFy+Gurq6VIbtz0JhYSHU1NSwdu1aAO2MgI51By0tLZg7dy40NDRQWloKoD1i31UaZcpTJF7e8a9S2yQL5gHuC+PlUUlR3mqBxFi2bBnU1dVx6tQpnDt3Dvb29tDX12clJa9evYKBgQH09PQ4FXh4G/bv349p06YhNDRU6vrOnTthY2MDX19fPH36FED72eT69ev49ddfMXfuXKiqqnI25vKEP8VpklduOdD5IHj+/HmYmppCS0uLTTbxPRUVFfD19QWPx8OlS5c4kURva2t754K+Zs0a8Pl8KCkpISsri12/fPkyxo0bx/4eriBp98WLF5GRkcEcubS0NBgYGGDx4sVMvOLNmzeYNGkSFi9ezIm9b8OaNWvA4/HYPI2OjmY87I5iIJLgcjOTh8MwID0/9u3bh6VLl2LlypUA2teYcePGwdzcHBcvXkRlZSVqa2sZ9ZErLF++HFevXgXQTi02MDD4w6BPZWUl1NXVceDAAVmZ+E5Irn3nz5+HQCCAqqpqJ9uysrIgFArh6enJqL93796FjY0NzMzMYGhoyNZ6WdibmJgIPT09PHr0CKGhofDy8up0T05ODlRVVTvZxbVjKs+qXPIAeaS2dYS8KCnKcy2QGA8ePICNjQ1bw3Nzc6GlpQUHBwcYGBjg/PnzANrHOiAggPOAbccxnzFjBkaMGAGBQCBVowe011I7ODjA3t4eZWVlqK2txbZt22BiYoKwsDAWUHiPP8Z/1WmSZ2751atXpZp4itHS0oIrV65g9OjRUhFs8cL08uVLzJgxgxPFOXFfFzFOnjyJXbt2IS0tDc+fP0dRURE8PT0xZswYtjG8evUKvr6+mDBhAqfRM8kD2uLFi2FoaAh1dXWpGqXVq1fDyMgI5ubmCA4OhlAohJmZGacHHcneHk1NTbhw4YJU4eSvv/4KJycnqffMmDGDRQS5yEDK22G4I2JjYzFq1Cj4+PhgxowZbF2orKxkUUA9PT3Y2dnBysqKs2zvtWvXYGpqCjc3N9y9exf37t2DoqIiEhMTpTaw1tZWZltubi4cHR27ZPFtUlISy7J3VE0U1+uJ6z9qa2tx9uxZnD17ttO9fzauXLkCgUCAjIwMrFy5EhoaGrh69arUOpGXlwdLS0uZOfz/CuQ1Ei8v+Ks0CZYHJUV5rQXqOE7Xrl3DyJEj8ejRIzx58gRBQUHYtGkT8vPzoaenB11dXcbYEYNrxwkAzp07x/57+fLl0NHRQXR0NCorK6Xu27RpE2bNmsXGvLW1FU1NTe+z1f8G/mtOU2ZmJoYMGYIbN24AaC/Y19bWRm5uLhoaGlBeXo6EhAQoKysjMzMTQLvjxOPxWPQY4OZQOWPGDPB4PIwbNw47d+6U6uUBtEdsrly5Al1dXUyYMKGT4ySGLB+eRYsWwcfHh9myYMECaGtrw8LCAmPHjgWfz8fJkyeRk5ODSZMmQUlJCQYGBjAxMYGtrW2X6AoOABs3boSmpiby8vIgEolQXl6OkpIS5OXlobW1FXl5eVixYgWmT5+O5ORktpl1BSrh2zJJe/fuxZgxYyASidDW1gZvb2/o6+t3qU1YXg7DQPs6oq+vz6JgdXV1uHfvHtLS0lh27/jx49i2bRuys7M5bYANAAcPHoSLiwtcXV1RWlqKlJQUKCoqIjU1tVMQqLm5Gb6+vggICOgyhfzr1q2TopcmJSXB2NgYv/zyC168eCF175kzZ7pMP7eQkBCMHz8era2tcHBwgKmpKU6dOoUXL17g5cuXmDRpEjw9PTld7/4KkXh5hDxR2+RRSVHS5qVLl0JbWxva2towMTGRorTp6enBxsYGubm5ndY7rtub3LlzByKRCIWFhYiOjsaTJ0+wceNGzJ07lwl+2dvbw8jICEKhsMus10C77Twej+3ZQHug0czMDLGxsZ3WCrHtXJ/95BX/NadJXrnlb968QWRkJEaPHo3o6GgoKyvDwMAAc+fOxZ07d6SyOVeuXIGOjg48PDw4l4tOSEiAlZUVIiIicObMGdjb2+PGjRtoaGhAWVkZZs+eDRUVFeTn56OxsRFHjx7Fpk2bcPjwYc4PlmK8efMGU6dOxc6dOwEAt2/fRmxsLLS1tTFq1Kh3jjPXm1laWhpCQ0NhYmKC6OholrIH2g/NmpqaqKmpweTJk2FsbNwl+OXydBiWRHJyMuNnX716FdOmTYOWlhaUlJRgYmKCmzdvdnoP1/Nj3759cHZ2hqurKy5evIiEhARWN7F37148evQImZmZ8PHxgaWlZZcJYLS1tWHPnj1QUlLC7Nmz2fXly5dj3LhxmD9/fqe5AshuvBcsWICMjAypqKj4v+/cuYMxY8bg6NGjePXqFWxtbaGpqQl1dXVYW1vDxsaG03GW10i8vENeqG2A/CspylMtkORYHz9+HI6OjiyYX1VVhbq6OpiYmDDabHl5OSZOnIjTp09LsU26AkQiEbZv345hw4Zh4cKF7PqiRYtgbm6OuLi4TiyqrmK7POK/4jTJO7f87t27UFJSwuHDh/H48WNERUWBz+dj5MiRcHV1xZkzZ1BSUgKg3XEaMmQIZz0QxOPY0tKC9evXQygUwsHBAa6urp0OE0FBQTAxMekUnRK/vysgKCgIFhYWWLt2LbS0tODh4YG1a9di69at0NXV5YQO9kdYsmQJ9PT0sHz5cmRlZYHH48HNzY3VXRUUFMDIyAhWVlYwMjJiBzWuKYVd+TAsxtt6uKxbtw5jx46Fr68vhg0bhqCgIGRmZqKsrAyqqqosWtwVIGn/iRMnoK2tDVdXV+Tn52Pfvn2wtLQEn8+HmpoanJ2dERUVxZkoCNC5WabYjn379mHYsGGYMWMGu758+XKYm5sjPDy8E+VDFigqKsLYsWPB4/EwYcIErF+/Xur12tpauLm5SfX0279/P3bt2oWjR49yGiiS10j8XwHyQG3rCHnqaSSGPNUCST5Lu3btQnh4OHg8HoyMjJCdnY2mpiZUVFTAyMgIaWlpuHv3LiZPngxXV1dOyjAk8a5xE4lE2LFjB5SUlKQcJzG1/W3tW97jP8N/taZJHrnlra2taG1txfTp02FpaYmKigq8fv0a9fX1mDZtGng8HpSVlWFmZobNmzcjLy8PBQUFnD30kg/rzZs3kZCQgLFjx0JbW5s5TWLbjhw5Aj09PdY8k0v8kZrihAkToK2tjbVr1zIRgqdPn8LCwkLmQiAdIbmBXr9+HQYGBmxjyM/Px5AhQ3D8+HHcvHkTr169QnFxMXg8HqytrTlzmOTpMCxGx/khrgF68eIFlixZAl9fX2RkZLCImUgkglAoxOHDh2Vuqxi//vorrl+/zv4tSdcMCQmBjo4Oxo8fD1dXV5SUlKCtrQ2lpaUoKCjo1EiTS4jr18Robm7G3r17MXToUMycOZNdX7BgAcLCwjg7MLx+/RoXLlxg64WJiQm2bt3K6DNXrlyBurq6VHNmSXA9zvIUiZdHyCO1DZBPJcW/Qi1QYmIi1NXVsWnTJmzduhVCoRD29vYsEDd9+nTGPBo/fjynjJGcnBwp1s2qVas6jadIJMK2bdugqKiI+Ph4dj01NZXzsf4r4b/iNMkbtxzo/NBnZWVBWVlZSmXOwsICgYGBWL58OWxsbMDj8TB16lSpbA9XNi9evBje3t4oLS3Fhg0bMGbMGMybN09qY7h69SqMjY07NeGVNTpSl5YvX47Zs2dj69at7HpjYyNaW1tRX1+P+vp6eHt7w83NjfN5IonTp0/DxsYGQDsNj8/nswiOUCjEhg0b8ObNG2zZsqVLUCDl5TAs+b0pKSmYNm0a9PX1MX/+fJw+fZq9Vl9fj/z8fBQXF8Pb2xs2NjacbQZFRUXQ1tbGlClTOmVDAwMDWZPAI0eOwNHRkWWcOoJrYZCLFy+Cx+NJqbcB7Rvwnj17wOPxEBcX1+m9XD6XtbW1uHfvHqZOnQpzc3Noampiw4YNuHTpEmbPns0k8bvSQUGeIvHyCHmntgHyo6Qor7VAkrS6Z8+ewdTUVCrAUl9fj+DgYJiamjL5+by8PFy5coXT/XzDhg3g8/nYsmUL6urq0NraisjISKm6PDFEIhGr0Z8zZ47Ua+/XlP8O/iOnSZ655R2/t6ioiP23u7s7HBwcUFdXB2trazg5ObHoe01NDW7fvt0lJt6FCxfg4OCAU6dOAWh/kFevXg1nZ2dMnz4djx8/Rn5+Pjw8PODq6tplHI/FixdDR0cHM2fOZA/91KlTAbQrJsbExMDAwABCoVAqUyNr+9evX4/Y2FhER0fj4cOH7Dc/f/48tLW1sXHjRrYJiyEUCqUKMQFunWp5PAzHx8dDS0sLGzduxLZt26Cvr48xY8agtLQUIpEIsbGx0NPTg7GxMZydnTmvFbtz5w6srKwQFBTE1O+CgoJgbm4uta4cOHAArq6uMDMzw8OHDzmxVQzJOVJfXw+RSIS4uDgMHjwYKSkpUvc+efIEmpqa4PF4SE5OfutncI3bt29j7dq1MDQ0hI+PD9TU1KClpcVp1hT4a0Ti5RHySG0D5EdJUV5rgTrua2VlZdDS0sKFCxcA/H5+bWpqwpgxY2BiYoJ9+/ZJOUlcPo8hISEQCATYsmULRCIRqqurER0dDR6Ph99++03q3qSkJHh7e8Pd3b3LnP3+Svi3W/8WFxdTTk4OpaamUmZmJuno6JCXlxfr2vzdd9/RN998Q/v376exY8fSb7/9RgcOHKCGhgbq27cvGRgY0AcffEAtLS2cdB6GRIfthIQEKi0tpWnTptGAAQPIxMSEFi1aRDo6OjR06FBatmwZ9e3bl4jau0IrKSkREXFiO/6n4/OxY8coISGB3rx5Q4MGDSIiou7du9OkSZNIQUGB0tLS6NChQzRs2DDq168fLVmyhBQUFGTeqRoSHaqJiE6cOEEHDhygpKQk4vP5dOjQITp06BCNHTuWHj9+TH//+99JX1+f+vbtS19++SXZ2NhwMk/c3d2ppqaGfvrpJ8rNzaVTp07R6tWradCgQTRw4ED6+9//TkuXLiVPT09ycnIiIqKmpiYSiUT03XffSX3WBx98IDO7Jce7oaGBRowYQZ6enrR48WLq1q0bTZw4kYiIevbsSWpqavT555/Txo0bqU+fPuTv70/dunWTejZkjRs3btDhw4cpOTmZ+Hw+Xb9+naqqqmjp0qVUXl5OCgoKNHHiRNLQ0KC//e1vpKqqSgoKCpytI0REioqKtGjRIoqMjKRVq1bRq1evqLa2llavXk3fffcde+ZMTU1JJBJRfn4+/fDDD5zYSiTdrf7YsWN06NAhmjlzJk2ZMoU++OADio2NJQDk4eFBRO1rnkAgIFtbW1JWVmafI/lccwXxfFdSUiIlJSUyMDCgBw8eUEVFBYlEIvrkk084t42IqKCggH7++Wf69NNPydLSkhQUFOjEiRP0+eefk76+Pv344480YMAAqq6upqysLHJ0dGTvleX6Ia+QnNN79+6lQ4cO0aJFi+irr76iJUuWUFJSEnXr1o3mzJlDw4cPp2vXrlFJSQkNGzaMIiIiiIiosrKSvv32W2pqamLnGFnaTUTUq1cvOn78OLm6utL58+fp0qVLNHLkSFJQUKCePXtScnIyOTs7U35+Prm5udEPP/xAkydPpvDwcPrwww/ps88+k6nNu3fvpsuXL1NeXh5VVFSQgoICmZiYUF1dHbW2tlLPnj3p3r17lJiYSC0tLaSlpUXdunWT+TmESPrMFxcXR7169aJJkyYREdGFCxdIQ0ODevbsyX7/QYMG0Y0bNyg1NZUGDBhAampqBEDmz2NgYCD9+OOPFB4eTsuWLaMpU6bQpk2bqFu3bmRvb09BQUEEgGbOnEkffPABWVlZUVNTE929e5dsbW3JxMSEiDrPtff4/8R/4mnJO7ccaI+SWFtbM7oE0B55tbCwgIaGBqfqeGLk5uZ2ulZdXY3IyEgoKysjOjpaqo6iubkZGzduxJgxY7Bu3TpOlYAkbQLa+wN4eHgAAA4fPgw+n48dO3bg5cuX8PLyYlkzSch6njg6OsLGxoZROADAyMhIKs29f/9+mJqawsnJCXv27EFmZiY8PT1haWnJ2ThLRpOOHj2KsLAwVFRUoLGxEfHx8Z0yThUVFZg7dy7y8/O7xLMItK8Z5ubmANrHmM/nIzU1FSKRCB4eHli3bl2n93QV2+/cuQMTExOoqanhxIkT7Pq7Gk9zre536tQpeHt7Q1VVFdHR0aioqIBIJGJzZcmSJcjJyYGXlxdcXV27xDry70D8t3I9zvIUiZd3yAu1DZB/JUV5qgWSxLVr12BoaMhqCFNSUjBixAipDHtraysmT56Mffv2wcLCQkpYRpaoq6vDwoULwePxsHr1anY9ODgYhoaGSE1NRWNjI2pqajBv3jzweDw4ODjAzMxMqs/Y+7Xkv4//KETbq1cv0tDQIGVlZXr+/DmtWbOGtm/fTitXriQvLy8aMmQICQQCunfvHhkZGVFra6uUl851BO3YsWO0evVq6tWrF6moqBBRe7agd+/e5OLiQvPnz6cLFy6QkZERZzZ6eXnR2bNnyczMjAYNGkTu7u700Ucf0aeffkqzZs0iAHT27Fn68ssvydPTk3r06EHdu3cnV1dX+uSTT8jGxoZFdmQZiT9w4ABVVVVRv379SEdHh/r06UNERCKRiPr06UOHDh2iGTNmUEREBAmFQiopKaH8/HwaO3Zsp8+S5TxxcnKi7t2707p16+jjjz+mxsZG+uijj8jU1JTKysro1KlT9OGHH5KRkRH17duX0tLSaO7cuTR48GD66quvaM+ePdS9e/dOc/3PhmQU6fTp07Rr1y7Kzc2lzz77jPz9/SkoKIiI2iNsFRUVNHLkSEpLS6PGxkYaOnQodevWTabZmnXr1tGzZ8+oT58+pKOjQ1paWkREVF9fT2VlZbR7926Ki4uj8PBwcnFxIaL2uVNUVNTps7heR8RQVFSk5cuXU3h4OGVnZ1P//v1JWVmZunXrxjJ4ktkZLuwWz5FFixbRyZMnSVFRkQYNGkSHDx+m5uZmCgwMpMDAQOrVqxetWrWKDh48SP3796ctW7awv4GrjN6/CvGzJ86sy3qc5TUSL+948+YNTZ8+nd68eUMODg7sujhDExAQQOvWraOamhpydHSk8vJyWrlyJV2+fJkGDBhAaWlp9M9//lMmtkr+vgkJCZSenk5E7VndWbNmkY6ODu3Zs4fs7OxowYIFFBUVRXw+n7p160Y9evTo9BmygHj9AkClpaV06NAhWrBgATsfWVlZ0cyZM2ndunXUp08fiouLIycnJ2ppaaERI0ZwyiwSY/369ZSVlUUqKiqko6NDRERjx46lsrIyio+Pp7y8PPryyy+poKCAXr16RWZmZvTixQvKycmR+Z5ORNSnTx/y9fWljz/+mJYvX04AaPLkyZSYmEhTpkyhlJQUIiJycHCg6dOn0/Dhw+nMmTP09ddfU0hICCdnkf8z+G95X12VW/42nD59Gh4eHuDxeFLCD0C7/LiWlhZ++eUXjqxrh7hfkaurKwQCAXR0dLB06VLk5eUBaM/2zZo1C+bm5lizZs1bG63KOirl6ekJW1tbGBgYQCAQwNXVlWXsxDU2PB4Pu3btYu+pqKiAtbX1O7OSssDWrVvB4/Fw8eJFAJDqzWVjY4NRo0ZBRUUFI0eOhIuLC/ubSkpKUFdX1yUi8QsXLoSRkRGCg4MhFAqho6ODOXPm4OXLl2hsbERycjKUlZVhaGgIR0dHNl9kGYlyc3ODpaUlIiMjYWBgABsbG+Tk5ABojwq7u7uDx+NJZZUaGhpga2vbqd6mK+LOnTuwsLBAcHBwl5PKB9qVKvX09KR6W6WkpMDJyQlz585lyoTFxcW4c+cOWz/kJcPUVSCvkXh5wV+hSbC8KCnKey2QGCdOnICKigp0dHTw4MEDdr2iogJHjx6Fm5sb/P39MXfuXGZ7WFgYIiMjOa1NLi8vx4oVK8Dj8bBq1Sp2XTLjJD6PdGQdvcefg/9vp6njoev+/fvYv38/7OzsYG5uzvkD8y7HoaCgAB4eHjA1Ne0kWzxjxgy4urrKwrxOkOxn5e7ujm3btiE/Px9TpkwBn8+HsrIyQkNDcfToUdTV1WH69OlwdnbG4sWLOX1QHB0dYWtrixcvXqCmpgb79++HlZWVVH+M9evXQ0lJCcnJybhy5Qpu3bqFSZMmwdbWltN5cuvWLQQEBIDP5+PKlSvsemBgIIyNjXHlyhWUlZVh8+bNUFdXZ6p/b+srxAXk4TAspj6KgyiVlZWwtLREbGys1N9hY2MDQ0NDZGVlYceOHfDy8uKU+vjv4s6dO7C2tsaECRM4bavg4uLSidK4f/9+CAQCvHr1SmpdXL16Nfh8PubNm8f60YnRFehAXR3yqsolj5B3ahsgP0qKkuMXGxuLxMRE1NfXQ0tLCwkJCew1sePk6+sLTU1NCIVCto92BdEHMc6cOQM+n48pU6bg5cuXnV5va2vDo0ePUFhYiNjYWKiqquL+/ft/trlSeJvtks2YJR2nKVOmQCAQYM2aNVItLN7jz8V/tU9TR3DJLZf8fqBdUnzVqlUICgrC0aNHmWytr68vbGxspDa5p0+fvrXXjSzR2toKR0dHODs7s2s3b95kiik8Hg8+Pj5YsWIFDA0NMX/+fM5sdXV1hb29vVSGRiQSYfz48Vi5ciUePnyIiooK1NbWYsuWLeDz+VBVVcW4cePg5ubWJSKthYWF8PPzw9ChQ3H//n1Mnz4dZmZmUipoDQ0N0NXVxbJlyzizUx4Pw25ubrCzs0NjYyOA9iwp0N5rYuLEiTh8+DCLTt64cQOTJ0/GiBEjYGNjgylTpnSJ+fHvID8/H9OnT+f0kHbkyBE23mLs2rULWlpaUr2ugPbfQ1NTE8bGxli4cCFn0Xd5xF8lEi8PkNcmwfKupChPtUCSis6nTp3Ctm3bsHHjRpb5P3PmDIYPH47w8HCUl5eze5ubm1FWVgZ7e3uMHTsW1tbWMu8RKTk37927h7NnzyI3N5et18uWLevkOE2cOBHBwcHva5dkiD/FaZJ8wLtCdCcuLg76+vqIiIjA5MmTMWTIEEyfPh1Ae5TH19cXdnZ2nah6XHd9vnTpEpSVlbFhwwb2mqmpKVxdXZGQkAATExMoKSnBxcWFvUfWD4+4m7a4B43kYUBM1ePz+YyuArRH2nJzc3H79m1OKUAdx6q4uBg+Pj7g8XjQ19dnC7DYxoqKCowfPx47d+6Uua1iyNthOC0tDTwejwkkSK4NQqEQ+vr60NTUxNChQyEUCpmD9OzZM7x586ZLUB//E3Al4b5t2zYpR3/16tWsmfHr168xevRoeHt7S72nqKgInp6emDlzJgQCwVsFaN6jM+Q1Ei/vkBdqGyC/PY3EWLduHczMzBAeHs6uFRcXY9GiRVBWVkZwcDCio6Ph7OwMIyMjAO19hdzc3GTq6G3fvl3q3+Izn6WlJQQCAXg8HjZv3gygncUzfPhwRERE4NWrV1LvKysrQ1FREaqrq2VmOyA9TxISEjBu3Djo6+vDwsIChoaGuHfvHurq6pCYmAgej4c1a9aw+7kO8P9fw5+aaeIS4ol0+PBh6OjosD4G165dg5KSEk6dOoWnT58CaHechEIhIiMjObP3bSgrK4O1tTWCgoJQVlYGCwsLODs7o76+HkD733j06FG2OHERjUpPT4eOjg5mz54tRQ8LDAxk/brETSf5fP5b+9RwHf07dOgQdu/eDQB4/PgxwsPDoaysLPX3tLW1Meeai3GW18NwfX09/Pz8oK2tzeqXgPZ+RgKBAPn5+Xjy5AmOHDmC4cOHY/ny5QCk57K8bgaytvvw4cMYNWoUoqKi8OzZMwC/O60LFiwAABw7dgyjRo2Ci4sLcnJycObMGXh6esLX1xcAMGbMGKkD/3v875CnSLy8Q16obcBfQ0lRHmqBMjMzMWTIENy4cQNA+5lEW1sbubm5aGhoQHl5ORISEqCsrMzGPycnBzweDytXrmSfw/VYA+1rh6amJpvHYkXTc+fOoampCSKRiNU4paens/d1heTE/xX8pZym2NjYTo2+tm7dismTJwMAsrOzMWLECKSmpqKkpASurq4sbVtQUNAlJ95vv/2GwYMHQ01NDZ6eniwy0tFWLjeHrKwsaGtrY9asWSgqKkJISAjMzc2ZUwq0b3bKysqdfh8uIDl2+fn5sLS0lKJoFhUVwcfHB0OHDmWO06RJkyAQCDihisn7YbixsRG+vr7Q0tJCbm4uawBbXFzM7ikvL4dAIMDSpUs5sfGvgrVr18LMzAyzZ89GaWkpAGDPnj1QUlJCbGwsmpqacP36dYwfPx66uroYM2YMJk6cyCiTnp6enbrMv8e7IS+ReHmFvFLbJPeYXbt2MUaGkZERsrOz0dTUhIqKChgZGSEtLQ13797F5MmT4erqyuyV9XlEXmuBCgsLoaamhrVr1wIAYmJiOjUIbmlpwdy5c6GhocHWxevXr3PKYCgrK2P/LXaI/P39mRN94sQJ8Pl8ZGRkID8/H0uXLkVjYyNevXqF3bt3yx374q+Crq0h+2/g8ePHdOPGDbp06RL16tWLTE1NiYjoyZMnVF1dTVevXqW5c+dSeHg4OTs7U1NTExUUFFBeXh4pKSnR4MGDiajrNQLT0tKioUOHUlVVFc2aNYu++OILIqJONnIhLYn/kSK1tLSktrY2Wrp0KZ09e5Y+/PBD2rZtG/Xr149JjQKgb7/9lr7++muZ29kRko3ubty4Qa2trVRcXEzLli2j5uZmGjduHM2ePZtiYmLIzc2Nvv/+e2psbKR9+/ZRjx49ZC6fKhAI6MmTJ5SdnU1r1qwhf39/cnFxoY8++ojmzJlD3bt3p9DQUFq7di2Tqe3ZsycNHDiQli1bRkREP/zwA/3973+Xmc2QkKn98MMPKTExkQICAsjJyYm++eYb2rx5s1QD2A8//JA++eQTNr/f49+DuDGjj48PNTQ0UE5ODq1evZoCAgLIzs6O2traaN68edTW1kYzZsyg3bt307Nnz6i1tZW+/vpr6tmzJyUlJdG9e/do3rx5XP85coNBgwbR8+fPqaamhgoLC2nQoEH03XffkY+PD6mpqdGWLVuopaWF/vGPf9DmzZuJiOjOnTv07bffcmx51wfkuEmweI9ZsWIFbd26lfz9/WnEiBGUnZ1Nqamp1NraStbW1jRixAhatGgR9e/fn/r160fbtm2jDz74QOZy0ZKNfU+fPk0lJSXU2NhIo0aNIh0dHUpKSqLAwEDq0aMHRUZGUr9+/YiIqKWlhSoqKigiIoKqqqqoT58+lJaWRv/4xz9kYjcA+vnnn8nNzY22bt1KRkZGVFFRQbW1tVL3fPDBB2RgYED79u2jqqoq+vrrr2n48OHsb5C1HHpjYyPt3LmTtLS0SE1NjbVKqKiooJ9++olOnz5NoaGhNG3aNLK2tqbt27fT7t27ycHBgb777jsaP348Z7b/nweHDtt/HdevX8fkyZNha2uLffv2AWhXRtPQ0OgkdV1SUgJTU1OcPn2aK3P/ZSxZsgTKysqsMJHrjNi7vn/v3r1QV1dHUFAQCgsLpe739fWViqJxjfT0dGhpaeHmzZuorKxEVVUVfHx84OTkhAMHDgD4nd5mb2/PMkyyju5IFrYmJCTA0tISUVFRLEq1a9cuKCkpYeHChey+4uJiPHnyhL13xYoV0NbWlqL3/ZmQnB9NTU1M2UckEiEsLAxqamq4ePGi1Fj6+PhwrqIor5CMxm/cuBGRkZFQV1eHkpISoqKiWGR1165drCm2+H1XrlyBg4MDqwvpilLpXQXyGomXR8grtU3elBTlvRZIjCtXrkAgECAjIwMrV66EhoYGrl69KjWWeXl5sLS05FTVVIzi4mJYWlpi8uTJCAwMREREBID2TL++vj5UVFRYyQDQnnWysLDA8+fPuTL5Pf4HfwmnSfLByMrKgru7O4yNjVnxeVxcHAwMDBAdHY3S0lLk5eXBz88P9vb2XfqQJl6A6+rqoK+vL9VngitIbmbp6elYvHgxpk2bxmwVU/UiIiKY4+Tt7c0Zte1dSEhIgK+vL9ra2tj8qayshIuLCwQCAQ4dOgQAKC0tZa/L2mGSx8Ow5PxISUmBh4cHXF1dce3aNQDtPbC8vLwwatQo1k+lK84PecTGjRuhqqqKY8eOIT8/HwkJCbCxscHs2bPZZrtnzx6pgxAAJCcn4+DBg1J0yfeQhjyrcskb5JHa9rbv7OpKin+FWiDJMQ8JCcH48ePR2toKBwcHmJqa4tSpU3jx4gVevnyJSZMmwdPTk/OgsxgXL16EtrY2lJWVmfN67949mJubw9jYmAUcGxoaGNW+K9Rd/V/HXyKvJ05PxsfH0507d6i+vp5KSkooPj6eunXrRiEhIdSrVy/auXMnbdu2jQYOHEj9+/enrVu3cpIK/1chphf07NmT/vGPf9CbN2+kKAtcQJLalpWVRcOHD6cff/yRGhoaqE+fPmRpaUndunWjuLg4UlBQoEePHlFVVRVn1DYiaZqHmA72/Plzqq+vp27dulH37t2pqamJ+vbtS1OnTiUXFxfavHkzde/encaMGcPeJ2u7xTanpKRQcnIy67R+/PhxOnPmDK1atYoCAgLI3t6eFBQUaNasWfT999+Tu7s7qampkb6+Pv300080ZMgQ+u6772Ris3h+xMfHU0ZGBjk4ONCnn37K6K8fffQRrVmzhiZPnkxhYWH0+eefU0tLC6fzQ94BgJqbm+nChQvk4eHB5uywYcOof//+lJqaSqtWraLAwECys7Ojzz//nHR1ddn7/f39uTK9y2PHjh3k6OjIqEuLFy+mAwcO0KeffkqNjY0UFxdHM2fOJHd3d0pMTKQpU6bQBx98QOHh4fTFF19Q9+7dacCAAZSUlERNTU30ySef0KeffsrxX9W1IW/UNqL2Z1Byb+zVqxdNmjSJiIguXLhAGhoa1LNnT0aDGzRoEN24cYNSU1NpwIABpKamxmhkssKQIUPoo48+ogsXLtDQoUOpoKCADA0NacSIEURE9Le//Y2Cg4OppqaGYmNjSV1dnfT19Wnnzp2krKzMPkeW55GYmBhSVlamcePGUc+ePUlBQUGKmhwUFEQnTpyg5ORk8vX1pcjISGptbaVvvvmGunXrRjt37iQFBQVOyzDE55GWlhbq1q0b/fDDD3Tq1Cn6+9//TqNGjaLAwECaP38+CQQC6tu3LykoKFBzczPt2bOHunXr1uVKSP7PgUuP7b+JzMxMqKur48qVK6irq8O1a9cQGhoKGxsbptpVW1uL06dP48GDB3LX7b60tJQzWfGOyMjIgI6ODsskVVZW4vbt20hMTEReXh6AdtENHo8HKysrzqhtgHQkqrW1lUX7cnJyMHjw4E5Fw6dPn4a7uztsbGzg7Ows1XtK1mhra4NIJIK3t7dUZA9oF4IwNjZGVFQUXrx4AaA9hd8V5vPVq1chEAjYXCgpKcHhw4cRGBjIsmGtra3w8PCAiYkJp/Pjr4Lm5mY4OTkxYRDJeR8REYHhw4cjODiYzRXxe97j3fgrROLlCfJGbXsb5EVJUTzWiYmJ0NPTw6NHjxAaGgovL69O9+Tk5EBVVbUTW0HWY11UVISxY8eCx+NhwoQJWL9+vdTrtbW1cHNzkxrP/fv3Y9euXVIqw1zNkXdluE6fPg0bGxt4eXkxVcgXL14gPj4eS5cuRVpaGmdsl/foDLkM6c6bN48sLCxIVVWVXbt79y6pqqqSmpoaERGpqKjQRx99RCtWrKDY2Fhqbm6msWPHSkVYucge/KcQCyhwFUWTjCbV1dWRtrY2/fzzz5SXl0dbt26lixcv0ps3byglJYW2b99OFhYW1L9/f1JVVaXu3btzlmESR2S2bNlCeXl51K1bN5o4cSLp6+uTUCik+Ph4amxsJCsrK3r9+jVt2bKFhgwZQu7u7qSvr0/nz58nQ0NDmdotRrdu3UhBQYHq6+upurqaiH7PlLm4uNDNmzcpOzubampqaNasWWRgYEBEsi8OFdsknifV1dXUq1cv+vnnn+nUqVO0efNmKikpof79+9OZM2dIQUGBZs6cSatWrWLRwvcZpn8db4s0du/enX744Qc6ceIEeXh40DfffMNe++mnn+jbb7+lgQMHSgltvB/vP4Y8RuLlFZJzWpz9r6mpoY8//piI2oUKevfuTfHx8WRqakpLly4lkUhExsbGbB63trZyOqfXr19PWVlZpKKiQjo6OkRENHbsWCorK6P4+HjKy8ujL7/8kgoKCujVq1dkZmZGL168oJycHJnv6+I5qaWlRfv376f8/Hz66aefKC0tja5du0bDhw9nY/npp5/St99+S7169ZL6DFmP9cCBAyk7O5vy8/NpzZo1tGnTJvrtt9/Izc2NtLS06Mcff6Tg4GAKCAigo0ePkpGREY0bN07qM7iaI5LzOzMzk+7du0d1dXW0YMEC0tXVpebmZlq5ciWtW7eOvLy8aOTIkRQWFtYlbH8Pachdjq+hoYHOnTtHM2fOpBs3blBbWxsRtaf0y8vL2eGSiEhJSYnMzc3p8ePHNH/+fDpz5ozUZ8ljipMLGqF4ga2rqyMiojdv3tC+ffsoICCAKRGGhYXRtWvX6NNPP6WLFy8SEdGoUaM4dZjEdsfHx9OKFSvo9evX9ODBA+ZwzJw5k1xdXSkhIYEsLS3Jzc2NKioqKDAwkHr37k3Kysr05Zdfysxm8VyWhORhuLS0VGrOdpXDsNim+/fvExGRoqIiFRYWkoODA/n6+tKAAQNo2rRplJqaSkZGRtTS0kJE7VQ9MVXi/Wbwr0Fy87169Srl5ORQeno6vXnzhqZPn059+vShkJAQun//PlVXV1NjYyNdu3aNLCwsKCwsjI33e/wx0EGV6/Hjx1RRUUHPnz+XukesytXc3ExVVVVEROzAKZ7n7/HHQAdq24oVK6hPnz5E1E5tIyJGbevRowcNGjSIampqKDU1la5fv84+g2uKvVhJ8eLFi1RYWEhExJQUly9fTlVVVfT8+XP6xz/+QQcOHCAi7pQUxWuAmpoaKSkp0datW2ny5Mn0/fffU1RUFJ0/f55evnxJr169opUrV9IXX3xBP/zwg8zt7IhevXqRhoYGJSUl0caNG0lRUZG2b99Ozs7OtHHjRmprayOBQED37t0jonZHQxJczRHJ+b148WJ6/Pgxffzxx1RfX09ERIaGhhQcHEyvXr2iJUuWkLa2NkVGRhLR778V1/P7Pf4H3CW5/nNUVlZCKBRi7NixyM/PB9DeoHTIkCHYvn076zkCAOfPn4eLiws2bdr0vsD834RkOjk1NRWurq6M3hMfH4/IyEjs3bsXtbW1ANrpE3Z2dkxEoSugoKAAwcHBjGLz+PFjBAQEYMiQIbh+/Tq7duLECdZQDmjvOi8QCKToTH8mJMf6ypUrOHnyJH777Te8fv0alZWVsLS0hL29Pe7du4eqqiq8efMGPj4+WL16NaNRcNnX4/r16+DxeOy3v3nzJpKTk3HlyhWp9wiFQiQmJsrUzr8ili5dCoFAAGtra6irq0MgECAzMxM3b96EhYUFNDU1YWRkBBsbG5iYmDBaR1cpgpYXyJsqlzxDXqhtYjvehq6qpLhgwQJkZGRICZqI//vOnTusEf2rV69ga2sLTU1NqKurw9raGjY2NoxC3RXXj9u3b2Pt2rUwNDSEj48P1NTUoKWlhcrKSq5Nk8Lbyhru3LmDpKQkdo49deoUoqOjERYWxsb8PboWugEA147bf4Kqqiry8/Oj8vJyWr58OQ0dOpRiY2MpLS2NpkyZQqqqqvTll1/SvHnzqH///rRw4ULq1q1blxV96GqQjGifOnWKcnNzae3atSQQCGjevHn0+eefExHRixcvqL6+nhobG2nlypVUVlZGe/bs6RJjfPToUVqxYgURtYspiLMxjx49ooSEBDp16hRt2LCB1NXVqbm5ma5cuUKZmZlUX19Pubm5tHHjRlJSUpKpzQkJCXT48GH629/+RqWlpfTZZ5+Rv78//fzzzzRz5kwqLy+nPn36UJ8+fejNmze0d+9e6t69u8yLQyGRydu4cSMVFRXRjh07iKg9s2dubk5E7f3TLly4QF9++SXt2LGDXr58SRkZGe8zS/8mJMc7LS2NkpOTae3atTRs2DDKysqiiIgI2rFjB/F4POrVqxft3r2bRCIR9e7dmywtLbu04E1XhOTzNHXqVHr27Bnt3LmTnJycqK6ujiIjI2nw4MHUrVs3mjFjBgGg9evXyyV7oStATG1TVFSkJUuWEBHRs2fPKC0tjdLS0mjMmDFS1LYjR47Qxo0bKScnh1JSUrpMTyMlJSU6e/YsBQYGkpGR0Vt7GgUFBbGeRosWLWIiOX8WiouLydPTk4qLi0lDQ4N0dHTIy8uLvV5XV0cBAQHUr18/1tfvwIED1NDQQH379iUDAwP64IMPuhyFGh3KBh48eEAPHjygjRs3kkgkoszMTE7Xu4578tatW+nWrVu0aNEiun79Om3dupUuXLhADQ0NpKCgQDt37qRBgwZJza+uNubvQfKTaXpbMW1VVRXs7OxgYGDAMgnLli2Drq4uhg8fDgsLC9jZ2XXpKElXR3x8PNTV1REXF4ewsDCoq6tjwoQJKCkpgUgkwrJly8Dn82Fqagp3d3dOZaM7/r6HDx+Gq6srlJWVO0WBHz58iODgYPB4PBQUFKCtrQ23bt2Ct7c3VqxYIdVn6s+E5LxOTU2FhoYGizplZmaCx+MhLy+PZU937dqF1NRUpKenszHmMoO6bNkyjBo1Crt27cKmTZsQFhYGHo+HjIwMAO2RVx0dHdja2sLf3/+9rPi/iR07dqCkpATA7/M7KioKSUlJANoLnVVVVbF9+3bk5eUhKirqrZ/zfrz/GH/lSLw84MSJE1BRUYGOjg4ePHjArldUVODo0aNwc3ODv78/5s6dy7J8YWFhiIyMlNnclueeRq9fv8aFCxcwYcIEaGtrw8TEBFu3bsXjx48BtGdU1dXVpYQ3JCFv64f4OeTK7o7tQs6dO4ekpCQMGzYMAQEBUFRURFBQEH777TcAgI6ODrZs2cKJre/x70EunCbJjaikpASPHz/G3bt3AQA1NTVwcHCAoaEhbt68CQAoLCzE1atXkZ+fL3cqeV0Jt27dgr6+Pi5evMiuFRUVQUdHB56enqzB6unTp1FQUNBlxjo9PZ0p/Zw/fx5WVlYQCAR4+PCh1H33799HQkICJ/b+FQ7DL168gL29PQ4ePMiuVVVVYfny5eDxeGwDfvnyJcrLy9lGwvX8kBfs378fo0aNwi+//MKetcbGRlhaWmL9+vXIz88Hn89nCpC5ubng8XjM6X6Pfw3yrsolb5A3ahvw11FSrK2txb179zB16lSYm5tDU1MTGzZswKVLlzB79my2/8ibkySGpN1cBDA6UgJ37dqFESNGsDV50aJFiIiIQHZ2NmpqagC09+G0s7N7p8P6Hl0LXd5pklxkkpKS4OjoCC0tLRgaGmLmzJkQiUSorKyEvb09DA0N2aImiffRv/8M58+fh66uLioqKgD8fii4d+8ehg0bhqlTp7LDnBhcjnVbWxvq6uowePBg2NraMsf67NmzcHR0hLm5+TvrDmR54PmrHIaLi4vB5/Oxf/9+qeuvXr2Cvb09eDyelEMFcH9okDckJSXB3Nwcc+fOZc2Mk5OToaenB2VlZRapBNoPnaampu+7xv8H+L8WiecK8tokuLCwEGpqali7di0AICYmplMgq6WlBXPnzoWGhgZ7Vq9fv95lnWl5qQWSF5iYmCAyMpL9OyMjAyEhIUhNTe1076tXr/Dw4UPcuXMHfn5+sLa2fr+GyAm6PAFbzFlduXIlpaamkp+fH+3YsYM0NTXpt99+oydPnlDfvn1p/fr19MUXX5C7uzs9fPhQ6jPe88z/d7xNUevzzz+n6upqunbtGhERq5358ssvqV+/fnTgwAGaP38+ux8SKkiyAiRK8rp160Z9+vSho0eP0osXL2jOnDl09+5d0tbWpoCAAPrkk08oJCSEKRtJQpa84XHjxpGrqytduXKFVq9eTc+fP6cPP/yQjI2NKTU1lZydnSkqKoqcnJyIqF0x8qeffqL+/fvLzMaOeNv8+PTTT0lJSYlu3bpFtbW17LpYaembb76h6dOnU05ODnvtvfzyv4ampiYiIgoMDCRDQ0NWU1hZWUmGhobUt29f+vnnn5miVXl5ZS9pZQAAMVRJREFUOW3dupW+/vprTueJvEJeVbnkBeJ6R8kmwXPmzKEdO3bQjh07yNbWlrZs2UI6OjqUmJhIR48epSVLllB5eTkRkVST4I0bN9KmTZv+9FogMfAXU1IU75lKSkrk4+NDa9asISsrK/rhhx/o888/p08++YRjC+UPzs7O1KdPH5o9eza7tm/fPjp48CAdPnyYqeQBIJFIRJs3b6bx48dTWFgYNTQ00K5du1jd6Xt0cXDpsb0LDx8+lGrkWlFRAXd3d9bQ7uTJk1BTU0NmZiYuXryIPXv2AGjnP0dFRb332P9NSGaHHj58iJcvX6KqqgoA4OfnB1dXV5w9e5bdU1dXh4CAAGRlZWHEiBFYt26drE0GIB3dFTehFf8tz549g4aGBoRCIYtInj17FsbGxpg2bZrsjf0fSEZaExISYGFhgblz56KiogIFBQWwsrKCpaUla3L36tUr+Pn5wdPTk7MsnuT3Xr58GSdOnGAZspUrV0JFRQXbtm1jKoqvX7+Gt7c3Nm/ejOnTpyMwMBANDQ3vs0z/IiTHadu2bbh06RKSkpJgamqKX375BfX19Th//jyEQiFGjBiBsWPHwszM7H1tzX8Z7yPx/x38Vaht/xeUFLmuBZJHODo6wsbGhtUdS+7xv/zyC9TV1bF+/XrU1dVJve/kyZO4c+dOlylreI9/DV1OPW/SpEn09OlTWrJkCQ0fPpwUFBTo1atXZGNjQ8nJyVRTU0NTpkyh8PBwcnFxoeTkZDp27Bht2LCBKboRcdMEVh4BCQWaZcuWUXZ2NrW0tJC6ujqFh4dTeXk5xcTE0OvXr8nExIS+++47Sk9Pp+rqakpPT6eQkBD6/PPPad68eTKzefXq1WRiYkJ///vfiYho3bp1dOvWLabqJ1atKS4uJnt7e/rHP/5BM2bMICUlJbpx4wYpKytzMjckx3r79u30888/0+XLl+nAgQOkoaFBYWFhdOPGDUpMTKT79+9Tv3796MMPP6SePXvSzp07qUePHjJXyZPE4sWLKSMjg+rr6+mbb76hoKAgMjc3p/nz59OhQ4dISUmJBg4cSAUFBfT69WvKzs6mpKQkunTpEqWlpXFiszyhqqqK+vbty/69e/duWrhwIW3evJmGDRtGK1eupP3795OmpiaFh4dTXV0d5ebm0tOnT+n7778nY2PjLqlyJW9AF1flkjc8fPiQHB0dydvbm3x8fGjhwoXU2NgoxVJobW2l6OhoOnz4MKWnp9PXX39N+fn5pKyszPlc/r+gpCh5XuJyj5E3ODo6UlNTE6WmplLv3r2pubmZevToQURE586dI21tbbavT5gwgaytrVkPMkm8H3P5QZf6lWpqaujOnTv07NkziomJofz8fGpra6MePXrQN998QykpKRQWFkYRERHk4uJCRO0bXM+ePemzzz6T+qz3m9r/jo6H+B07dtCUKVPI3NycioqKaNasWdS/f3+KiYkhDQ0N2rx5M23ZsoU++ugj2r17NykoKFBTUxOT8paF/33x4kXavXs3xcXFUXFxMRG1NxA8evQoJSQkUGVlJSkoKFBraysNHDiQZs6cSVevXqVFixbRo0ePaNiwYTJPg4upGuKx3r17Ny1evJg++ugjCgwMpHHjxtGFCxdo6dKlNHz4cEpMTKSYmBiys7Mjf39/2r17N/Xo0YNaWlpkurBKUvL27t1Lhw4dokWLFtHu3bvpu+++o6SkJNq/fz/NmTOHIiIi6JtvvqGSkhIaNmwYZWRkEBFRZWUlffvtt4xu9h5vh6mpKS1evJj9OzMzk86fP09hYWE0bNgwImqn6pmZmdGFCxcoPj6evc/Pz4/GjRvH5jXXh0x5R0cK6T/+8Q8aN24c7dmzh7Kyst7TaP4NQA6pbTExMZSZmcnWLPE+R0Tk4+NDVVVVdOLECUpOTqZevXpRZGQkWVhYkI+PD1VWVtKaNWvkrom05Hnp/eH9X4Ovry+Vl5dTeno69e7dmzVfJmpfq9esWUNEREuXLqUhQ4bQli1bKCsri1H1JPF+zOUIHGW4OkGcet+/fz/Gjx8PHR0dGBoaIjc3F0C7bCOPx0NoaCgaGxsBAA0NDfD09MSMGTM4s/uvgPz8fEyfPh3Z2dnsWlZWFhwcHDBhwgQ8efIEQHvz2urqaqZstHjxYqirq8uMiiAuyt61axccHBzg7e3NbDt+/DiGDh2KyMhIqQLi7OxsBAcHY/bs2ZxQlv7V4tCkpCSYmJhIiUNIgku6xJEjR5CcnIyNGzeyayKRCF5eXhAIBMjKymL21dfXo6ioCNevX0d8fDxUVFRw7949rkyXCzg5OWH8+PGor69n1yZNmgQejwdXV9dOtA6xOERoaCgTaXmPPxdcq3LJO+SF2vZeSfE9/hWUlJRATU0NgYGBUhL5ABAUFAQzMzM8e/ZM6npoaCjU1NQ6iSO9h3yhyzhNYhQUFGDSpEnIzs6Gv78/tLW1kZeXB6C9BmTw4MHw9vZGSEgInJycYGZmxnj8XHOe5QWS43T+/HkIBAKoqqriwIEDUvdlZWVBKBTC09OTKbfdvXsXNjY2MDMzg6GhIVM9+rPh5+cntVHt3r0bNjY2Uo7TsWPHMHToUMyYMQP3799HbW0tJk+e3KmjvKzwVzgMv379Gnw+Hzwer5NalNhxMjMzw5YtW9DU1IQnT54gPDwcenp6sLe3x507dziyXD7wn/LhY2NjER4e/v4A/x5dGpLzMyQkBOPHj0drayscHBxgamqKU6dO4cWLF3j58iUmTZrEae2mGO+VFN/jX0FBQQGsra0RGBjI+joGBQXB3NycOUySZ60rV65g0aJF7+eHnKPL1DRJcjqXLVtGJ06coF9//ZVmzpxJhYWFlJiYSHw+nzIyMuj8+fMkEono559/poCAAJbCf09L+c8gViZUUVGhefPm0YABA9hre/fupZUrV5Kuri7Nnj2b6urq6MaNG0RENGjQIKl7/0xUVlZSnz59qGfPnlRdXU2fffYZZWRkUGpqKn3xxRc0a9Ys+uGHH+j48eMUFhZGvXr1oo8++oj69OlD6enp1KNHj061Cn8mnJycSCQS0datW6lXr15SXb7nz59P+/fvJ29vb3J0dJTiOMfFxVF5eTnFxcVxkrJ/G7e6srKSXF1dqampiWJiYmjkyJHsnqamJnJ2dqYff/yRUcYePXpEvXv3pg8//LATbfY9fse/y4e3sbGh3r17s/eL5/N7Pvx7dBXExMSQsrIyjRs3jq134rWvoKCAgoKCKDIykvh8Pvn6+tLz58+ptbWVvvnmG+rWrVuXqN0Uo66ujp4/f05r1qyhBw8eUEVFBXl5edGQIUNo7969NGDAAAoMDHxfP/1/GAUFBRQZGUmDBg2iV69eUW1tLa1cuZK+++47qfOGo6Mj9evXj1auXEndunV7P2fkGJw6TXv37iUlJSX66aefqFu3buzQUFtbS5GRkWRmZkY6Ojrk6+tLZWVllJiYSMOHD+/0Oe8n4L+P9evX061btygxMZGI2h2nffv2kZaWFvn5+UnJFp89e5Y0NTU5G2PJ31dcV7Vy5UpSVFSk9PR0SktLk3KcHjx4QGfOnKE+ffqQra2tzJ1qeT0MS37f9evXCQD17t2b/vnPf1JFRQXZ2dlR3759KSoqikaMGME2hObmZvrggw84P+TIE3x9fenhw4d07NgxIiIppzowMJBqamooNTWViNqLz2/fvk0TJkwgKysrKSdbloGA93iPP0JxcTF5enpScXExaWhokI6ODnl5ebHX6+rqKCAggPr160fLli0jIqIDBw5QQ0MD9e3blwwMDLqskMmdO3fo7NmztHPnTvp/7d15WI9p28Dxb6UUZR0yymSJCkWEvFnfsWQbyzCKMHYlIU2l7CZLokyZkCVaCIMiY5uxPpaZxBivxj7ZIiVkSar7/cPT/dSY8ZiZVMz5OQ7H0e9er2737/e7z87zui5TU1MSExPR0dFh586dhQZvEf88SUlJuLu7k5aWhr+/Px07diz0XTpmzBhu3LhBbGys+hkv3mElleIaPny4YmZmpjg4OCje3t7KvXv31LTl8+fPFT8/P8XFxUVRlJf9JBwdHZWOHTsqJ0+eLPH0/bsuLy9P2bJli9KwYUNl2rRp6vKgoCCle/fuypw5c5S7d+++sl9pSCunpKQorVq1Uvr3768OJf7NN98offv2VcaMGaPWwxdMixdnu8eMGaN8/PHH6uuC5Vbjx49XnJyc1NeTJk1SOnfurERGRr5SflXcpaYF31OLFy9W7Ozs1NKUI0eOKIrycvjzdu3aKX379lUSExNfaaO8L9+M1MOL99X7Vtr228+4ixcvKvHx8cqnn36q9OzZs9S1V5SMX375RenZs6cyadIkdWh9RVHUfr/5XUikr9u7r0QyTYqiEBAQwOrVqzEzM0NLS4vU1FQGDBhAu3btsLa2JjMzk759+zJkyBCGDRtGZmYmn332GfXr1+err74q7ia/0/L/6qEU+Kt0Tk4Oe/bswcfHhx49ejBv3jwAli5dyv79+zE3N8fHx6dE/4r220xL/l8g7969S//+/fnggw+YP38+5ubmbNu2jQ0bNgAQHBxcbGWDBd2+fZvevXtja2vLxIkTMTU1Vde5ublx9epVVqxYgZGRkbp8ypQpHD58mLlz52Jvb1/sbf6toKAgNmzYwKJFiyhTpgxBQUGkpqby5Zdf0qZNG9LS0vjss8/Izc0lLCyMBg0alHST30m//PILU6dOxdjYmEmTJlGvXj3c3Ny4du0ay5cvx8jIqND7NSEhgf379/PFF19IVl2Uev+E0rb876d3+XcQRScpKQkvLy/q1avHqFGjCA0N5dKlS+zcuVMd/ba0ZVDFn1ei5XmBgYGEhYUxd+5cbt++zblz50hMTGTAgAF88sknnD9/nosXLzJ27FgqV67M48eP0dPTkw+ov+js2bPq8MXwMgjZvXs3Pj4+9OrVCz8/P+BlXXpGRgb+/v4lVnJVMGDau3cvV65cISUlBTs7O7p27UpaWhp9+/alWrVqzJs3D3Nzc6Kiojh//jxz584tsXa/yw/Dly9fxtPTE19fX5o3b87p06dxdXXF2NiYe/fu4efnR+vWrbl37x6zZ89m6dKlJd7md5nUw4t/gvettE3mNBJ/JCkpCR8fH65cuYKRkRFxcXESML1nijVoio6OJj09HYDRo0ejq6vLnDlz2LZtG35+flhZWXH27FlCQkKoWrUqGRkZvHjxAj8/P2xsbNTjyEPDmyn44HXy5EmGDRuGl5cXw4cPV7fJzs5mx44d+Pr6MmLECDw9PQvtW9JfCv7+/uzZs4cGDRpQoUIFYmNjGTduHJMmTSI1NZX+/ftTvXp1Zs6ciaWlZalo97vyMKz8pj9MYmIi48aNIyYmBk1NTRYvXkzz5s2xtrZmwoQJKIqCs7Mzjo6O6j7yXvx7pB5evK9++/kikwSLf4Jz586xatUqAgICZJCy91CxPVWOHDmSTZs2ER8fz5o1axgwYAAvXrxgxowZfPrpp3h6enLs2DG6d+/O6tWr+eyzz6hWrRrJycls3bq10LHkg/a/K/iF9eTJE6ytrRkxYgT+/v6Eh4er2+no6GBjY0OVKlVYs2YNX3/9NfBygkdFUYo98CgYw3/77bfExcWxZMkSQkND6datGwDW1tbcuHGD6tWrs3nzZs6dO6eW5pVUuwuysLBgwYIFnD9/nqSkJCZOnIixsTF5eXnq/8mYMWN4+PAhgYGB6rKSCpiSkpLIzs6mYsWKfPLJJ2hqavL9999TpUoV2rdvj5WVFYaGhujq6hIbG1vo/0jei3+PhYUFQUFB1KhRg7i4OH7++Wf13h09ejTJycnExcWho6NT7JN8CvF3yCTB4p+ocePGBAUFScD0viqOjlMODg5Kv379lPT0dCU9PV05ePCgYmNjoyxZskTdZv78+UrDhg2VjRs3Ftp3+/bt0tnyTyrYIX/fvn3KlClTlPT0dCUrK0sJCAhQzMzMCk1Ump6ersycOVP56aefSuxaJycnqz/nt2HFihXKF198oSiKouzevVtp2rSpsnHjRuXOnTuKk5OTkpCQoCiKoty/f79U3iOltXNowfvju+++UxwcHJTt27criqIoGRkZSmZmpmJvb6/eI2lpacrnn3+uHD58WO0YLXOiFa3z588rvXr1UiZNmqScO3dOGT9+vHQgFu8dmSRYCPEue+sh8KBBg3j+/DmRkZGUK1cOgGbNmmFsbExWVpa6nbe3NxoaGmp/lJ49e6Knp0fv3r0BJGJ/QwVLew4fPsymTZtITEykUqVKuLi4MGHCBODlfEDp6em0aNGCyMhIsrKysLS0RENDo0Su9dKlS6lZsyZTpkzh119/pW7dujx79ozMzEx27dqFr68vnp6eDBw4kOTkZC5dusTNmzdp3ry5Whdf2krFzMzM8Pf3x8vLizVr1qidQ69fv15inUML3h+bN2/mhx9+4PTp06Snp6OpqYm9vT2ZmZnk5uaio6PDhQsXWLp0KTk5OfzP//xPiZc+vq8sLCxYuHAhPj4+ODo6YmRkJB2IxXun4OezfIYIId41b/WbeNiwYaSlpbF79240NTXVuUgMDAx49uyZOjeN8u9SIS8vLzQ0NJg+fToffPABHTt2/E9D5aHhjeR/Ec2fP58DBw5gYWGBqakpe/bs4cWLF7i6uuLq6oqenh5ff/013377LdWrV2f9+vVqaVtxXuv8/3sLCwsCAgI4dOiQOsmhiYkJMTExHDt2DHd3d7UvTdmyZalcuTJVq1YtdKzSFDDlK20Pw/n3x1dffUVUVBQuLi5YW1sTFxdHREQEubm59OnTB2tra+bPn0/16tWpWrUq0dHRajlNabzO7wMLCwvmzp0r9fBCCCFEKfTWBoK4fv06c+bM4ZdffiEqKgoTExN1nbOzM9evXyc+Ph54tcNoZGQkDg4O8rDwFx09ehRfX1+WLVtG48aNAQgPD2fv3r00aNAANzc3qlSpws2bN8nMzMTMzAxNTc0SfUDLzc3FycmJ06dP07t3bxYuXAiAh4cHu3btwtPTE1tbWzQ1NVm0aBGZmZlERUW9Mw/wJd05NP89pigKt2/fZvTo0UyePJnOnTsDL/u9+fj4cOnSJdzd3enUqRNnzpwhJycHa2vrUjvp5PtMrrcQQghReryVb+SZM2eqpVZBQUEMHjyY6OhoPvroI9zc3Lh58yarV68Gfr+kysnJCZCHhjfh5ORE+/btGT16tLrs0aNH6OrqUqNGDbWU6vPPPycrK4sVK1agoaHB6NGjMTY2VvfJy8sr0WudlpZG7dq1ady4MREREVSpUgUvLy8CAgLIzc0lKiqKBQsWYGZmRrly5YiIiHinMh/5nUOh+O/rguV0GhoalClThocPH2JgYAC8HEGxfPnyBAQE0K1bNxYvXszz58/p2rWr2s7c3Fx5LxYzud5CCCFE6VHk38qxsbHExMRgbm6Onp4eEydOJDAwECcnJ+rWrcuDBw8IDQ2lRo0awOtLquSh4b8bNmwY7dq1K7TsyZMnPH78GE1NzUJlkcOGDWP9+vUcP34cHR0dnJ2dqVSpElD89eW/DXYMDQ2ZP38+ubm5VKtWjSVLlqAoCt7e3gQGBnL+/HkePHiAgYEBjRo1KvHM2N9R3Bmm/P/bhQsXoqenx8iRIwE4fvw4tra26OjoqPeIqakpZ8+eJSIiAkNDQ2xsbFAU5Z0ITIUQQggh3pYif1K2srKicuXKXL58md27d5OQkIC7uzstWrTgxIkTeHh4FMpwiL9mw4YN3Lhxg86dO1O2bFmWL1+Oj48PAD179kRHRwdvb28AdX6XtLQ0LCwsaN68OQcPHuTatWvF3u5r164VCpgiIyOZO3cuI0aMYPv27dy9e5cxY8YwZcoUwsPD8ff3B+DBgwe0aNECS0tLNDU1Szwz9q7IL3tNTExk7969NGvWjPLlyzN69GgiIiLU4ed1dHTUjJSvry9Pnz4lKiqq0DGEEEIIIf6pivSpU1EU6tSpg7u7O7t37+bp06dER0ejoaHB8OHDefLkCVOnTmX16tU0aNCgKE/9j7J3716WLl1KUlISY8eOxcjICAMDA7Zu3Ur58uXx9fVl2rRp+Pr64uTkxOjRo9HS0mLt2rVoa2vj5+dHp06dOHjwINbW1sXW7sDAQNasWUNERARNmzYlKCiI6OhounfvTl5eHsHBwdSvXx9PT09GjRqFhoYGgYGBREZG0rRpU1q3bq0eS0ZeenNhYWHExsbSrFkz2rRpA0CnTp24c+cOAQEBnD59mmrVqpGUlMS9e/fo0aMHd+/e5eDBg+9M+aMQQgghxNtUZE+eBSfurF+/Pvr6+nh7e9O8eXPCw8M5ffo0EydOxMLCgpEjR3Lp0qWiOvU/TpcuXRgxYgSJiYksX76clJQUBg8ejJ+fH9HR0SxcuJB27dqxYsUKnj9/zvTp05k1axZ5eXkEBgYCYGJiQp06dYq13cOHD6dJkyZMmTKFw4cPc+7cOUJCQpg1axbh4eG4urry8OFDVq5cydOnT/nss89Yu3YtEyZMYM2aNepABuLPMTU1JSUlhRMnTnD58mUAjI2NGTNmDEFBQWRkZJCSkkL9+vXZtWsXAOfPn8fIyKgkmy2EEEIIUWr87dHzkpOT1ZHxCnY4nzp1KqmpqaxevRpPT0/OnDnD0KFDsbGxISgoiIMHD7Jv3z5q1ar193+Lf5D8vifwMnNz8OBBmjRpwvjx4zE0NGTz5s3MmjULJycnpk6dCsDNmzfJzc3lww8/REdHh+DgYGJiYtiwYUOxX/9Hjx4xbtw4Lly4gK6uLmFhYTRs2FBdHxUVRUhICJs2bXqlbe9qH6bi9EdzKB09epQJEybQvn17fH19qVatWqH1iqLw66+/kpeXx5YtW9i8eTMbNmygfv36xdV0IYQQQohS6289gTo7O3Pz5k3at2/P+PHj1Yd5eDlUtLu7O0eOHMHf3x83NzciIiLQ0NDAxcWFOnXqULNmzb/9C/yTKIqiXuO1a9eSmprKnTt31OyBs7MzAwYMAGD27Nnk5uYybdo0jIyMOHXqFJ6eniiKQmpqKitXrizWgCk/Nq9QoQKhoaH4+vqyf/9+0tLSgP8MDOHg4MDSpUs5derUK+2TgOn1CgbUhw8f5tatW2RlZdGqVSvatGlDcHAwrq6uaGtr4+3trc5zlZOTQ3p6Ol5eXmRkZKCvr09kZKQETEIIIYQQ//aXM03Jycl07dqVsmXLoigKtWvXxt7eni5dumBqakp2djb+/v48fPiQRYsWATBp0iSOHDnCvHnz6Nq1K/D7Q46L11u7di3Lli1j4cKFVKtWje+++44jR47QqFEjxo8fT40aNfjmm2/w9fXFx8eHoUOHAvD1119Tt25dGjduXCyDccTFxdGgQQPMzc3VZfnZoocPH+Lq6srdu3cJCwtTs5V3795l6NChzJgxAzs7u7fexvfBxo0bcXBwUF/7+/uza9cuKlasSFZWFsnJyep9cOjQISZOnIi9vT0eHh588MEH6n53794lOzubChUqULFixZL4VYQQQgghSqW/VZ539uxZXFxc6NSpE/fv3ycnJ4dTp04xbtw4OnfujL6+Pr1798bd3Z3evXsDEBQUxIQJEyRQ+gsUReHFixe4urqqJXn5oqKiiIiIoGXLlri6ulK9enUOHDhA27ZtSyRDs3jxYsLCwtDT06Nfv37Y2tqqE6nme/ToEWPGjCEtLQ0nJycqVKhAfHw86enpfPPNN3KPvIHY2FimTZtGdHQ0lpaWbNu2jcWLFxMcHIyZmRnPnj1j/fr1rF69Gj8/P3r37s2hQ4cYO3YsEyZMUO+h304wLYQQQggh/uNv92lKSEhg6tSpdOvWDTs7O5KTk1m5ciUVK1bEzs4ObW1ttfRHT09P3U8yTH9NTk4OQ4cOpVGjRvj6+hbqw+Lt7c3u3bvVfivVq1dX9ynuyVSjoqLYsGEDXbt2JS4ujocPH2JhYUH//v1p1aqVOk/X48ePGT9+PCdPnqRDhw7UrVuXyZMno62tLffIG7hy5QoODg6MHj2aMWPGMG/ePLKyspgzZ466TW5uLnPnzmXPnj1s3bqVDz/8kJ9++olGjRpJyaMQQgghxBv426Pn2djYMH/+fLZt28b3339Pnz59WLduHQ4ODsTHxxMaGsrGjRu5c+dOof3kYfi/y8vLe2VZmTJlMDEx4fvvv+f27duFOv3XrVsXIyMjatWqVajsqiQmU+3RowcPHz6kbNmyxMfH4+Hhwb1795g+fTr9+/cnPDycEydOoK+vT3BwMM2aNUNXVxdPT0+0tbXJycmRe+S/UBSFevXqMWTIEKKiorh27Rrp6emkpKQU2kZLS4uOHTvy4sULMjIyAGjSpAllypQhJyenpJovhBBCCPHO+NuZpnwJCQm4ubnRs2dPRo4ciaGhIVlZWaxdu5arV6+yYMECeQj+EwpmkBISEnj8+DH379+nW7duZGVl8fnnn1O2bFm+/PJLqlevjq6uLhMnTsTa2pqxY8eioaHxhyOpFZd169bx1VdfsWbNGpo0aQLA6tWrWbRoEVpaWmhpadGjRw9atWpF+/btqVixIpqamlIq9iclJCTg6+uLs7Mzt27dIjIykpCQEDUwAjhz5gwzZ84kKCio2IeaF0IIIYR41xVZ0ARw6tQp3Nzc6NWrF46OjpiYmBR6AJZyqz9vyZIl7Nmzh3LlynH79m0qVaqEi4sL9erVw8fHh7S0NPT19dHX1+fZs2fs2LGDMmXKFHvAFB0dzf379wEYNWoUurq6nD59mnHjxtGnTx91+PNPPvkEExMTOnfuzLFjx9i5cyfW1tasX7++VAR675KC12ry5MncvHmTmJgYHB0dyczMxNvbG3NzczQ0NJg6dSqKohAWFibXVwghhBDiTyrSoAleBk6TJ0+mbdu2uLm5YWhoWJSHf+8VDDIjIyNZtmwZK1aswMrKitjYWLy8vNi4cSNmZmbo6emxefNmnj9/Tvny5fnkk0/Q0tIq9uB05MiRpKenk5WVRWpqKkZGRmzduhVtbW3mzZtHfHw8UVFRuLu7o6urS0hICFWqVAHg4cOH6Ovro6WlJRmm/8LPz49GjRrRvXt3dWjx/GHGk5KSmDBhAt7e3jRt2pSxY8eSkpJCbm4uNWvWRENDg5iYGLS1tSUwFUIIIYT4k4o8aAI4fvw469atIzQ0VB6C31BMTAxt27alZs2a6kPtjBkzqF69Oq6uruzatYsZM2bg4eGBubk5W7duLdTZP19xB0yOjo5kZ2cTFhYGwM8//4yHhweOjo64u7uTkJCAi4sLjx49omXLlgQFBakBU8G2Shby9W7cuMGIESO4ceMGtra2tGnThlGjRqnrMzMzGT9+PFWrViUwMBCAXbt28eTJEypXrkzHjh3R0tKSCYKFEEIIIf6Ct/Ln5tatW6sB0+8NZiAK27VrF4GBgaxatYq7d++iqanJ8+fP+emnn9DV1eXs2bP4+voyZcoUHBwcUBSFTZs2cfbs2VeOVZyBx6BBg3j+/DkRERFUqVKFKlWq0KxZM4yNjXn+/DnwcqAQW1tbtLS0mDVrFlWqVFEnui3YVgmYXq9WrVrExcURHh4OQHh4ON26dSM6Oppff/0VAwMD3NzcOHbsGPv27QOge/fuDBgwgE6dOqkZSAmYhBBCCCH+vLdWo6OhoaGOpCZer3v37jg5OfHjjz8SGhpKSkoKZcuWpWvXrkRERDBo0CCmT5+Oo6MjAE+ePKFu3brqkOIlYdiwYaSlpbFlyxbKlStHdnY2AAYGBjx79ozy5curAfOoUaPQ0dFhz549AJJ9/Iv09PSwtbUlODiYNWvWYGFhwYYNGxg0aBBr1qwhLy+PLl26cOHCBeBl9q4gCUyFEEIIIf6at/pnZ3k4/u/y+6S4urry4sULDhw4wIoVK3Bzc+N///d/2bt3L5UqVcLExASAtLQ0oqKi+PDDD0ssaLp+/Tra2to8ffqUGzduYGJiovaxcXZ2RktLCzc3N3V7Y2NjGjZsyIEDBxg0aBAVK1YskXa/LwwMDDAwMGDJkiWcP3+eo0ePEhUVhampKYmJiejo6DB48GAqV65c0k0VQgghhHgvvJU+TeLNFBz4YMOGDdSrV48ffviBXbt2YWtry5QpUzh79ixLly7l4sWLVK1albJly6Kjo1NinfpnzpxJzZo1adeuHUFBQfzf//0f0dHRfPTRR7i5uXHt2jXCwsKoUaNGof4zUVFR7Nixgw0bNkgwXQR+O2jGpUuXuHTpEmvWrOH58+ds375dMktCCCGEEEVEgqYSkJGRUSgLsHnzZubNm8e6deuwsrIiJCSE+Ph4WrdujYeHB5mZmSQmJpKcnMxHH31E165dS6RTf/7ofebm5vTr1w8bGxsCAwO5cOECdevW5cGDB4SEhGBsbPzKvtnZ2Whra8uw4sUg//rK4BpCCCGEEEVDgqZi1q1bN5o2bcr8+fMB2L59O4cOHaJ58+Y4OTmp2xUMnMaOHfvK0O0l8UB87do1Bg0aRGZmJlZWVtjb29OiRQtWrVpFfHw8q1atok2bNq89hgwr/vYUvCckMBVCCCGEKDryVFWMBg0ahL6+PtOmTVOX7dy5k2+//ZY9e/bw+PFjdbmrqys9evTgxx9/xN/fX504Nl9xB0yKolCnTh3c3d1p1aoViqIQHR1NQkICw4cPp0OHDkydOpWLFy++9jgSML09Be8JCZiEEEIIIYqOPFkVE0dHR7Kysli/fj3ly5dXR5tbtWoVgwYN4uLFi2zcuPGVwKlNmzZoampSqVKlEmr5y6xFfrBTv3599PX18fb2pnnz5oSHh3P69GkmTpyIhYUFI0eO5NKlSyXWViGEEEIIIYqalOcVAwcHB7Kzs4mIiKB8+fK8ePECbW1tAP71r39hZ2enDvowbNgw+vbtS/ny5dX980vairvkKjk5WR21r+C5p06dSmpqKqtXr8bT05MzZ84wdOhQbGxsCAoK4uDBg+zbt49atWoVW1uFEEIIIYR4WyTT9JaNHTuWtLQ0tm7dqmaY8gMmV1dXli9fDsDixYtp3Lgx69evZ/v27YUyTiUx55WzszOurq4EBATw7NkzCsbWHh4e5OTkcOTIEfz9/TE3NyciIoJTp07h4uLC8OHDqVmzZrG1VQghhBBCiLdJgqa36Pbt2yQmJmJhYcHly5cB1PmM3Nzc+PXXX1mwYIG6fWBgIJaWlgQFBXH06NFCxyrOvkDJyckcOHCA69evs379egYOHMiKFSvU38HAwID69esTFxcHwFdffYWFhQVLliwhJSUFLy8vtLS0XplcVQghhBBCiHeRBE1vUc2aNYmIiODmzZssXbqUK1euAKjzGa1YsQIjI6NCWRxHR0c+/fRTOnfuXFLNxsTEhE2bNmFgYEC/fv2oXbs2586dY/Dgwaxdu5bU1FRcXV354YcfiI2NBSAoKIghQ4bQqVMn9Tgy3LUQQgghhHgfSJ+mYpCUlIS3tzempqbcu3ePR48eqfMZFRyC28HBgapVqxISEoKGhkaJz7OTkJDA1KlT6datG3Z2diQnJ7Ny5UoqVqyInZ0d2trapKen4+XlhZ6enrpfSbdbCCGEEEKIoiRBUzFJSkrC3d2dtLQ0/P396dixY6HBFcaMGcONGzeIjY1VS/hKg4SEBCZPnkz37t2ZMmUK9+7d49ixYyxfvpyUlBTy8vL49ttvqVOnTkk3VQghhBBCiLdCgqZidOHCBTw8PDA1NWXEiBFYWloCMHr0aK5fv87OnTvR1tYmJyeHMmXKlHBr/yMhIQE3Nzd69uzJyJEjMTQ0JCsri7Vr13L16lUWLFggmSUhhBBCCPHekqCpmCUlJeHl5UW9evUYNWoUoaGhXLp0qdQGTPlOnTqFm5sbvXr1wtHRERMTk0KlhVKSJ4QQQggh3lcSNJWApKQkfHx8uHLlCkZGRsTFxZXqgCnfqVOnmDx5Mm3btsXNzQ1DQ8OSbpIQQgghhBBvnQRNJeTcuXOsWrWKgIAAypQpU+oDpnzHjx9n3bp1hIaGFusw6EIIIYQQQpQUCZpKgXclYMqXX5ZXcCALIYQQQggh3lcSNIm/pGB/JiGEEEIIId5nkiYQf4kETEIIIYQQ4p9CgiYhhBBCCCGEeA0JmoQQQgghhBDiNSRoEkIIIYQQQojXkKBJCCGEEEIIIV5DgiYhhBCiFJLBbYUQovR4dyYHEkII8U7w9vZm27Ztf7i+UqVKnDx5kiFDhgAQERFRXE0rUkXZ/l27drFo0SLS0tLo27cvQ4cOZdq0aWzcuPFvH1sIIcTfJ0GTEEKIIletWjVCQkJ+d13+ZN4zZ84sziaVarNnz6Z27dosWLAAQ0NDduzYwenTp0u6WUIIIf5NgiYhhBBFTkdHh6ZNm752G1NT0+JpzDvgwYMH2NnZ0apVq5JuihBCiN8hfZqEEEKUiCFDhqglbgCPHz9mxowZtG7dGmtrayZPnkx4eDhmZmaF9tu/fz/9+vXD0tISOzs7vvzyS54+faquDw4OpnPnzhw8eJBevXrRuHFjunbt+krJYEREBPb29lhaWtK2bVtmzZrF48eP1fUvXrxg2bJldOrUCSsrK3r06ME333xT6BiKohAWFkaHDh2wsrJi4MCB/Pzzz6+0d9CgQVhbW9O4cWPs7e2JjIwE4OTJk+rvt2zZMszMzPD29lazdGZmZgQHB//VSyyEEKKISKZJCCHEW5GTk/O7y7W0tNDQ0Hhl+fjx4zl//jyTJ0+mZs2aREdHs3jx4kLb7NixAw8PD3r16sWkSZO4desWgYGBXL58mbVr16rHvXfvHnPmzMHZ2RkjIyNWr16Nt7c3VlZW1KtXj/j4eBYuXIiXlxdmZmZcvXqVhQsXkpWVxYIFCwDw8vLiu+++w9nZmSZNmnDkyBF8fHzQ0tKiT58+AJw6dYrs7GymT59OdnY2CxcuZNy4cRw6dIgyZcpw8OBBxo8fz9ChQ5kwYQJZWVlERkYyd+5cGjZsSKNGjYiJiWHgwIH079+fAQMGUK1aNbS0tNiyZQsxMTHUqFGjCP9XhBBC/BUSNAkhhChyt27dolGjRr+7buLEibi4uBRadvz4cU6cOEFwcDBdunQBoF27dvTq1YvLly8DL7M6AQEBtG3bloCAAHXf2rVr8/nnn3Po0CE6dOgAwLNnz/Dz86N169bqNh07duTQoUPUq1ePkydPYmRkxODBg9HU1KRly5aUK1eOjIwMAC5dukR8fDy+vr4MHToUgNatW3P79m1OnjypBk06OjqsXLmSSpUqAS+zZdOmTePy5cuYm5tz+fJl+vTpg6+vr9pea2trWrVqxY8//kizZs3UMsYaNWoU+hn4ryWOQgghiocETUIIIYpctWrVCA0N/d11hoaGryw7ceIE2tradOrUSV2mqalJt27d1PK0q1evcufOHcaOHVsoi9WiRQv09fX517/+pQZNUDjgyA9C8sv4bG1tiYmJoV+/fnTp0oUOHTrQq1cvNVOVkJAAQOfOnQu1MygoqNBrU1NTNWACMDY2BiAzMxOAUaNGqee9fv06165dU8v3Xrx48bvXRwghROkjQZMQQogip6Ojg6Wl5Rtvn5GRQaVKldDULNzV9oMPPlB/fvDgAfBypLnZs2e/cozU1NRCr/X09NSf84+bP/dR9+7dycvLIzo6mpCQEJYuXYqRkRFTpkyhR48e6rmqVq362naXK1eu0Ov88+Tl5QFw//59Zs6cyf79+9HQ0MDExITmzZsXaosQQojST4ImIYQQJc7Q0JCMjAzy8vIKBU7p6enqzxUqVADA09OTli1bvnKMihUr/qlz9uzZk549e5KZmcnRo0cJCwvjiy++wMbGRj3X/fv3C/Upunr1Kvfv38fGxuaNzuHh4cGVK1dYu3YtzZo1Q0dHh2fPnrF58+Y/1VYhhBAlS0bPE0IIUeJatmxJTk4O33//faHl+/fvV3+uW7cuVatW5ebNm1haWqr/atSoweLFizl//vwbn2/SpEm4uroCYGBgQLdu3XBxcSE3N5fU1FQ1G1Tw/ACBgYHMnTv3jc9z6tQpunbtiq2tLTo6OgAcPnwY+E826vf8NuMmhBCiZEmmSQghRJHLzs7mzJkzf7i+QYMGhV63aNECOzs7fH19SUtLo2bNmmzZsoVffvlF7WekpaXF5MmTmTFjBlpaWnTs2JFHjx7x9ddfc/fu3T8ceOL32NraMnPmTBYuXEi7du149OgRISEh1K5dG3Nzc7S1tbG3tycgIICsrCwaNWrE0aNH2bdv3yv9ml7HysqKHTt20KhRI2rUqMHp06dZsWIFGhoaPHv27A/3y8907dy5kyZNmlCrVq03PqcQQoiiJ0GTEEKIInfv3j0GDhz4h+u3bNnyyrLAwEAWLFjA4sWLycnJ4eOPP8bR0ZHt27er2wwYMIDy5cuzatUqYmJiKFeuHM2aNSMgIOBPBRYODg68ePGCjRs3Eh0dja6uLq1bt+aLL75AW1sbgEWLFhESEkJERAQZGRnUqVOHoKAg7O3t3/g8CxYsYO7cuWp2qnbt2syePZu4uDh1sInf06VLF2JjY/H29qZ///7MmjXrjc8phBCi6Gko0hNVCCFECbt16xZnzpzh448/RldXV13u5ubGjRs3XpmYVgghhChOkmkSQghR4jQ1NfH29ubjjz+mf//+aGlpcfjwYfbu3cv8+fNLunlCCCH+4STTJIQQolQ4ceIEy5YtIykpiZycHOrVq8fw4cPp2bNnSTdNCCHEP5wETUIIIYQQQgjxGjKmqRBCCCGEEEK8hgRNQgghhBBCCPEaEjQJIYQQQgghxGtI0CSEEEIIIYQQryFBkxBCCCGEEEK8hgRNQgghhBBCCPEaEjQJIYQQQgghxGtI0CSEEEIIIYQQr/H/OjJ9lmr1gqAAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# relative\n",
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.barplot(data=df, x='Eigenschaft', y='rel. Anzahl fehlerhafter Einträge')\n",
"axes.set_xticklabels(axes.get_xticklabels(), rotation=45, horizontalalignment='right')\n",
"text = axes.bar_label(axes.containers[0], fmt='{:.2f}', label_type='edge', rotation=90, fontsize='small')"
]
},
{
"cell_type": "code",
"execution_count": 235,
"metadata": {},
"outputs": [],
"source": [
"if SAVE_FIGS:\n",
" fig.savefig('NaN-relative.svg', bbox_inches='tight')"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Prioritize properties\n",
"- only look at properties with high relevance\n",
"- high relevance associated with low number of NA entries"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Helper functions**"
]
},
{
"cell_type": "code",
"execution_count": 236,
"metadata": {},
"outputs": [],
"source": [
"def filter_NA_entries_by_prop(df, df_na, prop, negate=False):\n",
" \n",
" if negate:\n",
" return df.loc[~df_na[prop]].copy()\n",
" else:\n",
" return df.loc[df_na[prop]].copy()"
]
},
{
"cell_type": "code",
"execution_count": 237,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 1073 | \n",
" 26296 | \n",
" 0 | \n",
" NaN | \n",
" 2 | \n",
" 2023-01-23 | \n",
" 1 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" Versicherungsschaden | \n",
" 2023-01-23 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2023-01-23 | \n",
"
\n",
" \n",
" | 1803 | \n",
" 22149 | \n",
" 0 | \n",
" NaN | \n",
" 2 | \n",
" 2022-09-12 | \n",
" 1 | \n",
" 0 | \n",
" Ladeluftverteiler, Trittstufe | \n",
" NaN | \n",
" Reparatur | \n",
" 2022-09-20 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-09-23 | \n",
"
\n",
" \n",
" | 2954 | \n",
" 21729 | \n",
" 0 | \n",
" NaN | \n",
" 2 | \n",
" 2022-08-19 | \n",
" 1 | \n",
" 0 | \n",
" Starterbatterie prüfen und ggf. ersetzen\\n\\nBa... | \n",
" NaN | \n",
" Batterie tauschen | \n",
" 2022-08-25 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-08-19 | \n",
"
\n",
" \n",
" | 4045 | \n",
" 9339 | \n",
" 0 | \n",
" NaN | \n",
" 3 | \n",
" 2019-09-02 | \n",
" 5 | \n",
" 0 | \n",
" Gewinde nachschneiden | \n",
" Schlosserei | \n",
" Kettbaum-Adapter | \n",
" 2019-09-02 | \n",
" Reparatur UTT | \n",
" gewinde nachgeschnitten | \n",
" Weberei | \n",
" Weberei | \n",
" 02.09.2019 | \n",
" 2019-09-02 | \n",
"
\n",
" \n",
" | 4407 | \n",
" 3158 | \n",
" 0 | \n",
" NaN | \n",
" 3 | \n",
" 2019-06-27 | \n",
" 5 | \n",
" 0 | \n",
" Maschinen- Status auf Stop bei laufender Maschine | \n",
" NaN | \n",
" elektrischer Fehler (allgemein) | \n",
" 2019-07-01 | \n",
" Reparatur UTT | \n",
" DU getauscht. Maschine steht im Moment. Kräusl... | \n",
" Weberei | \n",
" Weberei | \n",
" 01.07.2019 | \n",
" 2019-06-27 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID ObjektID HObjektText VorgangsTypID VorgangsDatum \\\n",
"1073 26296 0 NaN 2 2023-01-23 \n",
"1803 22149 0 NaN 2 2022-09-12 \n",
"2954 21729 0 NaN 2 2022-08-19 \n",
"4045 9339 0 NaN 3 2019-09-02 \n",
"4407 3158 0 NaN 3 2019-06-27 \n",
"\n",
" VorgangsStatusId VorgangsPrioritaet \\\n",
"1073 1 0 \n",
"1803 1 0 \n",
"2954 1 0 \n",
"4045 5 0 \n",
"4407 5 0 \n",
"\n",
" VorgangsBeschreibung VorgangsOrt \\\n",
"1073 NaN NaN \n",
"1803 Ladeluftverteiler, Trittstufe NaN \n",
"2954 Starterbatterie prüfen und ggf. ersetzen\\n\\nBa... NaN \n",
"4045 Gewinde nachschneiden Schlosserei \n",
"4407 Maschinen- Status auf Stop bei laufender Maschine NaN \n",
"\n",
" VorgangsArtText ErledigungsDatum ErledigungsArtText \\\n",
"1073 Versicherungsschaden 2023-01-23 Erledigt \n",
"1803 Reparatur 2022-09-20 Erledigt \n",
"2954 Batterie tauschen 2022-08-25 Erledigt \n",
"4045 Kettbaum-Adapter 2019-09-02 Reparatur UTT \n",
"4407 elektrischer Fehler (allgemein) 2019-07-01 Reparatur UTT \n",
"\n",
" ErledigungsBeschreibung MPMelderArbeitsplatz \\\n",
"1073 NaN NaN \n",
"1803 NaN NaN \n",
"2954 NaN NaN \n",
"4045 gewinde nachgeschnitten Weberei \n",
"4407 DU getauscht. Maschine steht im Moment. Kräusl... Weberei \n",
"\n",
" MPAbteilungBezeichnung Arbeitsbeginn ErstellungsDatum \n",
"1073 NaN NaN 2023-01-23 \n",
"1803 NaN NaN 2022-09-23 \n",
"2954 NaN NaN 2022-08-19 \n",
"4045 Weberei 02.09.2019 2019-09-02 \n",
"4407 Weberei 01.07.2019 2019-06-27 "
]
},
"execution_count": 237,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = filter_NA_entries_by_prop(df=data, df_na=NA, prop='HObjektText')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 238,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 474 | \n",
" 26201 | \n",
" 293 | \n",
" HAS-1.OG BT/C ZI.138, Bewohnerzimmer, | \n",
" 3 | \n",
" 2023-01-18 | \n",
" 1 | \n",
" 0 | \n",
" Chipkarte von Fr. Jolig bei Dr. Hager einlesen | \n",
" NaN | \n",
" Chipkarte einlesen | \n",
" 2023-01-19 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" Haus am Silbersee WB 1 | \n",
" NaN | \n",
" 2023-01-18 | \n",
"
\n",
" \n",
" | 475 | \n",
" 26053 | \n",
" 488 | \n",
" HAS-3.OG BT/A FL, Flur, | \n",
" 3 | \n",
" 2023-01-10 | \n",
" 1 | \n",
" 0 | \n",
" Bitte FFP2 Masken bringen | \n",
" NaN | \n",
" Sonstiges | \n",
" 2023-01-11 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" Haus am Silbersee WB 3 | \n",
" NaN | \n",
" 2023-01-10 | \n",
"
\n",
" \n",
" | 476 | \n",
" 25672 | \n",
" 495 | \n",
" HAS-3.OG BT/A ZI.301/302 , Bewohnerzimmer, | \n",
" 3 | \n",
" 2022-12-30 | \n",
" 1 | \n",
" 0 | \n",
" Bitte bei Frau Müller an der vorderen Bettseit... | \n",
" NaN | \n",
" Sonstiges | \n",
" 2023-01-03 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" Haus am Silbersee Verwaltung | \n",
" NaN | \n",
" 2022-12-30 | \n",
"
\n",
" \n",
" | 477 | \n",
" 25704 | \n",
" 354 | \n",
" HAS-2.OG BT/C LR , Lager Küche, | \n",
" 3 | \n",
" 2023-01-02 | \n",
" 1 | \n",
" 0 | \n",
" dunkel- aus- kaputt- ohne Funktion. | \n",
" NaN | \n",
" Leuchtmittel defekt | \n",
" 2023-01-03 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" Haus am Silbersee Ergotherapie | \n",
" NaN | \n",
" 2023-01-02 | \n",
"
\n",
" \n",
" | 479 | \n",
" 16199 | \n",
" 2523 | \n",
" SP-HAUS C/EG ZI. C.008, Bewohnerzimmer, | \n",
" 3 | \n",
" 2022-02-15 | \n",
" 1 | \n",
" 0 | \n",
" Notrufklingel vom Bett defekt | \n",
" NaN | \n",
" Sonstiges | \n",
" 2022-02-22 | \n",
" Erledigt | \n",
" NaN | \n",
" NaN | \n",
" Am Sonnenpark Pflege | \n",
" NaN | \n",
" 2022-02-15 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID ObjektID HObjektText \\\n",
"474 26201 293 HAS-1.OG BT/C ZI.138, Bewohnerzimmer, \n",
"475 26053 488 HAS-3.OG BT/A FL, Flur, \n",
"476 25672 495 HAS-3.OG BT/A ZI.301/302 , Bewohnerzimmer, \n",
"477 25704 354 HAS-2.OG BT/C LR , Lager Küche, \n",
"479 16199 2523 SP-HAUS C/EG ZI. C.008, Bewohnerzimmer, \n",
"\n",
" VorgangsTypID VorgangsDatum VorgangsStatusId VorgangsPrioritaet \\\n",
"474 3 2023-01-18 1 0 \n",
"475 3 2023-01-10 1 0 \n",
"476 3 2022-12-30 1 0 \n",
"477 3 2023-01-02 1 0 \n",
"479 3 2022-02-15 1 0 \n",
"\n",
" VorgangsBeschreibung VorgangsOrt \\\n",
"474 Chipkarte von Fr. Jolig bei Dr. Hager einlesen NaN \n",
"475 Bitte FFP2 Masken bringen NaN \n",
"476 Bitte bei Frau Müller an der vorderen Bettseit... NaN \n",
"477 dunkel- aus- kaputt- ohne Funktion. NaN \n",
"479 Notrufklingel vom Bett defekt NaN \n",
"\n",
" VorgangsArtText ErledigungsDatum ErledigungsArtText \\\n",
"474 Chipkarte einlesen 2023-01-19 Erledigt \n",
"475 Sonstiges 2023-01-11 Erledigt \n",
"476 Sonstiges 2023-01-03 Erledigt \n",
"477 Leuchtmittel defekt 2023-01-03 Erledigt \n",
"479 Sonstiges 2022-02-22 Erledigt \n",
"\n",
" ErledigungsBeschreibung MPMelderArbeitsplatz \\\n",
"474 NaN NaN \n",
"475 NaN NaN \n",
"476 NaN NaN \n",
"477 NaN NaN \n",
"479 NaN NaN \n",
"\n",
" MPAbteilungBezeichnung Arbeitsbeginn ErstellungsDatum \n",
"474 Haus am Silbersee WB 1 NaN 2023-01-18 \n",
"475 Haus am Silbersee WB 3 NaN 2023-01-10 \n",
"476 Haus am Silbersee Verwaltung NaN 2022-12-30 \n",
"477 Haus am Silbersee Ergotherapie NaN 2023-01-02 \n",
"479 Am Sonnenpark Pflege NaN 2022-02-15 "
]
},
"execution_count": 238,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = filter_NA_entries_by_prop(df=data, df_na=NA, prop='MPAbteilungBezeichnung', negate=True)\n",
"df.head()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## VorgangsID"
]
},
{
"cell_type": "code",
"execution_count": 239,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length data: 9892\n"
]
}
],
"source": [
"data = data_rem_dupl.copy()\n",
"print(f'Length data: {len(data)}')"
]
},
{
"cell_type": "code",
"execution_count": 240,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 105360 | \n",
" 4594 | \n",
" DU-04, Instandhaltung Küche, | \n",
" 2 | \n",
" 2023-02-16 | \n",
" 2 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" DU Neubau Spülmaschine - Neuanschaffungg | \n",
" 2023-03-21 | \n",
" Service durch externen Dienstleiter | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2023-02-01 | \n",
"
\n",
" \n",
" | 1 | \n",
" 7257 | \n",
" 241 | \n",
" DU-LA-H12-10, ROB007, | \n",
" 2 | \n",
" 2021-11-25 | \n",
" 0 | \n",
" 0 | \n",
" Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... | \n",
" NaN | \n",
" AKL Roboter 007 hat in letzter Zeit Greiferpro... | \n",
" 2021-11-29 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-25 | \n",
"
\n",
" \n",
" | 2 | \n",
" 7317 | \n",
" 0 | \n",
" HB-HVW-EG | \n",
" 2 | \n",
" 2021-11-30 | \n",
" 0 | \n",
" 0 | \n",
" Türkontakt Haupteingang prüfen | \n",
" HB-HVW-EG | \n",
" Türkontakt defekt | \n",
" 2021-11-30 | \n",
" Instandsetzung durch Facility Management | \n",
" Türkontakt nachjustiert, Schließriegel der Tür... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-30 | \n",
"
\n",
" \n",
" | 3 | \n",
" 31673 | \n",
" 4569 | \n",
" HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC | \n",
" 2 | \n",
" 2022-03-14 | \n",
" 0 | \n",
" 0 | \n",
" Umschalter zeitweise ohne Funktion | \n",
" NaN | \n",
" Schalter defekt? | \n",
" 2022-03-14 | \n",
" Instandsetzung durch Facility Management | \n",
" Gehäuse geöffnet, Schalter geprüft, gereinigt,... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-03-14 | \n",
"
\n",
" \n",
" | 4 | \n",
" 32908 | \n",
" 467 | \n",
" DU-LA-H09-07, Schnelllauftor Halle 9, | \n",
" 2 | \n",
" 2022-07-28 | \n",
" 5 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" Warnlampe innen - Leuchtmittel defekt | \n",
" 2022-08-10 | \n",
" NaN | \n",
" ausgetauscht ..ok | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-07-28 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID ObjektID HObjektText \\\n",
"0 105360 4594 DU-04, Instandhaltung Küche, \n",
"1 7257 241 DU-LA-H12-10, ROB007, \n",
"2 7317 0 HB-HVW-EG \n",
"3 31673 4569 HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC \n",
"4 32908 467 DU-LA-H09-07, Schnelllauftor Halle 9, \n",
"\n",
" VorgangsTypID VorgangsDatum VorgangsStatusId VorgangsPrioritaet \\\n",
"0 2 2023-02-16 2 0 \n",
"1 2 2021-11-25 0 0 \n",
"2 2 2021-11-30 0 0 \n",
"3 2 2022-03-14 0 0 \n",
"4 2 2022-07-28 5 0 \n",
"\n",
" VorgangsBeschreibung VorgangsOrt \\\n",
"0 NaN NaN \n",
"1 Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... NaN \n",
"2 Türkontakt Haupteingang prüfen HB-HVW-EG \n",
"3 Umschalter zeitweise ohne Funktion NaN \n",
"4 NaN NaN \n",
"\n",
" VorgangsArtText ErledigungsDatum \\\n",
"0 DU Neubau Spülmaschine - Neuanschaffungg 2023-03-21 \n",
"1 AKL Roboter 007 hat in letzter Zeit Greiferpro... 2021-11-29 \n",
"2 Türkontakt defekt 2021-11-30 \n",
"3 Schalter defekt? 2022-03-14 \n",
"4 Warnlampe innen - Leuchtmittel defekt 2022-08-10 \n",
"\n",
" ErledigungsArtText \\\n",
"0 Service durch externen Dienstleiter \n",
"1 NaN \n",
"2 Instandsetzung durch Facility Management \n",
"3 Instandsetzung durch Facility Management \n",
"4 NaN \n",
"\n",
" ErledigungsBeschreibung MPMelderArbeitsplatz \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 Türkontakt nachjustiert, Schließriegel der Tür... NaN \n",
"3 Gehäuse geöffnet, Schalter geprüft, gereinigt,... NaN \n",
"4 ausgetauscht ..ok NaN \n",
"\n",
" MPAbteilungBezeichnung Arbeitsbeginn ErstellungsDatum \n",
"0 NaN NaN 2023-02-01 \n",
"1 NaN NaN 2021-11-25 \n",
"2 NaN NaN 2021-11-30 \n",
"3 NaN NaN 2022-03-14 \n",
"4 NaN NaN 2022-07-28 "
]
},
"execution_count": 240,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head()"
]
},
{
"cell_type": "code",
"execution_count": 241,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9892"
]
},
"execution_count": 241,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"temp = data['VorgangsID']\n",
"uni= temp.unique()\n",
"uni = np.sort(uni)\n",
"dupl = temp[temp.duplicated()]\n",
"dupl = np.sort(dupl.unique()) # IDs with duplicates\n",
"len(temp)"
]
},
{
"cell_type": "code",
"execution_count": 242,
"metadata": {},
"outputs": [],
"source": [
"dupl_matches = dict()\n",
"dupl_matches_props = dict()\n",
"dupl_matches_collection = list()\n",
"# collection of information for dates\n",
"# [VorgangsID, num_matching_props, date_range]\n",
"data_date_range = list()\n",
"\n",
"for vorgang_id in dupl:\n",
" temp = data.loc[data['VorgangsID']==vorgang_id,:]\n",
" \n",
" # check every index combination\n",
" combi = list(combinations(range(len(temp)), 2))\n",
" \n",
" dict_entry = list()\n",
" dict_entry_props = list()\n",
" total_num_dupl_matches = 0\n",
" max_date_range = 0\n",
" for (idx1, idx2) in combi:\n",
" # number of matches without VorgangsID (duplicates)\n",
" temp_dupl_matches = (temp.iloc[idx1,1:] == temp.iloc[idx2,1:])\n",
" dupl_matches_collection.append(temp_dupl_matches.tolist())\n",
" num_dupl_matches = temp_dupl_matches.sum()\n",
" matching_props = temp.columns[1:][temp_dupl_matches]\n",
" non_matching_props = temp.columns[1:][~temp_dupl_matches]\n",
" total_num_dupl_matches += num_dupl_matches\n",
" \n",
" # date ranges\n",
" date_range = temp.iloc[idx1,4] - temp.iloc[idx2,4]\n",
" date_range = abs(date_range.days)\n",
" if date_range > max_date_range:\n",
" max_date_range = date_range\n",
" \n",
" dict_entry.append([(idx1, idx2), num_dupl_matches, (date_range)])\n",
" dict_entry_props.append([(idx1, idx2), (matching_props, non_matching_props)])\n",
" data_date_range.append([vorgang_id, num_dupl_matches, date_range])\n",
" \n",
" dict_entry.append([total_num_dupl_matches, max_date_range])\n",
" dupl_matches[vorgang_id] = dict_entry\n",
" dupl_matches_props[vorgang_id] = dict_entry_props\n",
" \n",
"df = pd.DataFrame(data=dupl_matches_collection, columns=data.columns[1:])\n",
"df_date = pd.DataFrame(data=data_date_range, columns=['VorgangsID', 'num_matching_props', 'date_range'])"
]
},
{
"cell_type": "code",
"execution_count": 243,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
" True | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
"
\n",
" \n",
" | 1 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" | 2 | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" | 3 | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
"
\n",
" \n",
" | 4 | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" ObjektID HObjektText VorgangsTypID VorgangsDatum VorgangsStatusId \\\n",
"0 True True True True False \n",
"1 False False False False False \n",
"2 False False False False False \n",
"3 True True True True False \n",
"4 True True True True True \n",
"\n",
" VorgangsPrioritaet VorgangsBeschreibung VorgangsOrt VorgangsArtText \\\n",
"0 True True True False \n",
"1 True False False False \n",
"2 True False False False \n",
"3 True True False True \n",
"4 True True False False \n",
"\n",
" ErledigungsDatum ErledigungsArtText ErledigungsBeschreibung \\\n",
"0 True False True \n",
"1 False False False \n",
"2 False False False \n",
"3 True False True \n",
"4 True True True \n",
"\n",
" MPMelderArbeitsplatz MPAbteilungBezeichnung Arbeitsbeginn \\\n",
"0 False False True \n",
"1 False False False \n",
"2 False False False \n",
"3 False False True \n",
"4 True True True \n",
"\n",
" ErstellungsDatum \n",
"0 True \n",
"1 False \n",
"2 False \n",
"3 True \n",
"4 True "
]
},
"execution_count": 243,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 244,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of entries: 493\n"
]
}
],
"source": [
"print(f'Number of entries: {len(df)}')\n",
"dupl_count_abs = df.sum().sort_values(ascending=False)\n",
"dupl_count_rel = dupl_count_abs / len(df)"
]
},
{
"cell_type": "code",
"execution_count": 245,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VorgangsPrioritaet 479\n",
"VorgangsTypID 416\n",
"ErstellungsDatum 354\n",
"VorgangsStatusId 344\n",
"VorgangsDatum 342\n",
"ErledigungsDatum 337\n",
"VorgangsBeschreibung 326\n",
"ErledigungsArtText 313\n",
"Arbeitsbeginn 292\n",
"MPAbteilungBezeichnung 291\n",
"ErledigungsBeschreibung 282\n",
"ObjektID 275\n",
"MPMelderArbeitsplatz 273\n",
"HObjektText 272\n",
"VorgangsArtText 102\n",
"VorgangsOrt 17\n",
"dtype: int64"
]
},
"execution_count": 245,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dupl_count_abs"
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VorgangsPrioritaet 0.971602\n",
"VorgangsTypID 0.843813\n",
"ErstellungsDatum 0.718053\n",
"VorgangsStatusId 0.697769\n",
"VorgangsDatum 0.693712\n",
"ErledigungsDatum 0.683570\n",
"VorgangsBeschreibung 0.661258\n",
"ErledigungsArtText 0.634888\n",
"Arbeitsbeginn 0.592292\n",
"MPAbteilungBezeichnung 0.590264\n",
"ErledigungsBeschreibung 0.572008\n",
"ObjektID 0.557809\n",
"MPMelderArbeitsplatz 0.553753\n",
"HObjektText 0.551724\n",
"VorgangsArtText 0.206897\n",
"VorgangsOrt 0.034483\n",
"dtype: float64"
]
},
"execution_count": 246,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dupl_count_rel"
]
},
{
"cell_type": "code",
"execution_count": 247,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" num_matching_props | \n",
" date_range | \n",
"
\n",
" \n",
" \n",
" \n",
" | 420 | \n",
" 105449 | \n",
" 2 | \n",
" 1335 | \n",
"
\n",
" \n",
" | 417 | \n",
" 105196 | \n",
" 1 | \n",
" 1322 | \n",
"
\n",
" \n",
" | 418 | \n",
" 105335 | \n",
" 2 | \n",
" 1309 | \n",
"
\n",
" \n",
" | 419 | \n",
" 105446 | \n",
" 1 | \n",
" 1217 | \n",
"
\n",
" \n",
" | 278 | \n",
" 23040 | \n",
" 1 | \n",
" 1113 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID num_matching_props date_range\n",
"420 105449 2 1335\n",
"417 105196 1 1322\n",
"418 105335 2 1309\n",
"419 105446 1 1217\n",
"278 23040 1 1113"
]
},
"execution_count": 247,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_date_sorted = df_date.sort_values(by='date_range', ascending=False)\n",
"df_date_sorted.head()"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'date_range [days]')"
]
},
"execution_count": 248,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAKwCAYAAABnI8WKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzaklEQVR4nO3deXxU9b3/8feZmSQzSQybAawti1sQISFKFBcEUdSfawl6bW+hiopeVouVpYKiVUQLLbLFBVCsvRbEIFKXW4Haqi1F0ECqyCaaqgiJJCaSzGS28/uDZmyakI3knJnJ6/l49AE535npZz4EmXe+yzFM0zQFAAAAAGhTDrsLAAAAAID2gPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFgg6sJXXl6eRo8efczxWbNmadiwYbWuhcNhLVq0SIMHD1ZWVpZuvfVWFRUV1XrMxx9/rFGjRmnAgAEaOnSoVqxY0Sb1AwAAAEB9oip8rVy5UosWLTrm+MaNG7VmzZo61/Py8rRq1So9/PDDWr16tQzD0NixY+X3+yVJZWVlGjNmjHr16qX8/HxNmjRJCxcuVH5+fpu9FwAAAAD4d1ERvg4dOqTbb79dCxcuVO/evet9THFxse677z6de+65ta77/X4988wzmjRpkoYMGaI+ffpowYIFOnTokDZs2CBJevHFF5WYmKgHHnhAp556qkaOHKlbbrlFy5Yta/P3BgAAAABSlISvjz76SB06dND69euVlZVVZ9w0Tc2YMUPXX399nfC1a9cuVVZWatCgQZFraWlp6tu3r7Zu3SpJ2rZtm3JycuRyuSKPGTRokD799FMdPny4jd4VAAAAAHzH1fhD2t6wYcPq7OP6dytXrlRJSYmefPJJPfXUU7XGDh48KEk66aSTal3v2rWrvvrqq8hjzjjjjDrjknTgwAF16dKl2TWbpqlw2Gz289qCw2FETS3tCX23B323B323B323B323B323B30/fg6HIcMwmvTYqAhfDdm1a5eWLFmi//3f/1ViYmKdca/XK0l1xpKSklReXi5J8vl89Y5LUnV1dYtrczqjYuJQkuR0Nu0PHK2LvtuDvtuDvtuDvtuDvtuDvtuDvlsnqsNXdXW17rnnHo0bN059+vSp9zFut1vS0b1fNb+vea7H44k8pubwjX8fl6Tk5OQW1RYOm6qoqGrRc1uT0+lQWppHFRVehUJhu8tpN+i7Pei7Pei7Pei7Pei7Pei7Peh760hL8zR5Uiaqw9eOHTu0d+9eLVmyREuXLpUkBQIBBYNBZWdn68EHH1SvXr0kHT2Qo0ePHpHnFhcXRwJb9+7dVVxcXOu1a77u1q1bi+sLBqPnmzQUCkdVPe0FfbcHfbcHfbcHfbcHfbcHfbcHfbdOVIevzMxMvfnmm7WuPf/883rzzTf1/PPPq0uXLkpMTFRqaqq2bNkSCV8VFRXauXOnRo0aJUnKycnRqlWrFAqF5HQ6JUmbN29W7969W7TfCwAAAACaK6rDl9vtVs+ePWtd69Chg1wuV63ro0aN0vz589W5c2edfPLJmjdvnrp3767hw4dLkkaOHKnly5dr5syZuv3221VYWKjnnntODz74oKXvBwAAAED7FdXhq6kmT56sYDCoWbNmyefzKScnRytWrIgcstGlSxctX75cc+bM0YgRI5Senq5p06ZpxIgRNlcOAAAAoL0wTNPkbMkWCIXCKi2ttLsMuVwOdeqUorKyStbqWoi+24O+24O+24O+24O+24O+24O+t47OnVOafOBG9JyVDgAAAABxjPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABl90FALHGNAxV+EIqLiqVJ8klt8shwzTtLgsAAABRjvAFNEPIMJSXX6iCPSWRa9kZ6RqfmyknAQwAAAANYNkh0ERmPcFLkgp2lyhvbaFMw7CpMgAAAMQCwhfQRN5AqE7wqlGwu0TeQMjiigAAABBLCF9AE1X5gsc1DgAAgPaN8AVbmIahqmBYXx/xqyoYjokle8nuhrdINjYOAACA9o1Pi7BcrB5a4UlwKjsjXQW76y49zM5IlyfBKUVx/QAAALAXM1+wVCwfWmGYpsbnZio7I73W9ZrgyHHzAAAAaAgzX7BUUw6tSHZF788EnKapibmZ8gbC8vmDcie65EngPl8AAABoXPR+ykVciodDKwzTVJrbqYyenZXmdhK8AAAA0CSEL1iKQysAAADQXhG+YKmaQyvqEzm0IsqZhqEKX0i7i0r1bXUoqvepAQAAIHowzQBL1Rxakbe2sNapgbFyaEWsntQIAAAA+xG+YLnvDq0IqcoXVLLbJU9C9O+dauykxokxEB4BAABgH8IXbGGYppJdDiWnJh69EAOhJdZPagQAAIC9+KQINFE8nNQIAAAA+xC+gCbipEYAAAAcD8IX0ETxcFIjAAAA7EP4Apqo5qTG/wxgsXJSIwAAAOzFOimgGb47qTEsnz8od6JLngQHwQsAAACNYuYLaCbDNJXmdiqjZ2eluaP/iHwAAABEB8IXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCF2xhGoaqgmF9fcSvqmBYpmHYXRIAAADQplx2F4D2J2QYyssvVMGeksi17Ix0jc/NlNM0bawMAAAAaDvMfMFSZj3BS5IKdpcob20hM2AAAACIW4QvWMobCNUJXjUKdpfIGwhZXBEAAABgDcIXLFXlCx7XOAAAABCrCF+wVLK74W2GjY0DAAAAsYrwBUt5EpzKzkivdyw7I12eBKfFFQEAAADWiLrwlZeXp9GjR9e69qc//UkjR45Udna2hg0bpscee0w+ny8yHg6HtWjRIg0ePFhZWVm69dZbVVRUVOs1Pv74Y40aNUoDBgzQ0KFDtWLFCkveD2ozTFPjczPrBLCa0w4NTjsEAABAnIqqNV4rV67UokWLlJOTE7m2bds2TZw4UT/72c90xRVXqKioSPfff7+++eYbzZ07V9LRwLZq1SrNnTtX3bp107x58zR27Fi9+uqrSkxMVFlZmcaMGaPLLrtMDz74oLZv364HH3xQHTt21MiRI+16u+2W0zQ1MTdT3kBIVb6gkt0ueRKcBC8AAADEtaiY+Tp06JBuv/12LVy4UL179641tmrVKg0aNEh33HGHevbsqYsvvlhTpkzR+vXr5ff75ff79cwzz2jSpEkaMmSI+vTpowULFujQoUPasGGDJOnFF19UYmKiHnjgAZ166qkaOXKkbrnlFi1btsyOtwsdnQFLdjl0Ymqikl0OghcAAADiXlSEr48++kgdOnTQ+vXrlZWVVWvs1ltv1bRp0+o8JxgM6siRI9q1a5cqKys1aNCgyFhaWpr69u2rrVu3Sjo6e5aTkyOX67uJvkGDBunTTz/V4cOH2+hdAQAAAMB3omLZ4bBhwzRs2LB6x/r27Vvra7/fr2effVZnnXWWOnfurG3btkmSTjrppFqP69q1q7766itJ0sGDB3XGGWfUGZekAwcOqEuXLi2q2+WyP7s6nY5av8Ia9N0e9N0e9N0e9N0e9N0e9N0e9N16URG+mioYDGratGnat2+f/vd//1eS5PV6JUmJiYm1HpuUlKTy8nJJks/nq3dckqqrq1tUi8NhqFOnlBY9ty2kpXnsLqFdou/2oO/2oO/2oO/2oO/2oO/2oO/WiZnwdeTIEf3sZz/Tli1btGjRosjyRLfbLenojFjN76Wjocrj8UQe4/f7a71eTehKTk5uUT3hsKmKiqoWPbc1OZ0OpaV5VFHhVSgUtrucdoO+24O+24O+24O+24O+24O+24O+t460NE+TZw9jInwVFxdr7Nix+uKLL7Rs2bJa+7tqlhsWFxerR48etZ7Tp08fSVL37t1VXFxc5zUlqVu3bi2uKxiMnm/SUCgcVfW0F/TdHvTdHvTdHvTdHvTdHvTdHvTdOlG/wLO8vFw333yzSktL9cILL9QKXpLUp08fpaamasuWLZFrFRUV2rlzpwYOHChJysnJ0fvvv69QKBR5zObNm9W7d+8W7/cCAAAAgOaI+vA1d+5cff7555o3b546d+6skpKSyP9CoZASExM1atQozZ8/X5s2bdKuXbs0ZcoUde/eXcOHD5ckjRw5UkeOHNHMmTO1b98+rV27Vs8995zuvPNOm98dAAAAgPYiqpcdhsNhvf766woEArr55pvrjG/atEnf//73NXnyZAWDQc2aNUs+n085OTlasWJF5JCNLl26aPny5ZozZ45GjBih9PR0TZs2TSNGjLD6LQEAAABopwzT5O62LREKhVVaWml3GXK5HOrUKUVlZZWs1bUQfbcHfbcHfbcHfbcHfbcHfbcHfW8dnTunNPnAjahfdggAAAAA8YDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBVuYhqGqYFhfH/GrKhiWaRh2lwQAAAC0KZfdBaD9CRmG8vILVbCnJHItOyNd43Mz5TRNGysDAAAA2g4zX7CUWU/wkqSC3SXKW1vIDBgAAADiFuELlvIGQnWCV42C3SXyBkIWVwQAAABYg/AFS1X5gsc1DgAAAMQqwhcslexueJthY+MAAABArCJ8wVKeBKeyM9LrHcvOSJcnwWlxRc0Xdjj0jTeoDz/5WuXeoMIO/hoBAACgcUwzwFKGaWpibqaKy71yJyWoyhdUitslb3VAXTt4ZET5aYemYaiq+rulkaakquqgUhKdUV87AAAA7EX4guVCklZt2Ksde787eCPr9HRNuCEzur8hHQ6Z4foDlmlKhsMhhcMWFwUAAIBYEdWfdRF/wg6Hlr38D2X07KTrLz5F/kBYiQkO7Soq07J1H+rOEf3liOIAE5K0Yv1HdYLj+JGZrOEFAABAgwhfsJTXH9SV5/fS+nf268WNeyLXs05P13WDT5HXH1SKKzpjTEhSXn5hreAlSTv2ligvv1ATb8xS9O9YAwAAgF2i81Mu4pcprX9nf70BZv07+yUzem+y7K0O1qm7xo69JfJWc0w+AAAAjo2ZL1jKlBoMMKZMSdEZwCq9AXXr7NG0n+YowelQpTegFE+CAqGwfvXbrar0BpWakGh3mQ0yDUPeQEhVvqCS3S55EjgoBAAAwCqEL1jK18jskK86egNMWmqCfnnHBSrc97W6dHDLHwjLWx3U4XKffnnHBQqGQ3aX2KCwYWj7vq/VOe1o7Ue8AZVW+DTgtBPlIIABAAC0OcIXLJXsdsmd6NR1F5+qPj071TpwY/3bn0T1TZbdLpdKK7zK6NlJkiIzXyd29KjiiE+d0zzRe9qhYaj4G5/e2X6gzmEh3zsxVd07uo8e2QgAAIA2E72fdBGXkhOcuv+2QVq9cU+dAzfuv22QkhOcURsCwuGw0lLddQ7dqDntMBwOR+2BG/6wqdUb99S7106SxuX2V2J0rvYEAACIGxy4AUuZktZsqj8ErPnTHkVn7PoXh6PB0w7liN6/TtWBUIN77aoD0b1kEgAAIB5E76dFxCVvIKSCPfWHgILdJfJGcQiI5dMOfdUN97WxcQAAABw/whcsVeVrOKA0Nm6nSm+gkfHorT3Fk3Bc4wAAADh+hC9YqrEDNaL5wI3GA0z01u5JcCg7I73eseyMdHkS+E8BAABAW+MTFyzlSXA2EgKi9cgKKTnJpazT66896/R0JSdFb/gyTFPjczPr9D47I13jczO51xcAAIAFovfTIuJSTQjIW1uogt3f7Z+KhRDgCIc14YZMLX2p7mmHE27IlCNaj5n/F6dpamJuJjdZBgAAsAnhC5aL5RDgMk1NujFLVdVBVXqDSvG4lJzkivrgVcMwTSW7HEpO/deNrGOg5wAAAPGC8AVbxHIIcITD6uhxqff3OqisrFLBYGwELwAAANiLPV8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAVcdhcAxBrTMFThC6m4qFSeJJfcLocM07S7LAAAAEQ5whfQDCHDUF5+oQr2lESuZWeka3xuppwEMAAAADSAZYdAE5n1BC9JKthdory1hTINw6bKAAAAEAuiLnzl5eVp9OjRta59/PHHGjVqlAYMGKChQ4dqxYoVtcbD4bAWLVqkwYMHKysrS7feequKioqa9RpAY7yBUJ3gVaNgd4m8gZDFFQEAACCWRFX4WrlypRYtWlTrWllZmcaMGaNevXopPz9fkyZN0sKFC5Wfnx95TF5enlatWqWHH35Yq1evlmEYGjt2rPx+f5NfA2hMlS94XOMAAABo36Jiz9ehQ4c0c+ZMvf/+++rdu3etsRdffFGJiYl64IEH5HK5dOqpp6qoqEjLli3TyJEj5ff79cwzz2jq1KkaMmSIJGnBggUaPHiwNmzYoKuvvrrR1wCaItnd8F+XxsYBAADQvkXFp8WPPvpIHTp00Pr167V06VJ9+eWXkbFt27YpJydHLtd3pQ4aNEhPPfWUDh8+rC+//FKVlZUaNGhQZDwtLU19+/bV1q1bdfXVVzf6Gl26dGlR3S6X/ROHTqej1q9oOylOh7Iz0lWwu+7Sw+yMdKUkueRk21eb4vvdHvTdHvTdHvTdHvTdHvTdelERvoYNG6Zhw4bVO3bw4EGdccYZta517dpVknTgwAEdPHhQknTSSSfVecxXX33VpNdoSfhyOAx16pTS7Oe1lbQ0j90ltAuT/itbi18sqBXAsjPSNfm/snViR/4MrML3uz3ouz3ouz3ouz3ouz3ou3WiInw1xOfzKTExsda1pKQkSVJ1dbW8Xq8k1fuY8vLyJr1GS4TDpioqqlr03NbkdDqUluZRRYVXoVDY7nLinkvS5BuyVOUPyVsdlCfJpeREp5xmWGVllXaXF/f4frcHfbcHfbcHfbcHfbcHfW8daWmeJs8eRn34crvdkYMzatQEpuTkZLndbkmS3++P/L7mMR6Pp0mv0VLBYPR8k4ZC4aiqJ96dkORUj+5pKiurVDAYFkdtWIvvd3vQd3vQd3vQd3vQd3vQd+tE/QLP7t27q7i4uNa1mq+7desWWW5Y32O6d+/epNcAmsM0DFX4QtpdVKpvq0Pc3wsAAABNEvUzXzk5OVq1apVCoZCcTqckafPmzerdu7e6dOmiE044QampqdqyZYt69OghSaqoqNDOnTs1atSoJr1GrKoJAcVFpfIkueR2OWSYpt1lxbVQPTdazs5I1/jcTDnpPQAAABoQ9TNfI0eO1JEjRzRz5kzt27dPa9eu1XPPPac777xT0tG9XqNGjdL8+fO1adMm7dq1S1OmTFH37t01fPjwJr1GLAoZhpbkF2ri/Ld0z6J3NGHeW1qytlAhZmHajFlP8JKO3mA5b20hM2AAAABoUNTPfHXp0kXLly/XnDlzNGLECKWnp2vatGkaMWJE5DGTJ09WMBjUrFmz5PP5lJOToxUrVkQO2WjKa8SSxkLAxNxMZsDagDcQqtPzGgW7S+QNhJQcBbcfAAAAQHQyTJNP6S0RCoVVWmrP6XZVwbAmzv/zMceX3DM06kNA2OFQVXVQld6AUj0J8iS55AhH90bPr4/4NW3Ju8cc/9XEi3RiauIxx3H8XC6HOnVKiRx0AmvQd3vQd3vQd3vQd3vQ99bRuXNKk087jO5P6KhXla/hs/UaG7dbyDBUsKdEX3/jVfkRv0q+8apgT0nUL5lMdjc8UdzYOAAAANo3wlcMiuUQYDoc+uZbnzJ6dtKJHT3qkJqoEzt6lNGzk7751ifTEb3fkp4Ep7Iz0usdy85IlyfBaXFFAAAAiCXR+ykdx1QTAgp2191/FAkBUbqaNBwOKy3Vrbz8Qu3Y+139Waena/zITIXDYUVrhDFMUxNzM1Vc7pU7KUFVvqBS3C55qwPq2sHDPjsAAAA0iPAVgwzT1PjcTOWtLawVwGqOPI/qEOBw6Lk/fKRrB5+iW67pGwkwX5f79NxrOzXm2rOkKN77ZUg6sWOyvNVBOQzJ6TB0Ysfk6O45AAAAogLhK0Y5/zUL4w2E5fMH5U50yZMQ/ff5qg4E9d9X9tGydR/Wmfka+8N+qg4EldzEDYuWczgk09R/nlET+drhiOrgCAAAAHsRvmKYYZpKczvV86S0mDmlxuVwaMX6j5TRs5Ouv/gU+QNhJSY4tKuoTM+9ulO3XddPUvQGSFOSzx+q83VKolPRfVwIAAAA7Eb4gqUCobCuPL+X1r+zXy9u3BO5nnV6uq4bfIoCoZASo/iY/KAprVj/Ub371RJIXwAAAGgA4QvWMqVNW/9Z756vTVv/qR9f3sfuCo8pJNU5KESSduwtUV5+oSbemBW1h4UAAADAfoQvWMpwqME9X0cX8kXnFJK3OlgneNXYsbdE3uqgUhOid9YOAAAA9iJ8wVIuh1O/fX1nvTNfL/zfLv30qr6K1j1fld5AI+NBpSYkWlQNAAAAYg3hC5YKhkMNznwFwyElRulphymehEbG+esEAACAY4vOT7loEtMwVOELaXdRqb6tDsk0onO53r9zORx1gpd0dNnesnUfyuWI3l1TyUkuZZ2eXu9Y1unpSk4ifAEAAODY+LQYo0KGobz8QhXsqXuTZWcU3+vLHww3uG/KHwwpMUr3TTnCYU24IVNLXyqsM2s34YZMObjHFwAAABpA+IpBZj3BS5IKdpcob22hJuZmRu3NlhvbN1UV5fumXKapSTdmqao6qEpvUCkel5KTXAQvAAAANCo6pxjQIG8gVCd41SjYXSJvIFTvWDRobN9Ucgzsm3KEw+rocanfqV3U0UPwAgAAQNMQvmJQlS94XON2Yt8UAAAA2ivCVwxKdjccUBobt1PNvqn/DGDsmwIAAEC8i95P6TgmT4JT2RnpKthdd+lhdka6PAlOKUr3fEm1901VeYNKZt8UAAAA2gFmvmKQYZoan5up7Izas0c1px1G62Eb/84RDis1waGuaYlKTXAQvAAAABD3mPmKUU7T1MTcTHkDYfn8QbkTXfIkOGIieAEAAADtETNfMcwwTaW5ncro2VlpbifBCwAAAIhihC8AAAAAsADhCwAAAAAsQPgCAAAAAAsQvgAAAADAAoQv2MI0DFUFw/r6iF9VwbBMw7C7JAAAAKBNcdQ8LBcyDOXlF6pgz3c3ia65R5kzBk5sNA1DFb6QiotK5Ulyye3iiH8AAAA0jpkvWMqsJ3hJUsHuEuWtLYz6GbCwYahg39cqLqvS19/4dKi0SgX7vlY4yusGAACA/Zj5gqW8gZA+/qxU/3XZGerTs5P8gbASExzaVVSm9W9/Im8gpGRXlP5MwDD0dblP/znJZZrS1+U+de3gVp1BAAAA4F8IX7CUtzqoX9x8rhISDHmSElTlCyrF7dKAM07UWb27yFsdVLIr0e4y6xUwTYVN6d0dB7Rj73czd1mnp+umy85QwDSVYGN9AAAAiG5ROsWAeNUhJVFdO3v0ZXGlyip8+rbSr9IKn74srlTXzh51SInO4CVJYVNavXFPreAlSTv2lmj1xj0KM+kFAACABjDzBUsZhkNl5d56Z49OTk9VekePZIZtrPDY/IFQneBVY8feEvkDISUlOi2uCgAAALGCmS9YKhQONzh7FApHZ/CSJF916LjGAQAA0L4RvmApXyOzR9WB6A0wKZ6Gd3Q1Ng4AAID2jfAFS8Xy7JEnwaHsjPR6x7Iz0uVJ4K8TAAAAjo09X7BUY7NDyVE8e2SYpibkZmr7vq/VOc0dOSa/tMKnAaedyI2WAQAA0CDCFyyVnODQeWd1U8+TOtS5z1fRV+VKTnBE9b2yTEl/3XGg1k2iszPSlXXaifYVBQAAgJhA+IKlDNPUbdf109KXCvXixj2R61mnp2vCDZlRPXtkGoby8gtrBS9JKthdory1hZqYG931AwAAwF5sUoGlTMPQE/mF9Z52+MTaQpmGYVNljfMGQnWCV42C3SXyRvFhIQAAALAf4QuWiuUAU+ULHtc4AAAA2jfCVwwzDUMVvpB2F5Xq2+pQVM8a1YjlAJPsbniVbmPjAAAAaN/4tBijQvXsP8rOSNf43Ew5o3jfUSwHGE+CU9kZ6SrYXXfm7uhR886oPiwEAAAA9mLmKwY1dvBDNM+A1QSY+kQCTJQyTFPjczPr1F8TejlsAwAAAA2J3mkGHFNT9k0lu6IzV9cEmLy1hbVmkGIlwDhNUxNzM+UNhOXzB+VOdMmT4Ij6ugEAAGA/wlcMasq+qeTURIuqab7vAkzoaK1ulzwJzpgJMIZpKs3tVM+T0lRWVqlgMGx3SQAAAIgBhK8YFMv7pmoYpqlkl+O7kBgjwQsAAABoqehcm4YGxfK+qRqmYagqGNbXR/yqCoajep/af4rFUyYBAABgv+ifIkEdsb5vKlZPapRiu3YAAADYi/AVo2L14IfGTmqcGMXhMZZrBwAAgP1YdhjDag5+yOjZWWnu2DiwoiknNUarWK4dAAAA9iN8wVJNOakxWsVy7QAAALAfyw5hqWS3Sx1TEzXxv7LVpYNbVb6gUtwufV3u05IXC6L6pMZ4OGUSAAAA9uHTIiyVnODUI+Mv0lMv/0M79n63hC/r9HQ9Mv4iuZ1G1B47X3PK5L8fclIjcspklNYOAAAA+7HsEJYKG0ad4CVJO/aW6KmX/6FwFB/bXnPK5H8e8x8rp0wCAADAXsx8wVJV1cE6wavGjr0lqqoOKjUhen8m4DRNTRiZparqoCq9AaV6EuRJcskRDttdGgAAAKIc4QuWqvQGGhyv8gaVmpBoUTXNFzQMLV2zo86SyQk3ZMoVAzNfpmHIGwipyhdUstslT0JsnJIJAAAQDwhfsFSKJ0HuRKeuu/hU9enZSf5AWIkJDu0qKtP6tz9Rsid6vyXDDked4CUdnbFb+lKhJt2YFdUzYGHD0PZ9X6tzmlv+QFhHvAGVVvg04LQT5SCAAQAAtLno/aSLuJSS5NL9tw3S6o179OLGPZHrWaen6/7bBiklySVFaYCJ6SWThqHib3x6Z/uBOrN23zsxVd07ujksBAAAoI0RvmAt09Trf92vawefoluu6VvrqPnX/7ZfY67qa3eFx9TYksnKKF4y6Q+bWr1xT72zdpI0Lre/EqP3rBMAAIC4QPiCpapDIf3oij5atu7DOjMwY3/YT9WhkNyO6Jw9amzJZEoUL5msDoQanLWrDoSUmOi0uCoAAID2JXo/LSIuOQynnnq5sN4ZmGXrPtS43ExJ0bn8LZaXTPqqQ42On0D4AgAAaFOEL1jKHwyprMKrpdMuUShkRo5rdzgNPfbcVvmDISVG674p09Qrf9mnjJ6ddP3Fp9Sa+Xrl7X2647p+dld4TCmehOMaBwAAwPEjfMFS/kBA9916nkrKvfIkJShsSqGwqW+9ft1363mqqKyWonTflC8Y0uWDemn9O/vrzHxdN/gU+YIheZzRGRw9CQ5lZ6SrYHfdpYfZGenyJDg4cAMAAKCNEb5gqU6pHvlDYX1ZXKkuHY4eeV7tD+pwuU+dTnCrY6o7apfumaah/9v8Wb0zX/+3+TPdfHX0HhZimKbG52Yqb21hrQCWnZGu8bmZ3OsLAADAAoQvWCpsmvr2SLVO7poiT1JC5LRDd5JT3x6pVqc0t6J155EpU1eef+yZL1OmpOg9MtBpmpqYm8lNlgEAAGxC+IKlTNNU2glJKq3w1RlLOyFJZhQHAUOxO/NVwzBNJbscSk7919LOKO43AABAvCF8wVIOw1AwZGr1hr11jpq/c0R/uZxG1AYCU6auurC3vv7GW+t6ekePzuzVOepnvgAAAGAvwhcsFZb01Mv/qPeo+ade/ocm3JCp6Dyy4mhwTEpw6t0dB+oEx5suO0MOg+AFAACAY2tS+PrFL37Rohc3DEOPPPJIi56L+OTzN3yzX58/pNQoPWre6TC0euOeeoOjJI3L7W9HWQAAAIgRTQpfL7/8sk488UQlJjb9CHC/36/Dhw8TvlBLpTfQ4HiVN6jUKD1qvjrQcHCsDoSUyI2KAQAAcAxNXnaYl5enzMzMJr/w9u3b9eMf/7hFRSF+NXYz32RP9K6E9VWHGh0/gfAFAACAY2jS+q5rr71WnTp1atYLd+nSRddcc02LikL8Sk5yKev09HrHsk5PV3JS9IavxoJjY+MAAABo35oUvubNm6cf/OAHxxwvLCzUm2++qYqKisi1H/zgB5o3b97xVygpEAhowYIFGjp0qLKzs/Xf//3f+uCDDyLjH3/8sUaNGqUBAwZo6NChWrFiRa3nh8NhLVq0SIMHD1ZWVpZuvfVWFRUVtUptaB5HOKwJN2TWCWBZp6cfPWwjSm+wLEmeBIeyM+oPjtkZ6fJE6V41AAAARIdmf1osKSnRT3/6Uy1dulSS9Nvf/lY33XSTJk+erMsvv1x79+5t9SKfeOIJ5efn6+GHH9a6det0yimnaOzYsTp06JDKyso0ZswY9erVS/n5+Zo0aZIWLlyo/Pz8yPPz8vK0atUqPfzww1q9erUMw9DYsWPl9/tbvVY0zmWamnRjlhb9fKgeHX+RFv18qCbdmCVXlB4xX8MwTY3PzawTwLIz0jU+N5ObFQMAAKBBzV7j9atf/Ur79+/X2LFjFQ6H9fTTT+uCCy7Q1KlT9fDDD+vXv/61nnzyyVYtctOmTbrmmmt00UUXSZJmzJihNWvWaPv27frss8+UmJioBx54QC6XS6eeeqqKioq0bNkyjRw5Un6/X88884ymTp2qIUOGSJIWLFigwYMHa8OGDbr66qtbtVY0jSMcVmqC47vDNaJ4xuvfOU1TE3Mz5Q2E5fMH5U50yZPgIHgBAACgUc0OX++++67uvfdeDR48WB988IG+/vprzZkzR3369NHtt9+ue+65p9WL7Nixo9566y2NGjVKJ510klavXq3ExESdeeaZeumll5STkyOX67u3MmjQID311FM6fPiwvvzyS1VWVmrQoEGR8bS0NPXt21dbt249rvDlctm/zMzpdNT6FdZwJyYo7aQ0VVR4FQqFxc2VrcH3uz3ouz3ouz3ouz3ouz3ou/WaHb6qqqrUvXt3SdJf/vIXJSYmRoJNYmKizDaYAZg5c6amTJmiSy+9VE6nUw6HQwsXLlSPHj108OBBnXHGGbUe37VrV0nSgQMHdPDgQUnSSSedVOcxX331VYtrcjgMdeqU0uLnt7a0NI/dJbRL9N0e9N0e9N0e9N0e9N0e9N0e9N06zQ5fvXr10rZt25SVlaX/+7//07nnnqukpCRJ0vr169WrV6/WrlGffPKJ0tLStHTpUnXr1k1r1qzR9OnT9bvf/U4+n6/O/cdq6qmurpbX65Wkeh9TXl7e4prCYVMVFVUtfn5rcTodSkvz/NsMTGwImVJldUhVvoBSPAlKTnTKGUOTR7Ha91hH3+1B3+1B3+1B3+1B3+1B31tHWpqnybOHzQ5fd955p6ZOnarly5fL6/Xq/vvvlyTdeOON+uijjzR//vzmvmSDvvzyS02dOlUrV67UwIEDJUn9+/fXvn37tHjxYrnd7joHZ1RXV0uSkpOT5Xa7JR296XPN72se4/EcX8oPBqPnmzQUCkdVPQ0JGYby8gtVsOe7GxbXHFrhjLG9U7HU93hC3+1B3+1B3+1B3+1B3+1B363T7PB11VVXqVu3bnr//fd17rnnasCAAZKkgQMHavLkyRo8eHCrFlhYWKhAIKD+/fvXup6VlaW3335b3/ve91RcXFxrrObrbt26KRgMRq716NGj1mP69OnTqrWicWY9wUuSCnaXKG9toSZyaiAAAADiVLPD17p163TllVfqnHPOqXV9+vTprVbUv6vZq7V7925lZmZGru/Zs0c9e/bUgAEDtGrVKoVCITmdTknS5s2b1bt3b3Xp0kUnnHCCUlNTtWXLlkj4qqio0M6dOzVq1Kg2qRnH5g2E6gSvGgW7S+QNhJQcBQeZAAAAAK2t2Z9y7733Xl144YW67777at3ouK1kZmZq4MCBmj59uv7+97/rs88+0+OPP67Nmzfrjjvu0MiRI3XkyBHNnDlT+/bt09q1a/Xcc8/pzjvvlHR0r9eoUaM0f/58bdq0Sbt27dKUKVPUvXt3DR8+vM3rR21VvuBxjQMAAACxqtkzX3/+85+1bt06vfLKK1qzZo169uypkSNH6vrrr1e3bt1avUCHw6G8vDw9/vjj+sUvfqHy8nKdccYZWrlyZWTJ4/LlyzVnzhyNGDFC6enpmjZtmkaMGBF5jcmTJysYDGrWrFny+XzKycnRihUr6hzCgbaX7G74W66xcQAAACBWGeZxnA1fWFiol19+WW+++aa++eYbnX/++crNzdXw4cOVkJDQmnVGnVAorNLSSrvLkMvlUKdOKSorq4yJjZKmYWjJ2kIV7K679DA7Iz1m9nzFWt/jBX23B323B323B323B323B31vHZ07pzT5tMPj2lyTmZmp2bNn68knn9Q555yjd999V3fffbcuvvhiPfnkk5HDLoAahmlqfG6msjPSa12vOe0wFoIXAAAA0BItXuP1xRdfaP369XrllVf0z3/+Uz169NDdd9+tSy65RH/+85+1dOlS7d+/X7/61a9as17EAadpamJupryBkKp8QSW7XfIkOAleAAAAiGvNDl9r1qzRK6+8ovfff19ut1tXXnml5syZE7kHlySdfvrpKi0t1apVq1q1WMQPwzSV7HIoOfVf++4IXgAAAIhzzQ5f9913n7KysvTggw/qqquuUmpqar2Py8jI0E033XTcBQIAAABAPGh2+Hr11Vd12mmnNfq4H/7why2pBwAAAADiUrPD12mnnSafz6fdu3crEAio5rDEcDgsr9erbdu26Z577mn1QgEAAAAgljU7fP3973/XXXfdpYqKinrHU1JSCF8AAAAA8B+aHb4ef/xxdezYUQ8//LDWr18vh8Oh3Nxcvf322/r973+vZcuWtUWdAAAAABDTmh2+du/erYceekjDhw/XkSNH9MILL2jIkCEaMmSIAoGAnnjiCT399NNtUSsAAAAAxKxm32Q5HA6re/fukqTevXtr3759kbErrrhCO3fubL3qAAAAACBONDt89ejRQ7t375Yk9ezZU16vV5988okkKRgMqrKysnUrBAAAAIA40Ozwde2112r+/Pl6/vnn1alTJ/Xr108PP/yw/vSnP2np0qVNOoYeAAAAANqbZu/5uv3221VWVqbCwkJJ0uzZszV27FiNHz9eqampeuKJJ1q9SAAAAACIdc0OXw6HQ9OnT4983b9/f23cuFH79+/XKaecotTU1FYtEAAAAADiQbPDV31SU1OVmZnZGi8FAAAAAHGpSeFr2LBhMgyjyS+6adOmFhcEAAAAAPGoSeHr3HPPjYSvcDis1157TSeccIKGDBmi9PR0ffPNN/rrX/+q0tJS3XTTTW1aMAAAAADEoiaFr0cffTTy+/nz5ysrK0vLly+Xx+OJXA8EAho3bpyqqqpav0oAAAAAiHHNPmp+zZo1Gjt2bK3gJUkJCQkaPXq0Xn/99VYrDgAAAADiRbPDlySVlpbWe/3AgQNKSko6roIAAAAAIB41O3wNGzZMv/71r/X2229HrpmmqQ0bNujxxx/XVVdd1aoFAgAAAEA8aPZR87/4xS+0b98+3XHHHUpISFDHjh1VVlamUCikCy+8UFOnTm2LOgEAAAAgpjU7fKWlpenFF1/UX/7yF73//vsqLy9Xp06dNGjQIJ1//vltUSMAAAAAxLwmha+FCxfqRz/6kbp16yZJMgxDQ4cO1dChQ4/5nEOHDmnVqlW66667WqVQAAAAAIhlTdrz9eSTT+rQoUPNeuGDBw/qySefbFFRAAAAABBvmjTzZZqmHnjgAaWmpjb5hY8cOdLiohD/TMOQNxBSlS+oZLdLngSnDNO0uywAAACgzTQpfOXk5Eg6GsKaKiUlRQMHDmxZVYhrIcNQXn6hCvaURK5lZ6RrfG6mnAQwAAAAxKkmha/nn3++retAO2HWE7wkqWB3ifLWFmpibiYzYAAAAIhLzT7tEDge3kBIH39Wqv+67Az16dlJ/kBYiQkO7Soq0/q3P5E3EFKyq0X3/raMaRiq8IVUXFQqT5JLbpeDwAgAAIBGEb5gKW91UNN/mqOvv/HWup7e0aPpP82RtzqoZFeiTdU1jiWTAAAAaKnonmJA3ElLSZQn0VnvmCfRqbSU6A1ejS2ZNA3DpsoAAAAQC5j5gsUMhU3p3R0HtGPvdyEm6/R03XTZGZIMSdE5g+QNhOoErxoFu0tiYskkAAAA7MMnRVgqbJpavXFPreAlSTv2lmj1xj0KR/HSvSpf8LjGAQAA0L61aObL7/frpZde0t/+9jeVlJTokUce0XvvvaezzjpLmZmZrV0j4og/EKoTvGrs2FsifyCkpGMsS7Rbsrvhvy6NjQMAAKB9a/anxdLSUt18883av3+/TjnlFO3bt08+n09/+ctf9Oijj2rlypXKzs5ui1oRB3zVIbkTnbru4lPrPe3QVx3SCVEavjwJTmVnpKtgd93wmJ2RLk+CU4rimTsAAADYq9nLDn/1q1+psrJSr7/+ul5++eXIjZcXLlyo/v37a9GiRa1eJOJHanKCpo4aqN1FZfrlii169Ldb9csVW7S7qExTRw1UanKC3SUek2GaGp+bqeyM9FrXa0475Lh5AAAANKTZM19vvfWW7r33XvXs2VOhUChyPSkpSbfeeqtmzJjRqgUiviQlOLX+nf317vmSpEk3ZknhsB2lNYnTNDUxN1PeQFg+f1DuRJc8CdznCwAAAI1r9sxXdXW1OnbsWO+Y0+lUIBA43poQx3z+YIN7vnz+6D+0wjBNpbmdyujZWWluJ8ELAAAATdLs8NW/f3+98MIL9Y794Q9/UL9+/Y67KMQvTgwEAABAe9XsZYd33XWXbrnlFl1//fUaMmSIDMPQq6++qsWLF+vdd9/V8uXL26JOxAlODAQAAEB71eyZr4EDB+rZZ5+Vx+PR8uXLZZqmVq5cqZKSEj311FMaNGhQW9SJOFFzYmB9IicGAgAAAHGoRdMMOTk5WrVqlXw+n8rLy5WamqqUlJTWrg1xqObEwLy1hbWObOfEQAAAAMS7ZoevAwcO1LlWXl6u8vJyORwOJScnKy0trVWKQ3z67sTAkKp8QSW7XfIkcHAFAAAA4luzw9ewYcNkGEaDj+nQoYN++tOfavz48S0uDPHNME0luxxKTk08eoHgBQAAgDjX7PD16KOP6v7779e5556ra665RieeeKIOHz6sP/7xj/rzn/+s8ePHq7KyUk888YQ6duyo//7v/26LugEAAAAgpjQ7fL322mu6+uqrNXfu3FrXr7/+es2ePVsffvihnnzySaWlpen3v/894QsAAAAA1ILTDt977z1dc8019Y5dfvnl+vvf/y5JOuecc/T5558fX3UAAAAAECeaHb46duyoXbt21Tu2a9cupaamSpKqqqrk8XiOrzoAAAAAiBPNXnZ47bXXatGiRXK5XLryyivVuXNnlZaW6s0339SSJUv0ox/9SOXl5XruueeUlZXVFjUDAAAAQMxpdvj62c9+psOHD+vRRx/Vo48+GrnucDg0cuRITZkyRX/84x+1c+dOPffcc61aLAAAAADEqmaHL5fLpblz52rcuHHasmWLysrK1K1bN5199tn6wQ9+IEm6+OKL9c477ygxMbHVCwYAAACAWNTs8FWjR48e6tGjR71jHTp0aHFBAAAAABCPmh2+vF6vnnzySb311lvyer0Kh8O1xg3D0MaNG1utQAAAAACIB80OX3PmzFF+fr7OPfdcnXnmmXI4mn1gIgAAAAC0O80OX2+++aamTJmiO+64oy3qAQAAAIC41Oxpq2AwqMzMzLaoBQAAAADiVrPD10UXXaS33367LWoBAAAAgLjV7GWHV111lWbPnq3S0lJlZWXJ4/HUecwPf/jD1qgNAAAAAOJGi26yLEnr1q3TunXr6owbhkH4AgAAAID/0OzwtWnTpraoAwAAAADiWrPD18knn9zguGmaLS4GAAAAAOJVs8OXJL322mt67733FAgEImHLNE1VVVVp+/btHMgBAAAAAP+h2eFryZIlWrJkiU444QQFg0ElJCTI5XKptLRUDodDN954Y1vUCQAAAAAxrdlHzb/88su67rrr9N577+mWW27RJZdcor/97W966aWX1LFjR51++ultUScAAAAAxLRmh69Dhw7p+uuvl2EYOuuss1RQUCBJ6tevn/7nf/5Ha9asafUiAQAAACDWNTt8JScnyzAMSVKvXr30xRdfyOfzSZLOPPNMffHFF61bIQAAAADEgWaHr/79++vll1+WJPXo0UNOp1N/+9vfJEmffPKJEhMTW7dCAAAAAIgDzT5w43/+5380ZswYffvtt3ryySd13XXXacaMGTrvvPP07rvv6rLLLmuLOgEAAAAgpjU7fOXk5Oill17S7t27JUn333+/HA6HPvjgA1155ZWaMWNGqxcJAAAAALGu2eHrySef1KWXXqrrr79ekpSUlKSHHnqo1QsDAAAAgHjS7D1fy5cv11dffdUWtQAAAABA3Gp2+OrVq5f27t3bFrUAAAAAQNxq9rLDoUOHasGCBXrrrbd0+umnq0uXLrXGDcPQhAkTWq3AGuvWrdPTTz+tzz//XD169NDEiRP1//7f/5Mkffzxx5ozZ44+/PBDdezYUaNHj9Ztt90WeW44HNaSJUu0Zs0aVVRU6JxzztHs2bPVs2fPVq8TAAAAAOrT7PC1ZMkSSdK2bdu0bdu2OuNtEb5eeeUV3XvvvZo+fbqGDh2qV199VXfffbe6d++uXr16acyYMbrsssv04IMPavv27XrwwQfVsWNHjRw5UpKUl5enVatWae7cuerWrZvmzZunsWPH6tVXX+VofAAAAACWaHb42rVrV1vUcUymaWrhwoW6+eabdfPNN0uSJkyYoA8++EDvvfee3nvvPSUmJuqBBx6Qy+XSqaeeqqKiIi1btkwjR46U3+/XM888o6lTp2rIkCGSpAULFmjw4MHasGGDrr76akvfDwAAAID2qdnhq6lCoZD69eunl156SWeddVaLX2f//v368ssvde2119a6vmLFCknS2LFjlZOTI5fru7cyaNAgPfXUUzp8+LC+/PJLVVZWatCgQZHxtLQ09e3bV1u3bj2u8OVyNXvLXKtzOh21foU16Ls96Ls96Ls96Ls96Ls96Ls96Lv12ix8SUdnrY7XZ599JkmqqqrSbbfdpp07d+r73/++xo0bp2HDhungwYM644wzaj2na9eukqQDBw7o4MGDkqSTTjqpzmOO59RGh8NQp04pLX5+a0tL89hdQrtE3+1B3+1B3+1B3+1B3+1B3+1B363TpuGrNRw5ckSSNH36dE2cOFH33HOP/vjHP2r8+PF69tln5fP56uzbSkpKkiRVV1fL6/VKUr2PKS8vb3Fd4bCpioqqFj+/tTidDqWleVRR4VUoFLa7nHaDvtuDvtuDvtuDvtuDvtuDvtuDvreOtDRPk2cPoz58JSQkSJJuu+02jRgxQpJ05plnaufOnXr22Wfldrvl9/trPae6ulqSlJycLLfbLUny+/2R39c8xuM5vpQfDEbPN2koFI6qetoL+m4P+m4P+m4P+m4P+m4P+m4P+m6dqF/g2b17d0mqs7TwtNNO0xdffKHu3buruLi41ljN1926dYssN6zvMTWvDQAAAABtLerDV9++fZWSkqIdO3bUur5nzx716NFDOTk5ev/99xUKhSJjmzdvVu/evdWlSxf16dNHqamp2rJlS2S8oqJCO3fu1MCBAy17H6jNNAxVBcP6+ohfVcGwTMOwuyQAAACgTUX9skO3263bb79dS5cuVbdu3ZSZmanXXntNf/3rX7Vy5UqddtppWr58uWbOnKnbb79dhYWFeu655/Tggw9KOrrXa9SoUZo/f746d+6sk08+WfPmzVP37t01fPhwm99d+xQyDOXlF6pgT0nkWnZGusbnZsrZCoe0AAAAANEo6sOXJI0fP14ej0cLFizQoUOHdOqpp2rx4sU677zzJEnLly/XnDlzNGLECKWnp2vatGmR/WGSNHnyZAWDQc2aNUs+n085OTlasWIFN1i2gVlP8JKkgt0lyltbqIm5mTIIYAAAAIhDMRG+JGnMmDEaM2ZMvWOZmZlavXr1MZ/rdDo1depUTZ06ta3KQxN5A6E6watGwe4SeQMhJUfB/dMAAACA1tZmn3INw1BOTo5SUqLnXliwX5UveFzjAAAAQKxq0cyX3+/XSy+9pL/97W8qKSnRI488ovfee09nnXWWMjMzJUkOh0PPP/98qxaL2JfsbvhbrrFxAAAAIFY1e+artLRUI0eO1Jw5c1RUVKTCwkL5fD795S9/0ejRo1VQUNAWdSJOeBKcys5Ir3csOyNdngSnxRUBAAAA1mh2+PrVr36lyspKvf7663r55Zdl/utwhIULF6p///5atGhRqxeJ+GGYpsbnZtYJYDWnHXLYBgAAAOJVs9d4vfXWW7r33nvVs2fPWvfWSkpK0q233qoZM2a0aoGIP07T1MTcTHkDIVX5gkp2u+RJcBK8AAAAENeaHb6qq6vVsWPHesecTqcCgcDx1oR2wDBNJbscSk7913H/BC8AAADEuWYvO+zfv79eeOGFesf+8Ic/qF+/fsddFAAAAADEm2bPfN1111265ZZbdP3112vIkCEyDEOvvvqqFi9erHfffVfLly9vizoBAAAAIKY1e+Zr4MCBevbZZ+XxeLR8+XKZpqmVK1eqpKRETz31lAYNGtQWdQIAAABATGvRTZVycnK0atUq+Xw+lZeXKzU1NXIz5WAwKJeLezUBAAAAwL9r9szXpZdeql27dkmS3G63unXrFglehYWFuvDCC1u3QgAAAACIA02aonr11VcVDAYlSV9++aU2bNgQCWD/bvPmzZx2CAAAAAD1aFL4+vDDD7Vy5UpJkmEYWrp06TEfO2bMmFYpDAAAAADiSZPC1913363Ro0fLNE1ddtllWrJkic4888xaj3E6nUpNTVVqamqbFAoAAAAAsaxJ4SsxMVEnn3yyJGnTpk3q2rWrEhIS2rQwAAAAAIgnzT6W8OSTT9b27dv13nvvKRAIyDRNSZJpmqqqqtL777+vF198sdULBQAAAIBY1uzw9b//+796+OGHI6Hr3zkcDl100UWtUhgAAAAAxJNmHzX/u9/9ThdddJG2bNmi2267Tf/1X/+l7du3a+HChUpKStJ1113XFnUCAAAAQExrdvj64osvNGrUKHXo0EH9+/fX+++/L7fbrSuuuEJ33nmnfvvb37ZFnQAAAAAQ05odvhISEuR2uyVJvXr1UlFRUeTeXmeffbY+++yzVi0QAAAAAOJBs8PXmWeeqbfeekuS1LNnT4XDYW3fvl2SdPDgwVYtDg0zDUMVvpB2F5Xq2+qQTMOwuyQAAAAAx9DsAzfGjBmjiRMnqry8XHPnztWll16qadOm6YorrtAf/vAHnXPOOW1RJ/5DyDCUl1+ogj0lkWvZGekan5spZz2HoQAAAACwV7PD12WXXaYnn3xSn3zyiSTpl7/8pX7+859r1apV6t+/v+6///5WLxK1mYah5a98qNN7dNK1g0+RPxBWYoJDu4rKtHz9h7rjun4yCGAAAABAVDHM+s6MR6NCobBKSytt+f/2hsI6eNir9e/s14693818ZZ2erusGn6LuXTzyOJu9ohTN4HI51KlTisrKKhUMhu0up92g7/ag7/ag7/ag7/ag7/ag762jc+cUOZv42btJM18HDhxoVgHf+973mvV4NI9pGnWCl6TI12Ov72dHWQAAAAAa0KTwNWzYMBnNOMzh448/bnFBaFzYNOsErxo79pYobJqSOHwDAAAAiCZNCl+PPPJIJHyVl5dr/vz5Ov/88/X//t//U3p6ur755hv96U9/0p///GfNmDGjTQuG5KsONjqempBoUTUAAAAAmqJJ4Ss3Nzfy+wkTJmjEiBF66KGHaj3m2muv1Zw5c/TGG2/opptuat0qUUuyu+E/tsbGAQAAAFiv2acy/PWvf9WVV15Z79jQoUNVUFBw3EWhYZ4Ep7Iz0usdy85IlyfBaXFFAAAAABrT7PDVqVOnyE2V/9Pf//53devW7XhrQiMM09T43Mw6AazmPl8cMw8AAABEn2avT7vxxhuVl5cnr9erYcOGqXPnzvr666/1f//3f/r973+ve++9ty3qxH9wmqYm5mbKGwjL5w/KneiSJ8FB8AIAAACiVLPD17hx4/Ttt99q5cqVWrFihSTJNE253W7ddddd+slPftLqRaJ+hmkqze1Uz5PSYu7+DKZhyBsIqcoXVLLbJU+Ck+AIAACAuNbs8GUYhqZPn67x48dr+/btKi8vV6dOnZSdna3k5OS2qBFxJmQYyssvVMGe747Lr1ky6SSAAQAAIE61+Fi8E044QYMHD27NWtAOmPUEL0kq2F2ivLWFmsieNQAAAMQpziSPYaZhqMIXUnFRqTxJLrld0b/nyxsI6ePPSvVfl52hPj07yR8IKzHBoV1FZVr/9ifyBkJKdjX7HBgAAAAg6hG+YlSsLt3zVgc1ddRArX9nv17cuCdyPev0dE0dNVDe6qCSXdwgGgAAAPGHKYYY1NjSPdMwbKqscSckJ2r9O/u1Y2/t2nfsLdH6d/brhGSCFwAAAOIT4SsGeQOhOsGrRsHuEnkDIYsrarpgyKwTvGrs2FuiYCh6Z+0AAACA40H4ikFVvuBxjdupyhc4rnEAAAAgVhG+YlCyu+Gteo2N2ymWawcAAACOB+ErBnkSnMrOSK93LDsjXZ4Ep8UVNV0s1w4AAAAcD8JXDDJMU+NzM+uEmJrTDqP5uPlYrh0AAAA4HqzxilFO09TE3Ex5A2H5/EG5E13yJET/fb6kf689pCpfUMlulzwJzpioHQAAAGgpwlcMM0xTaW6nep6UprKySgWDYbtLajLDNJXscig59V9HyxO8AAAAEOdYdggAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBVuYhqGqYFhfH/GrKhiWaRh2lwQAAAC0KZfdBaD9CRmG8vILVbCnJHItOyNd43Mz5TRNGysDAAAA2g4zX7CUWU/wkqSC3SXKW1vIDBgAAADiFuELlvIGQnWCV42C3SXyBkIWVwQAAABYg/AFS1X5gsc1DgAAAMQqwhcslexueJthY+MAAABArCJ8wVKeBKeyM9LrHcvOSJcnwWlxRQAAAIA1CF+wlGGaGp+bWSeA1Zx2aHDaIQAAAOIUa7xgOadpamJupryBkKp8QSW7XfIkOAleAAAAiGuEL9jCME0luxxKTk08eoHgBQAAgDjHskMAAAAAsADhC7YwDUNVwbC+PuJXVTDMzZUBAAAQ91h2CMuFDUPb932tzmlu+QNhHfEGVFrh04DTTpSD5YcAAACIU4QvWMswVPyNT+9sP6Ade0sil7NOT9f3TkxV945u9n8BAAAgLrHsEJbyh02t3rinVvCSpB17S7R64x75wwQvAAAAxCfCFyxVHQjVCV41duwtUXUgZHFFAAAAgDUIX7CUr7rhcNXYOAAAABCrCF+wVIon4bjGAQAAgFjFgRuwlCfBofPO6qaeJ3VQn56d5A+ElZjg0K6iMhV9VS5PgoMDNwAAABCXYm7m69NPP1V2drbWrl0bufbxxx9r1KhRGjBggIYOHaoVK1bUek44HNaiRYs0ePBgZWVl6dZbb1VRUZHVpUOSYZq67bp+2l1Upl+u2KJHf7tVv1yxRbuLynTbdf1kELwAAAAQp2IqfAUCAd1zzz2qqqqKXCsrK9OYMWPUq1cv5efna9KkSVq4cKHy8/Mjj8nLy9OqVav08MMPa/Xq1TIMQ2PHjpXf77fjbbRrpmHoifzCek87fGJtITdbBgAAQNyKqfC1ePFipaSk1Lr24osvKjExUQ888IBOPfVUjRw5UrfccouWLVsmSfL7/XrmmWc0adIkDRkyRH369NGCBQt06NAhbdiwwY630a55AyEV7Kn/tMOC3SXyctohAAAA4lTMhK+tW7dq9erVeuyxx2pd37Ztm3JycuRyfbd9bdCgQfr00091+PBh7dq1S5WVlRo0aFBkPC0tTX379tXWrVstqx9HVfmCxzUOAAAAxKqYOHCjoqJC06ZN06xZs3TSSSfVGjt48KDOOOOMWte6du0qSTpw4IAOHjwoSXWe17VrV3311VfHVZfLZX92dTodtX6Ndsnuhk8zTHYnREVfGxNrfY8X9N0e9N0e9N0e9N0e9N0e9N16MRG+HnjgAQ0YMEDXXnttnTGfz6fExMRa15KSkiRJ1dXV8nq9klTvY8rLy1tck8NhqFOnlMYfaJG0NI/dJTSJq8qv7Ix0Feyuu/QwOyNdnTu4dUJyYj3PjE6x0vd4Q9/tQd/tQd/tQd/tQd/tQd+tE/Xha926ddq2bZv+8Ic/1DvudrvrHJxRXV0tSUpOTpbb7ZZ0dO9Xze9rHuPxtPwbLRw2VVFR1fgD25jT6VBamkcVFV6FQmG7y2mS8bmZyltbWCuAZWeka/zITAWrAyqrDthYXdPEYt/jAX23B323B323B323B323B31vHWlpnibPHkZ9+MrPz9fhw4c1dOjQWtdnz56tFStW6Hvf+56Ki4trjdV83a1bNwWDwci1Hj161HpMnz59jqu2YDB6vklDoXBU1dMQp6SJuZnyBkKq8gWV7HbJk+CUETYVDMfWUfOx1Pd4Qt/tQd/tQd/tQd/tQd/tQd+tE/Xha/78+fL5fLWuXX755Zo8ebKuuuoqvfbaa1q1apVCoZCcTqckafPmzerdu7e6dOmiE044QampqdqyZUskfFVUVGjnzp0aNWqU5e8HRxmmqWSXQ8mp/1piyP29AAAAEOeiPnx169at3utdunTRySefrJEjR2r58uWaOXOmbr/9dhUWFuq5557Tgw8+KOnoXq9Ro0Zp/vz56ty5s04++WTNmzdP3bt31/Dhw618KwAAAADasagPX43p0qWLli9frjlz5mjEiBFKT0/XtGnTNGLEiMhjJk+erGAwqFmzZsnn8yknJ0crVqyocwgHrGMaRt1lh8x+AQAAII4Zpskn3pYIhcIqLa20uwy5XA516pSisrLKmFmrGzYMbd/3tTqnueUPhJWY4FBphU8DTjtRjhj5dozFvscD+m4P+m4P+m4P+m4P+m4P+t46OndOiZ8DN3BsYYdD33iDOlB2WCkelzyJLjnCUf4XxzBU/I1P72w/oB17vzvtMOv0dH3vxFR17+hm/xcAAADiEuErRgUNQ0vX7KgTYCbckClXFIcXf9jU6o17atUtKfL1uNz+SjTsqAwAAABoW9zOOgaFHQ4tfamw3gCz9KVChR3R+8daHQjVqbvGjr0lqg6ELK4IAAAAsEb0fkrHMVVVBxsMMFXVQYsrajpfdcPhqrFxAAAAIFYRvmJQpTfQ4HiVN3rDV4on4bjGAQAAgFjFnq8YlOJJkDvRqesuPlV9enaKnBi4q6hM69/+RMme6P1j9SQ4lJ2RroLddWfusjPS5UlwRP2BG6ZhqMIXUnFRqTxJLrldDo7JBwAAQKOi91M6jiklyaX7bxuk1Rv36MWNeyLXs05P1/23DVJKkkuK0lMPDdPU+NxM5a0trBXAsjPSNT43M+pDTMgwlJdfqII9dWt3RnntAAAAsBfhKxaZptZsqv/EQIdDmpibaVNhTeM0TU3MzYy5myyb9QQvSSrYXaK8tYWaGAPhEQAAAPZhz1cM8gZCdQJAjYLdJfLGwImBhmkq2eXQiamJSo6RZXvx0HcAAADYh/AVg6p8DR+o0dg4Woa+AwAA4HgQvmJQsrvh1aKNjaNl6DsAAACOB+ErBnkSnMrOSK937OiJgU6LK2of6DsAAACOB+ErBtWcGPifQSBWTgyMVfQdAAAAx4N1UjHquxMDw/L5g3InuuRJiI2DK2IZfQcAAEBLMfMVwwzTVJrbqYyenZXmjv6j2uMFfQcAAEBLEL4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAsQPgCAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwAOELtjANQ1XBsL4+4ldVMCzTMOwuCQAAAGhTLrsLQPsTNgxt3/e1Oqe55Q+EdcQbUGmFTwNOO1EO07S7PAAAAKBNEL5gLcNQ8Tc+vbP9gHbsLYlczjo9Xd87MVXdO7qlKA9gpmGowhdScVGpPEkuuV0OGVFeMwAAAOxH+IKl/GFTqzfuqRW8JEW+HpfbX4lRvAIxZBjKyy9UwZ7v6s/OSNf43Ew5CWAAAABoAHu+YKnqQKhO8KqxY2+JqgMhiytqOrOe4CVJBbtLlLe2kH1rAAAAaBDhC5byVTccrhobt5M3EKoTvGoU7C6RN4qDIwAAAOxH+IKlUjwJxzVupypf8LjGAQAA0L4RvmApT4JD2Rnp9Y5lZ6TLkxC935LJ7oa3SDY2DgAAgPYtej/pIi4ZpqnxuZl1AljNoRXRfGqgJ8HZSHB0WlwRAAAAYgk/qoflnKapibmZ8gZCqvIFlex2yZPgjOrgJX0XHPPWFqpgd93TDqO9fgAAANiL8AVbGKapZJdDyamJRy/ESHD5LjiG5fMH5U50yZPAfb4AAADQOJYdAs1kmKbS3E5l9OysNHf0z9gBAAAgOhC+AAAAAMAChC8AAAAAsADhCwAAAAAsQPgCAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAs4LK7AAAAgGhgGoYqfCEVF5XKk+SS2+WQYZp2lwUgjhC+AABAuxcyDOXlF6pgT0nkWnZGusbnZspJAAPQSlh2CAAA2jWznuAlSQW7S5S3tlCmYdhUGYB4Q/gCAADtmjcQqhO8ahTsLpE3ELK4IgDxivAFNFPNnoDdRaX6tjrET0QBIMZV+YLHNQ4ATcWeL6AZ2BMAAPEn2d3wx6HGxgGgqZj5ApqIPQEAEJ88CU5lZ6TXO5adkS5PgtPiigDEK8IX0ETsCQCA+GSYpsbnZtYJYDUrGzhuHkBrYR4daKKm7AlITk20qBoAQGtymqYm5mbKGwjL5w/KneiSJ4H7fAFoXcx8AU3EngAAiG+GaSrN7VRGz85KczsJXgBaHeELaCL2BAAAAOB4EL6AJmJPAAAAAI4H66SAZmBPAAAAAFqKmS+gmdgTAAAAgJYgfAEAAACABQhfAAAAAGCBmAhf33zzje6//35dfPHFOvvss/XjH/9Y27Zti4x//PHHGjVqlAYMGKChQ4dqxYoVtZ4fDoe1aNEiDR48WFlZWbr11ltVVFRk9dsAAAAA0I7FRPi6++67tWPHDv3mN7/RSy+9pLPOOku33XabPvnkE5WVlWnMmDHq1auX8vPzNWnSJC1cuFD5+fmR5+fl5WnVqlV6+OGHtXr1ahmGobFjx8rv99v4rgAAAAC0J1F/2mFRUZH++te/6ve//73OPvtsSdLMmTP19ttv69VXX5Xb7VZiYqIeeOABuVwunXrqqSoqKtKyZcs0cuRI+f1+PfPMM5o6daqGDBkiSVqwYIEGDx6sDRs26Oqrr7bz7QEAAABoJ6J+5qtTp056+umn1a9fv8g1wzBkmqbKy8u1bds25eTkyOX6LkcOGjRIn376qQ4fPqxdu3apsrJSgwYNioynpaWpb9++2rp1q6XvBQAAAED7FfUzX2lpaZEZqxpvvPGG/vnPf+qiiy7SggULdMYZZ9Qa79q1qyTpwIEDOnjwoCTppJNOqvOYr7766rhqc7nsz65Op6PWr7AGfbcHfbcHfbcHfbcHfbcHfbcHfbde1Iev//T+++/r3nvv1aWXXqphw4Zp7ty5SkxMrPWYpKQkSVJ1dbW8Xq8k1fuY8vLyFtfhcBjq1Cmlxc9vbWlpHrtLaJfouz3ouz3ouz3ouz3ouz3ouz3ou3ViKnxt3LhR99xzj7KysvSb3/xGkuR2u+scnFFdXS1JSk5OltvtliT5/f7I72se4/G0/BstHDZVUVHV4ue3FqfTobQ0jyoqvAqFwnaX027Qd3vQd3vQd3vQd3vQd3vQd3vQ99aRluZp8uxhzISv3/3ud5ozZ46GDx+u+fPnR2ayunfvruLi4lqPrfm6W7duCgaDkWs9evSo9Zg+ffocV03BYPR8k4ZC4aiqp72g7/ag7/ag7/ag7/ag7/ag7/ag79aJiQWeL7zwgh566CH95Cc/0eOPP15rCWFOTo7ef/99hUKhyLXNmzerd+/e6tKli/r06aPU1FRt2bIlMl5RUaGdO3dq4MCBlr4PAAAAAO1X1IevTz/9VI888oiGDx+uO++8U4cPH1ZJSYlKSkr07bffauTIkTpy5Ihmzpypffv2ae3atXruued05513Sjq612vUqFGaP3++Nm3apF27dmnKlCnq3r27hg8fbvO7AwAAANBeRP2ywz/+8Y8KBALasGGDNmzYUGtsxIgRevTRR7V8+XLNmTNHI0aMUHp6uqZNm6YRI0ZEHjd58mQFg0HNmjVLPp9POTk5WrFiRZ1DOAAAAACgrRimaZp2FxGLQqGwSksr7S5DLpdDnTqlqKyskrW6FqLv9qDv9qDv9qDv9qDv9qDv9qDvraNz55QmH7gR9csOAQAAACAeEL4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAsQPgCAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAsQPgCAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAsQPgCAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwgMvuAgAAAABYyzQMVfhCKi4qlSfJJbfLIcM07S4r7hG+AAAAgHYkZBjKyy9UwZ6SyLXsjHSNz82UkwDWplh2CAAAALQTZj3BS5IKdpcob22hTMOwqbL2gfAFAAAAtBPeQKhO8KpRsLtE3kDI4oraF8IXAAAA0E5U+YLHNY7jQ/gCAAAA2olkd8NHPjQ2juND+AIAAADaCU+CU9kZ6fWOZWeky5PgtLii9oXwBQAAALQThmlqfG5mnQBWc9ohx823LeYVAQAAgHbEaZqaMDJLVdVBVfmCSnG75ElyyREO211a3CN8AQAAAO1IyDCU99IO7vNlA5YdAgAAAO0E9/myF+ELtjANQ1XBsL4+4ldVMMxfdAAAAAtwny97sewQlgvV8xMXproBAADaXlPu85WcmmhRNe0PM1+wFFPdAAAA9uE+X/YifMFSTHUDAADYh/t82YvwBUs1ZaobAAAAbYP7fNmLeUVYiqluAAAAezlNUxNzM+UNhOXzB+VOdMmT4CB4WYCZL1iKqW4AAAD7GaapNLdTGT07K83tJHhZhPAFSzHVDQAAgPaKNV6w3HdT3aGjx5m6XfIk8BMXAAAAxDfCF2xhmKaSXY7v7iNB8AIAAECcY9khAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAIC6ZhqGqYFhfH/GrKhiWaRh2l9Qu0HcAODaX3QUAANDaQoahvPxCFewpiVzLzkjX+NxMOU3TxsriG30HgIYx8wUAiCtmPQFAkgp2lyhvbSEzMW2EvgNA4whfAIC44g2E6gSAGgW7S+QNhCyuqH2g7wDQuHaz7DAcDmvJkiVas2aNKioqdM4552j27Nnq2bOn3aUBAFpRlS/Y6HhyaqJF1bSMaRiq8IVUXFQqT5JLbpdDRpQv26vyBdWts0fTfpqjBKdDld6AUjwJCoTC+tVvt9J3IMrw/W6PdjPzlZeXp1WrVunhhx/W6tWrZRiGxo4dK7/fb3dpAIBWlOxu+OeKjY3bzjBU5Q8pbJoKBMMKhU1V+UNSlC/bOyHFpbl3XKC05O8CliEpLTlRc++4QCekRH/fw4YR6Xs4bCpsGFHf9xphh0NHAmEdqqhWZSCssCN2PuKFHQ594w3qw0++Vrk3GHO1x2Tf+X63TZT/l7B1+P1+PfPMM5o6daqGDBkiSVqwYIEGDx6sDRs26Oqrr7a5QgBAa/EkOJWdka6C3XWXwGVnpMuT4JSi9ae7hqGAKS1f/5F27P2u/qzT0zV+ZKYSDCNqa09yuhQ0TS1ds6NO7RNuyFSSwyWFwzZW2ADDUFA6Zu2uKO67JAUN49i1R3HdErXbgu93W8VOTDwOu3btUmVlpQYNGhS5lpaWpr59+2rr1q02VgYAaG2GaWp8bqayM9JrXa85dS+al9XUnBb47x8qJGnH3hLl5RcqFMU/lQ5JWvpS/bUvfalQ0bzjK2QYDdcexX0POxwN1h7NMwLUbg++3+3VLma+Dh48KEk66aSTal3v2rWrvvrqqxa/rstl/x+w0+mo9SusQd/tQd/tEYt9d0mafEOWKqtDqvIFlOxOUEqSU05DOroYLjod8QbrfKiosWNvibzVQXX0ROc/3dRuj28aqb2K2ttELNfO97u9oru6VuL1eiVJiYm1N/omJSWpvLy8Ra/pcBjq1CnluGtrLWlpHrtLaJfouz3ouz1ise8n2l1AM31Z+nWD45XeoHp/r4NF1TQPtduD2u1B7faI5dprtIvw5Xa7JR3d+1Xze0mqrq6Wx9OyDxPhsKmKiqpWqe94OJ0OpaV5VFHhVSgUpWvp4xB9twd9twd9t06KJ6GRcZfKyiotqqZ5qN0e1G4PardHtNaeluZp8uqQdhG+apYbFhcXq0ePHpHrxcXF6tOnT4tfNxiMng8hoVA4quppL+i7Pei7Peh720tOcinr9PR6l9VknZ6u5CRX1P4ZULs9qN0e1G6PWK69Ruws4D8Offr0UWpqqrZs2RK5VlFRoZ07d2rgwIE2VgYAwHcc4bAm3JCprNNrHxZSc5KXI1pPCxS124Xa7UHt9ojl2msYphnFxz61ogULFmjVqlV65JFHdPLJJ2vevHn64osv9Ic//KHOXrCmCIXCKi21f0rW5XKoU6cUlZVVRn3Sjyf03R703R703Xphh0NV1UFVeoNK8biUnOSKiQ8VErXbhdrtQe32iLbaO3dOYdnhf5o8ebKCwaBmzZoln8+nnJwcrVixokXBCwCAtuQIh9XR41Lv73WIudDrCIeVmuBQasK//n2NkQ9zEn23C323B323R7sJX06nU1OnTtXUqVPtLgUAAABAO9Qu9nwBAAAAgN0IXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYgfAEAAACABQhfAAAAAGABwhcAAAAAWIDwBQAAAAAWIHwBAAAAgAUIXwAAAABgAcIXAAAAAFiA8AUAAAAAFiB8AQAAAIAFCF8AAAAAYAHCFwAAAABYgPAFAAAAABYwTNM07S4iFpmmqXA4OlrndDoUCoXtLqPdoe/2oO/2oO/2oO/2oO/2oO/2oO/Hz+EwZBhGkx5L+AIAAAAAC7DsEAAAAAAsQPgCAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAsQPiKYeFwWIsWLdLgwYOVlZWlW2+9VUVFRXaXFde++eYb3X///br44ot19tln68c//rG2bdtmd1ntyqeffqrs7GytXbvW7lLahXXr1umqq65S//79dfXVV+uNN96wu6S4FwgEtGDBAg0dOlTZ2dn67//+b33wwQd2lxXX8vLyNHr06FrXPv74Y40aNUoDBgzQ0KFDtWLFCpuqi1/19f1Pf/qTRo4cqezsbA0bNkyPPfaYfD6fTRXGp/r6/u9mzZqlYcOGWVhR+0L4imF5eXlatWqVHn74Ya1evVqGYWjs2LHy+/12lxa37r77bu3YsUO/+c1v9NJLL+mss87Sbbfdpk8++cTu0tqFQCCge+65R1VVVXaX0i688soruvfee3XTTTfp1Vdf1VVXXaW7775bBQUFdpcW15544gnl5+fr4Ycf1rp163TKKado7NixOnTokN2lxaWVK1dq0aJFta6VlZVpzJgx6tWrl/Lz8zVp0iQtXLhQ+fn5NlUZf+rr+7Zt2zRx4kRdccUVWrdunR544AG98cYbevDBB22qMv7U1/d/t3HjRq1Zs8bCitofwleM8vv9euaZZzRp0iQNGTJEffr00YIFC3To0CFt2LDB7vLiUlFRkf76179q9uzZGjhwoE455RTNnDlT3bp106uvvmp3ee3C4sWLlZKSYncZ7YJpmlq4cKFuvvlm3XzzzerZs6cmTJigCy64QO+9957d5cW1TZs26ZprrtFFF12knj17asaMGTpy5Ii2b99ud2lx5dChQ7r99tu1cOFC9e7du9bYiy++qMTERD3wwAM69dRTNXLkSN1yyy1atmyZTdXGj4b6vmrVKg0aNEh33HGHevbsqYsvvlhTpkzR+vXr+cHycWqo7zWKi4t133336dxzz7W4uvaF8BWjdu3apcrKSg0aNChyLS0tTX379tXWrVttrCx+derUSU8//bT69esXuWYYhkzTVHl5uY2VtQ9bt27V6tWr9dhjj9ldSruwf/9+ffnll7r22mtrXV+xYoXuvPNOm6pqHzp27Ki33npLX3zxhUKhkFavXq3ExESdeeaZdpcWVz766CN16NBB69evV1ZWVq2xbdu2KScnRy6XK3Jt0KBB+vTTT3X48GGrS40rDfX91ltv1bRp0+o8JxgM6siRI1aVGJca6rt09AduM2bM0PXXX0/4amOuxh+CaHTw4EFJ0kknnVTreteuXfXVV1/ZUVLcS0tL05AhQ2pde+ONN/TPf/5TF110kU1VtQ8VFRWaNm2aZs2aVed7Hm3js88+kyRVVVXptttu086dO/X9739f48aNYy9AG5s5c6amTJmiSy+9VE6nUw6HQwsXLlSPHj3sLi2uDBs27JjfywcPHtQZZ5xR61rXrl0lSQcOHFCXLl3avL541VDf+/btW+trv9+vZ599VmeddZY6d+5sRXlxq6G+S0eXI5aUlOjJJ5/UU089ZWFl7Q8zXzHK6/VKkhITE2tdT0pKUnV1tR0ltTvvv/++7r33Xl166aV8GG1jDzzwgAYMGFBnFgZtp+anzNOnT9c111yjZ555RhdeeKHGjx+vzZs321xdfPvkk0+UlpampUuXavXq1crNzdX06dO1a9cuu0trN3w+X73/vkri31iLBINBTZs2Tfv27dPs2bPtLieu7dq1S0uWLNG8efPqfN+j9THzFaPcbrekoz8Vqvm9dPQfBY/HY1dZ7cbGjRt1zz33KCsrS7/5zW/sLieurVu3Ttu2bdMf/vAHu0tpVxISEiRJt912m0aMGCFJOvPMM7Vz5049++yzOv/88+0sL259+eWXmjp1qlauXKmBAwdKkvr37699+/Zp8eLFWrp0qc0Vtg9ut7vOHqOa0JWcnGxHSe3KkSNH9LOf/UxbtmzRokWL6l0mh9ZRXV2te+65R+PGjVOfPn3sLqddYOYrRtUsvSouLq51vbi4WN27d7ejpHbjd7/7nSZNmqSLL75Yy5YtqxV+0fry8/N1+PDhyLHb2dnZkqTZs2fr6quvtrm6+FXz35H/XHp12mmn6YsvvrCjpHahsLBQgUBA/fv3r3U9KysrshQUba979+71/vsqSd26dbOjpHajuLhYP/nJT1RQUKBly5axsqSN7dixQ3v37tWSJUsi/8Y+9dRTOnDggLKzs7V+/Xq7S4w7zHzFqD59+ig1NVVbtmyJ7AOoqKjQzp07NWrUKJuri18vvPCCHnroIY0ePVr33nuvHA5+ftHW5s+fX+ceL5dffrkmT56sq666yqaq4l/fvn2VkpKiHTt2RGZgJGnPnj3sPWpDNT9Y2717tzIzMyPX9+zZo549e9pVVruTk5OjVatWKRQKyel0SpI2b96s3r17s9+rDZWXl+vmm2/WkSNH9MILLygjI8PukuJeZmam3nzzzVrXnn/+eb355pt6/vnn+X5vA4SvGJWYmKhRo0Zp/vz56ty5s04++WTNmzdP3bt31/Dhw+0uLy59+umneuSRRzR8+HDdeeedtU68crvdOuGEE2ysLn4d66fMXbp00cknn2xxNe2H2+3W7bffrqVLl6pbt27KzMzUa6+9pr/+9a9auXKl3eXFrczMTA0cOFDTp0/X7Nmz1b17d61bt06bN2/WCy+8YHd57cbIkSO1fPlyzZw5U7fffrsKCwv13HPPcb+pNjZ37lx9/vnnWr58uTp37qySkpLIWOfOnSNBGK3H7XbX+cFOhw4d5HK5+IFPGyF8xbDJkycrGAxq1qxZ8vl8ysnJ0YoVK9gs2Ub++Mc/KhAIaMOGDXXupTZixAg9+uijNlUGtI3x48fL4/FE7iF46qmnavHixTrvvPPsLi1uORwO5eXl6fHHH9cvfvELlZeX64wzztDKlSs1YMAAu8trN7p06aLly5drzpw5GjFihNLT0zVt2rTI/ke0vnA4rNdff12BQEA333xznfFNmzbp+9//vg2VAa3LME3TtLsIAAAAAIh3bFgBAAAAAAsQvgAAAADAAoQvAAAAALAA4QsAAAAALED4AgAAAAALEL4AAAAAwAKELwAAAACwAOELANDucctLAIAVCF8AgHZt3759+vGPf9ys54wePVqjR49u8DGLFy9WRkbG8ZQGAIgzLrsLAADATm+88YYKCgpa/XVvvPFGDR48uNVfFwAQuwhfAAC0ge7du6t79+52lwEAiCIsOwSAdm7YsGFatGiRHnvsMV1wwQXKzMzUbbfdpk8//VSSNGPGDA0bNqzWc7744gtlZGRo7dq1kqQtW7YoIyNDmzdv1ujRo5WZmamhQ4dqzZo1Ki4u1sSJE5Wdna0hQ4Zo5cqVLapxyZIlmjt3rs477zxlZ2fr5z//uSorK/X000/r4osv1jnnnKNJkyaprKws8jyfz6df//rXuvzyy9WvXz+dffbZGjNmjD7++GNJR5cGLlmyRJKUkZGhxYsXS5ICgYCWLl2qyy67TJmZmbr66quVn59fqybTNLVs2TINHTpUmZmZuummm/SPf/wjMv6fyw5Hjx6tmTNn6umnn9bQoUPVv39//ehHP9KOHTtqve6f//xn5ebmKjMzU1dccYVeffVVDR8+PFJbc3q2YMECzZ07V+eee67OPfdcTZ06tVZ/ZsyYoZtvvlmzZ8/WwIEDNWLECAWDQVVXV2vp0qW68sor1b9/f11++eV6+umnFQ6Ha72fGTNm6KmnntKFF16os88+W+PGjdPnn38eeUx1dbUefPBBXXzxxerXr5+uvPJKPfPMM816HwAQT5j5AgDot7/9rc455xzNnTtX5eXlmjNnjmbMmKHVq1c363Xuvvtu3XHHHRo3bpyefvppzZ49Wz169NBVV12lm266Sb///e81d+5cnX322crMzGzWaz/77LO64IILtGDBAv3jH//Qb37zG3300Ufq1q2bHnroIX366af61a9+pRNPPFGzZ8+WJE2bNk1bt27Vz3/+c/Xo0UOfffaZFi5cqClTpuiNN97QjTfeqIMHD+qll17S6tWrIzNV06dP16ZNmzRu3DhlZWXpnXfe0b333iun06kf/vCHkqT3339ffr9f9913n/x+vx577DH9z//8j/7yl7/I5ar/n9c//vGPOvXUUzVr1iyZpqnHHntMkydP1p/+9Cc5nU79/e9/1/jx43XJJZforrvuUlFRkWbPnq3q6upm9arGCy+8oJ49e+qRRx5RaWmpfv3rX2v//v1as2aNHI6jP3/dtm2bDMPQ4sWLVVlZKafTqbFjx2r79u2aMGGCzjzzTG3ZskWPP/64Pv/8cz300EOR19+0aZM6deqkmTNnKhwO69e//rV++tOf6rXXXlNycrLmzJmjd999V9OnT9eJJ56ot99+W4899pg6duyo3NzcFr0nAIhlhC8AgNLS0pSXlyen0ylJ+uc//6nFixfXmiVpipEjR2rMmDGSpOTkZN10003KzMzU5MmTJUn9+vXTpk2b9MEHHzQ7fKWkpGjBggVyuVy64IIL9PLLL6u4uFhr1qzRCSecoCFDhujvf/+7PvjgA0mS3+9XZWWl7rvvPl111VWSpHPPPVeVlZV69NFHVVJSUmtp4IABAyRJe/fu1WuvvaaZM2fqpz/9qSTp/PPP14EDB7Rly5ZI+EpMTNTTTz+tjh07SpKOHDmiWbNmad++ferTp0+97yEYDGrFihVKTU2VJFVWVmr69On6+OOP1a9fPy1evFinnXaalixZIsMwJEldunTR3Xff3axe1TAMQ88++6xOOOEESVLnzp01YcIEvf322xo6dGikpgcffFA9e/aUJP3lL3/R3/72N82bN0/XXXedJOnCCy+U2+3WwoULdfPNN+u0006TJFVVVSk/P189evSQJJ1yyikaMWKEXn75Zf3kJz/Re++9pwsuuEBXX321JOm8885TcnKyOnXq1KL3AwCxjvAFAFD//v0jwUtSJJB4vd5mvU52dnbk9yeeeKIkKSsrK3Kt5kP3t99+2+waMzMza80opaenKzU1NRIsJKljx47as2ePpKPhaMWKFZKk4uJiFRUVaf/+/XrrrbckHV1aWJ9t27ZJkoYPH17r+uOPP17r69NOOy0SvCTp+9//fqPv7bTTTosEL0nq1q2bpKN99vv9Kigo0IQJEyLBS5KuuOKKY86kNeaSSy6p1Z9hw4YpISFB27Zti4Qvt9sdCU+S9N5778npdEYCa43rrrtOCxcu1JYtWyLhKzs7u9Zz+/btqx/84Afatm2bfvKTn+i8887TqlWrdOjQIV1yySUaMmSIJkyY0KL3AgDxgPAFAJDH46n1dc2StH/f49MU/x4sjvXaLdWS137nnXf0yCOPaP/+/UpJSVFGRoZSUlIkHfveXt98842kozNODUlOTq71dVN61lCfv/nmG4VCoTr/vy6Xq8UzRV27dq3z/9exY0dVVFRErnXp0qVW2CsvL1enTp3qBL709HRJtcPlf75+zevVvP7MmTPVvXt3rV+/Xg8++KCko4Ht/vvvV9++fVv0ngAglnHgBgCgQYZhKBQK1bpWVVVlUzVN989//lMTJkxQnz59tGHDBn3wwQf6/e9/r0suuaTB56WlpUmSSktLa13fv39/ZFasLXTp0kUJCQk6fPhwrevhcLjZyz9r1ATJGqFQSGVlZercufMxn9OhQweVlZUpGAzWul5cXCxJtYLgf76+JH399deR109MTNS4ceP0xhtv6K233tL999+vzz//XD//+c9b9H4AINYRvgAADUpJSVFZWVmtQx9q9lVFsw8//FDV1dW68847ay2Ne+eddyR9N/NVM/tU45xzzpEkbdy4sdb1BQsW1DpsorU5nU6dffbZdf5///SnP9UJQk31zjvvyO/3R77etGmTgsGgzj///GM+59xzz1UoFNLrr79e6/r69eslfdcfSSooKKgVUj/66CN98cUXOv/88+Xz+XTFFVdETjf83ve+p5/85Ce6+uqrdfDgwRa9HwCIdSw7BAA06JJLLtHzzz+ve++9VzfeeKP27t2rZ555ptYesWh01llnyeVyad68ebr11lvl9/u1du1a/fnPf5b03exdzUzXq6++qqysLPXp00dXXnml5s+fL5/Pp7POOkvvvvuuNmzYUGffV2ubPHmyRo8ercmTJ+uGG27QgQMHtHDhQkmqtTSwqQ4ePKhx48bppz/9qb766iv95je/0UUXXaTzzjvvmM+5+OKLdd5552n27NkqLi5W37599d5772nZsmUaMWJEZL+XdHSv2tixYzVu3DhVVlZqwYIFOuOMM3TNNdcoMTFRZ511lpYsWaKEhARlZGTo008/1csvv6wrrrii+c0BgDhA+AIANOjCCy/U9OnT9fzzz+vNN9+MfKD+0Y9+ZHdpDerZs6d+/etfa8mSJRo3bpw6dOigAQMG6Pnnn9fo0aO1bds2ZWRk6PLLL9crr7yiGTNm6IYbbtADDzygefPmacmSJXr++edVVlam3r176/HHH9eVV17ZpjUPHDhQixcv1sKFCzV+/HidfPLJuu+++zRlypTIXrXmuPrqq5WWlqaf/exnSk5O1ogRIzRlypQGn2MYhp566iktWrRIv/3tb1VaWqrvf//7mjJlSuQky3+vd9CgQZo5c6akowd6TJs2TYmJiZKkX/7yl3r88cf1zDPPqKSkRF26dNENN9ygu+66q9nvBQDigWEea8cxAACw1KZNm9S9e3edddZZkWt79+7VNddco7y8PF166aVNfq1hw4bp3HPP1aOPPtoWpWr06NGSpOeff75NXh8A4hEzXwAAW4TD4SadptjSY9Zj0bvvvqvXX39d99xzj3r37q2DBw/qiSee0CmnnKKLLrqIngFAjOO/zgAAW9x77716+eWXG33cpk2bIvfQinfTp0+X2+3WE088oeLiYnXs2FGDBw/Wz3/+cyUlJWnGjBlN7hkAIPqw7BAAYIsvvviiSUeoZ2RkRPYQtXf0DABiG+ELAAAAACzAfb4AAAAAwAKELwAAAACwAOELAAAAACxA+AIAAAAACxC+AAAAAMAChC8AAAAAsADhCwAAAAAs8P8B4BO28saqI/kAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.scatterplot(data=df_date_sorted, x='num_matching_props', y='date_range')\n",
"axes.set_ylabel('date_range [days]')"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [],
"source": [
"if SAVE_FIGS:\n",
" fig.savefig('VorgangsID-duplicates_scatter.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 250,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" num_matching_props | \n",
" date_range | \n",
"
\n",
" \n",
" \n",
" \n",
" | 420 | \n",
" 105449 | \n",
" 2 | \n",
" 1335 | \n",
"
\n",
" \n",
" | 417 | \n",
" 105196 | \n",
" 1 | \n",
" 1322 | \n",
"
\n",
" \n",
" | 418 | \n",
" 105335 | \n",
" 2 | \n",
" 1309 | \n",
"
\n",
" \n",
" | 419 | \n",
" 105446 | \n",
" 1 | \n",
" 1217 | \n",
"
\n",
" \n",
" | 278 | \n",
" 23040 | \n",
" 1 | \n",
" 1113 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 157 | \n",
" 3842 | \n",
" 14 | \n",
" 0 | \n",
"
\n",
" \n",
" | 156 | \n",
" 3832 | \n",
" 14 | \n",
" 0 | \n",
"
\n",
" \n",
" | 155 | \n",
" 3832 | \n",
" 14 | \n",
" 0 | \n",
"
\n",
" \n",
" | 154 | \n",
" 3832 | \n",
" 14 | \n",
" 0 | \n",
"
\n",
" \n",
" | 492 | \n",
" 261775 | \n",
" 14 | \n",
" 0 | \n",
"
\n",
" \n",
"
\n",
"
493 rows × 3 columns
\n",
"
"
],
"text/plain": [
" VorgangsID num_matching_props date_range\n",
"420 105449 2 1335\n",
"417 105196 1 1322\n",
"418 105335 2 1309\n",
"419 105446 1 1217\n",
"278 23040 1 1113\n",
".. ... ... ...\n",
"157 3842 14 0\n",
"156 3832 14 0\n",
"155 3832 14 0\n",
"154 3832 14 0\n",
"492 261775 14 0\n",
"\n",
"[493 rows x 3 columns]"
]
},
"execution_count": 250,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_date_sorted"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"**Mean date range per number of matching properties**"
]
},
{
"cell_type": "code",
"execution_count": 251,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'mean date_range [days]')"
]
},
"execution_count": 251,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAKsCAYAAAATNwdqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRmUlEQVR4nO3de3zP9f//8fv7vTXDzGaxiYz4ZE3mkEnlOIf6kL7NSvUxCRGJnIYcQkj9yJxyPqZPkSaV8vl8pIMOckjp4FCEnGaa2Zx2fv/+cPH+fN6R9p73+/n2fu92vVxcLvZ6vd9vj+fStpvX4W2x2Ww2AQAAAADcyurpAQAAAACgJCC+AAAAAMAA4gsAAAAADCC+AAAAAMAA4gsAAAAADCC+AAAAAMAA4gsAAAAADCC+AAAAAMAA4gsAAAAADPD39AB/NGfOHG3evFkrVqywb9u9e7cmTZqkH3/8USEhIeratat69uxp319YWKjZs2dr9erVysrK0h133KGxY8cqMjKyyK/hLJvNpsJCW7GfDwAAAMD7Wa0WWSyWIj32uoqvZcuWaebMmYqNjbVvy8jIUPfu3dWmTRuNHz9e3333ncaPH6+QkBAlJCRIuhhsK1eu1OTJkxUeHq4pU6aoV69eWrdunQICAor0Gs4qLLTp1KlzLlk3AAAAAO9UoUJZ+fl5UXydOHFCo0aN0jfffKMaNWo47HvrrbcUEBCgcePGyd/fXzVr1tShQ4e0cOFCJSQkKDc3V0uWLFFSUpJatGghSUpOTlazZs20YcMGdejQ4S9fAwAAAADc7bq45uunn35S+fLl9d5776levXoO+7Zv367Y2Fj5+/+3E5s0aaIDBw4oPT1de/bs0blz59SkSRP7/uDgYEVHR2vbtm1Feg0AAAAAcLfr4shXXFyc4uLirrgvNTVVt956q8O2SpUqSZKOHTum1NRUSVLlypUve8zx48eL9BphYWHXvggAAAAAuIrrIr6uJjs7WwEBAQ7bSpUqJUnKycnRhQsXJOmKj8nMzCzSaxSXv/91ceAQAAAAgBe47uMrMDBQubm5DtsuBVOZMmUUGBgoScrNzbX//tJjSpcuXaTXKA6r1aLQ0LLFei4AAACAkue6j6+IiAilpaU5bLv0cXh4uPLz8+3bqlWr5vCYqKioIr1GcRQW2pSVdb5YzwUAAADgG4KDS8vPr2hnxF338RUbG6uVK1eqoKBAfn5+kqTNmzerRo0aCgsLU7ly5RQUFKQtW7bY4ysrK0u7du1SYmJikV6juPLzC69xdQAAAABKiuv+oqWEhASdPXtWo0aN0r59+7RmzRotX75cTz31lKSL13olJiZq6tSp2rhxo/bs2aNBgwYpIiJCbdu2LdJrAAAAAIC7XfdHvsLCwrRo0SJNmjRJ8fHxqlixooYNG6b4+Hj7YwYMGKD8/HyNHj1a2dnZio2N1eLFi+032SjKawAAAACAO1lsNpvN00N4o4KCQp06dc7TYwAAAADwoAoVyhb5mq/r/rRDAAAAAPAFxBcAAAAAGEB8AQAAAIABxBcAAAAAGEB8AQAAAIABxBcAAAAAGEB8AQAAAIABxBcAAAAAGEB8AQAAAIABxBcAAAAAGEB8AQAAAIABxBcAAAAAGEB8AQAAAIABxBcAAAAAGEB8AQAAAIABxBcAAAAAGODv6QEAb2G1WmS1Wjw9RrEVFtpUWGgr8uNL2noBAADcjfgCisBqtSg0tLSsVj9Pj1JshYUFysi4UKQgKWnrBQAAMIH4Aorg4lEgP+36ZIrOnT7s6XGcVjbkZkW3SpLVailyfFmtftq06SWdzvzNwISuFVK+mpo3H1Hk9QIAAJhAfAFOOHf6sM6m7/f0GMaczvxNp07t8/QYAAAAPoEbbgAAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABhAfAEAAACAAcQXAAAAABjg7+kB4N2sVousVounxyiWwkKbCgttnh4DAAAAJQTxhWKzWi2qEFpaFqufp0cpFlthgU5lXCDAAAAAYATxhWKzWi2yWP2U/p8Fys845ulxnOIfepPC2vWW1WohvgAAAGAE8YVrlp9xTHknf/P0GAAAAMB1zStuuJGXl6fk5GS1bNlSDRo00D/+8Q/t2LHDvn/37t1KTExU/fr11bJlSy1evNjh+YWFhZo5c6aaNWumevXqqUePHjp06JDpZQAAAAAowbwivubOnauUlBRNnDhRa9eu1S233KJevXrpxIkTysjIUPfu3VW9enWlpKSof//+mjFjhlJSUuzPnzNnjlauXKmJEydq1apVslgs6tWrl3Jzcz24KgAAAAAliVfE18aNG3X//feradOmioyM1IgRI3T27Fl99913euuttxQQEKBx48apZs2aSkhI0BNPPKGFCxdKknJzc7VkyRL1799fLVq0UFRUlJKTk3XixAlt2LDBwysDAAAAUFJ4RXyFhITok08+0ZEjR1RQUKBVq1YpICBAt912m7Zv367Y2Fj5+//38rUmTZrowIEDSk9P1549e3Tu3Dk1adLEvj84OFjR0dHatm2bJ5YDAAAAoATyihtujBo1SoMGDVLr1q3l5+cnq9WqGTNmqFq1akpNTdWtt97q8PhKlSpJko4dO6bU1FRJUuXKlS97zPHjx80sAAAAAECJ5xXxtX//fgUHB+vVV19VeHi4Vq9ereHDh+v1119Xdna2AgICHB5fqlQpSVJOTo4uXLggSVd8TGZm5jXN5e/vFQcO3cbPz/vXX9Q1+MJaJdYLAADgSdd9fB09elRJSUlatmyZGjVqJEmqW7eu9u3bp1mzZikwMPCyG2fk5ORIksqUKaPAwEBJF6/9uvT7S48pXbp0seeyWi0KDS1b7Ofj+hAcXPy/A96I9QIAAHjOdR9f33//vfLy8lS3bl2H7fXq1dOmTZt00003KS0tzWHfpY/Dw8OVn59v31atWjWHx0RFRRV7rsJCm7Kyzhf7+b7Az8/q9T/cZmVdUEFB4V8+zhfWKrFeAAAAVwsOLl3ks22u+/i6dK3W3r17FRMTY9/+888/KzIyUvXr19fKlStVUFAgPz8/SdLmzZtVo0YNhYWFqVy5cgoKCtKWLVvs8ZWVlaVdu3YpMTHxmmbLz+eHOm9XUFBYov47sl4AAADPue4viIiJiVGjRo00fPhwff311zp48KCmT5+uzZs3q3fv3kpISNDZs2c1atQo7du3T2vWrNHy5cv11FNPSbp4rVdiYqKmTp2qjRs3as+ePRo0aJAiIiLUtm1bD68OAAAAQElx3R/5slqtmjNnjqZPn67nnntOmZmZuvXWW7Vs2TLVr19fkrRo0SJNmjRJ8fHxqlixooYNG6b4+Hj7awwYMED5+fkaPXq0srOzFRsbq8WLF192Ew4AAAAAcJfrPr4kqXz58ho7dqzGjh17xf0xMTFatWrVnz7fz89PSUlJSkpKcteIAAAAAHBV1/1phwAAAADgC4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADCA+AIAAAAAA4gvAAAAADDAvygPuu2224r14haLRbt27SrWcwEAAADAlxQpvmw2mx566CFFREQU+YWPHz+uNWvWFHswAAAAAPAlRYovSercubNiYmKK/MLfffedUlJSijUUAAAAAPiaIl3ztXTpUtWsWdOpF65Vq5aWLl1arKEAAAAAwNcU6cjXXXfd5fDx4cOHlZOTo1q1aikzM1PTp0/X8ePHdd999+nBBx+UJAUFBV32PAAAAAAoqZy+2+GmTZv097//3X5K4bhx4/TWW2/pxIkTeu6557R69WqXDwkAAAAA3s7p+JozZ46aNm2qfv366cyZM9qwYYN69+6td955R71799Zrr73mjjkBAAAAwKs5HV979uxRt27dFBQUpM8//1wFBQW69957JUn33HOPDh065PIhAQAAAMDbOR1fpUqVUn5+viTp888/V1hYmKKioiRJv//+u4KDg107IQAAAAD4gCLfav6SO+64Q0uWLFFmZqbWr1+vTp06SZJ+/PFHzZ49Ww0bNnT5kAAAAADg7Zw+8vXcc8/pxIkTGjp0qKpWraq+fftKkp566inl5uZq6NChLh8SAAAAALyd00e+br75Zn3wwQdKT0/XjTfeaN/+6quvKjo6WgEBAS4dEAAAAAB8gdNHvrp166b3339fQUFBDtvr169PeAEAAADAn3A6vvz9/fXcc8+padOmGjNmjL799lt3zAUAAAAAPsXp0w4XL16stLQ0vfvuu3r33Xe1evVqRUZGqlOnTnrwwQcVHh7ujjkBAAAAwKs5feRLkipVqqRevXpp3bp1euuttxQXF6eUlBTFxcXpySef1EcffSSbzebqWQEAAADAaxUrvv5Xfn6+8vPzlZeXJ0nKyMjQwIED1aFDB+3du/eaBwQAAAAAX+D0aYeSdPjwYb377rt67733dPjwYd1888165JFHFB8fr/DwcJ04cUK9evXS0KFD9f7777t6ZgAAAADwOk7H16OPPqqdO3eqVKlSateunSZOnKjGjRs7PCY8PFzt2rXTsmXLXDUnAAAAAHg1p+MrPz9fY8eO1f3333/Z7eb/V5s2bdSsWbNrGg4AAAAAfIXT8fX2229fdb/NZpPFYlFUVFSxhwIAAAAAX1Osa74++OADbd26VXl5efa7GtpsNp0/f17fffedNm3a5NIhAQAAAMDbOR1fs2fP1uzZs1WuXDnl5+frhhtukL+/v06dOiWr1aqHH37YHXMCAAAAgFdz+lbz77zzjh544AFt3bpVTzzxhFq1aqWvvvpKb7/9tkJCQvS3v/3NHXMCAAAAgFdzOr5OnDih//u//5PFYlGdOnX07bffSpJuv/129enTR6tXr3b5kJK0du1atW/fXnXr1lWHDh20fv16+77du3crMTFR9evXV8uWLbV48WKH5xYWFmrmzJlq1qyZ6tWrpx49eujQoUNumRMAAAAArsTp+CpTpowsFoskqXr16jpy5Iiys7MlSbfddpuOHDni2gklvfvuuxo5cqQeeeQRrVu3Tu3bt9fgwYP17bffKiMjQ927d1f16tWVkpKi/v37a8aMGUpJSbE/f86cOVq5cqUmTpyoVatWyWKxqFevXsrNzXX5rFarRf7+Vq/9ZbVaXP45AQAAAFCMa77q1q2rd955R3fffbeqVasmPz8/ffXVV4qLi9P+/fsVEBDg0gFtNptmzJihbt26qVu3bpKkfv36aceOHdq6dau2bt2qgIAAjRs3Tv7+/qpZs6YOHTqkhQsXKiEhQbm5uVqyZImSkpLUokULSVJycrKaNWumDRs2qEOHDi6b1Wq1qEJoGVmsTjftdcNWWKhTGedVWGjz9CgAAACAT3E6vvr06aPu3bvrzJkzmjdvnh544AGNGDFCd955p7744gu1adPGpQP++uuvOnr0qDp27Oiw/dKphb169VJsbKz8/f+7lCZNmmj+/PlKT0/X0aNHde7cOTVp0sS+Pzg4WNHR0dq2bZvL48titSrroy9UkJHlstc1xS80WMFtmspqtRBfAAAAgIs5HV+xsbF6++23tXfvXknS888/L6vVqh07dui+++7TiBEjXDrgwYMHJUnnz59Xz549tWvXLlWtWlV9+/ZVXFycUlNTdeuttzo8p1KlSpKkY8eOKTU1VZJUuXLlyx5z/Phxl856SUFGlvJ/P+WW1wYAAADgnYr1Pl9RUVH2N1EuVaqUJkyY4NKh/tfZs2clScOHD9czzzyjoUOH6t///reefvppLV26VNnZ2Zed6liqVClJUk5Oji5cuCBJV3xMZmbmNc3m7+94eqGfn/eebvi/iroOX1hvSVqrxHoBAAA8qUjxtW3bNqdeNDY2tljDXMkNN9wgSerZs6fi4+MlXbyxx65du7R06VIFBgZeduOMnJwcSRdvDhIYGChJys3Ntf/+0mNKly5d7LmsVotCQ8sW+/nXs+Dg4n9evE1JWqvEegEAADypSPHVtWtX+x0O/8hmu3ht0P/u3717twtGuygiIkKSLju1sFatWvr0009VpUoVpaWlOey79HF4eLjy8/Pt26pVq+bwmEtH74qjsNCmrKzzDtv8/Kw+8cNeVtYFFRQU/uXjfGG9JWmtEusFAABwteDg0kU+26ZI8fXaa6/Zf3/s2DGNGTNGCQkJ+vvf/66KFSvq9OnT+vjjj7Vy5Uq98MILxZv6T0RHR6ts2bLauXOnGjVqZN/+888/q1q1amrYsKFWrlypgoIC+fn5SZI2b96sGjVqKCwsTOXKlVNQUJC2bNlij6+srCzt2rVLiYmJ1zRbfr5v/lBXUFDos2v7o5K0Von1AgAAeFKR4qtx48b233ft2lVPPPGEhgwZ4vCYhg0bKjAwUEuXLlX79u1dNmBgYKCefPJJvfrqqwoPD1dMTIw++OADffnll1q2bJlq1aqlRYsWadSoUXryySf1/fffa/ny5Ro/fryki9d6JSYmaurUqapQoYKqVKmiKVOmKCIiQm3btnXZnAAAAABwNU7fcOP7779X3759r7ivQYMGWrhw4TUP9UdPP/20SpcureTkZJ04cUI1a9bUrFmzdOedd0qSFi1apEmTJik+Pl4VK1bUsGHD7NeHSdKAAQOUn5+v0aNHKzs7W7GxsVq8eLHL35MMAAAAAP6M0/EVERGhTz/9VHffffdl+/71r385XFflSt27d1f37t2vuC8mJkarVq360+f6+fkpKSlJSUlJbpkNAAAAAP6K0/HVvXt3jRs3TidPnlRcXJwqVKig33//Xf/617/06aefatq0ae6YEwAAAAC8mtPx9eijjyo/P19z587V+vXr7dsrV66sqVOn6u9//7tLBwQAAAAAX1CsN1lOTExUYmKifv31V2VmZio0NFTVq1d38WgAAAAA4DuKdEP6li1bas+ePZdtv+WWW9SgQYMrhtfu3bvVsmXLa50PAAAAAHxCkY58paam6ujRowoODi7yCx89elQnTpwo9mAAAAAA4EuKfNrhM88849QL22w2WSwWpwcCAAAAAF9UpPiaPHmyu+cAAAAAAJ9WpPj63zcsBgAAAAA4r0g33AAAAAAAXBviCwAAAAAMIL4AAAAAwADiCwAAAAAMuKb4OnPmjPbv36/c3FwVFBS4aiYAAAAA8DnFiq8tW7bo4YcfVuPGjdWxY0f98ssvGjJkiF566SVXzwcAAAAAPsHp+Nq8ebN69uypwMBADR06VDabTZIUHR2t1157TUuXLnX5kAAAAADg7ZyOr+nTp6t169ZasWKFunXrZo+v3r1768knn9Tq1atdPiQAAAAAeDun42v37t1KSEiQJFksFod999xzj44ePeqayQAAAADAhzgdX+XKldPJkyevuO/48eMqV67cNQ8FAAAAAL7G6fhq3bq1kpOT9cMPP9i3WSwWpaamat68eWrZsqUr5wMAAAAAn+Dv7BOGDBminTt3qnPnzrrxxhslSYMHD1ZqaqoqV66swYMHu3xIAAAAAPB2TsdX+fLltXr1aq1du1Zff/21Tp8+rXLlyqlr167q1KmTSpcu7Y45AQAAAMCrOR1fkhQQEKDOnTurc+fOrp4HAAAAAHyS0/E1e/bsP91ntVpVpkwZRUZG6p577lFAQMA1DQcAAAAAvsLp+HrvvfeUmpqq3Nxc+fv7KyQkRKdPn1Z+fr4sFov9fb9q1aql1157TRUqVHD50AAAAADgbZy+2+Gzzz6rgIAATZs2TTt37tQXX3yhH374QbNnz1ZoaKimT5+u999/X5I0bdo0lw8MAAAAAN7I6SNfs2bN0sCBA9W+fXv7NovFojZt2uj333/XjBkztH79evXp00cvv/yyS4cFAAAAAG/l9JGv48ePKzIy8or7qlSpoqNHj0qSIiIilJmZeW3TAQAAAICPcDq+atWqpdWrV19x39tvv60aNWpIkg4ePKhKlSpd23QAAAAA4COcPu2wf//+6tevnx588EHde++9CgsLU3p6ujZs2KC9e/dq5syZ2rVrl6ZMmaKEhAR3zAwAAAAAXsfp+GrZsqUWL16sWbNmafbs2SooKNANN9yghg0bavny5WrUqJE+/vhjdejQQQMHDnTDyAAAAADgfYr1JstNmjRRkyZNlJubq8zMTIWFhclq/e8ZjHFxcYqLi3PZkAAAAADg7YoVXzabTbt379b58+dls9l08OBBh/2xsbGumA0AAAAAfIbT8fX999/r2WefVWpqqn2bzWazv8GyxWLR7t27XTokAAAAAHg7p+PrxRdflL+/vyZPnqyIiAiH0w0BAAAAAFfmdHzt2rVL06ZNU5s2bdwxDwAAAAD4JKcPW/3x5hoAAAAAgL/mdEX94x//0IIFC3T+/Hl3zAMAAAAAPsnp0w4PHTqk/fv365577tHf/vY3BQYGOuy3WCxavny5ywYEAAAAAF9QrPiKioqyf2yz2Rz2//FjAAAAAEAx4mvFihXumAMAAAAAfJpL75xx/vx5bdq0yZUvCQAAAAA+wekjX0ePHtXzzz+vbdu2KS8v74qP4U2WAQAAAMCR0/E1efJkffvtt+rcubN27Nih0qVLq379+vryyy/1888/a9asWe6YEwAAAAC8mtOnHW7btk0DBw7U6NGjlZCQoICAACUlJSklJUWxsbHauHGjO+YEAAAAAK/mdHydO3dOt912mySpZs2a9lMM/fz81KVLF3399deunRAAAAAAfIDT8VWpUiWdPHlSkhQZGanMzEylpaVJksqXL6/09HTXTggAAAAAPsDp+GrRooVmzJihHTt2qHLlyoqIiNCSJUt09uxZpaSkKDw83B1zAgAAAIBXczq+BgwYoODgYM2cOVOSNGjQIL322muKjY3V+++/r+7du7t8SAAAAADwdk7f7bB8+fJavXq1/VTDBx54QDfddJO+++47xcTEqHHjxi4fEgAAAAC8ndPx9dBDD6lfv35q3bq1fVujRo3UqFEjlw4GAAAAAL7E6dMODx8+rKCgIHfMAgAAAAA+y+n46tChg+bPn6/Dhw+7Yx4AAAAA8ElOn3Z48OBBbd++Xe3atVNgYKAqVKjgsN9iseijjz5y2YAAAAAA4Aucjq/KlSurY8eO7pgFAAAAAHyW0/E1efLkIj927dq1atWqlcqXL+/sHwMAAAAAPsXpa76KqqCgQM8995yOHDnirj8CAAAAALyG2+JLkmw2mztfHgAAAAC8hlvjCwAAAABwEfEFAAAAAAYQXwAAAABgAPEFAAAAAAYQXwAAAABgAPEFAAAAAAYQXwAAAABgwDXF15kzZ7R//37l5uaqoKDAYZ+fn58mT56sqlWrXtOAAAAAAOAL/IvzpC1btmjq1Kn68ccfZbFYtHr1ai1cuFAREREaMWKE/XHx8fEuGxQAAAAAvJnTR742b96snj17KjAwUEOHDpXNZpMkRUdH67XXXtPSpUtdPiQAAAAAeDun42v69Olq3bq1VqxYoW7dutnjq3fv3nryySe1evVqlw8JAAAAAN7O6fjavXu3EhISJEkWi8Vh3z333KOjR4+6ZjIAAAAA8CFOx1e5cuV08uTJK+47fvy4ypUrd81DAQAAAICvcTq+WrdureTkZP3www/2bRaLRampqZo3b55atmzpyvkAAAAAwCc4fbfDIUOGaOfOnercubNuvPFGSdLgwYOVmpqqypUra/DgwS4fEgAAAAC8ndPxVb58ea1evVpr167V119/rdOnT6tcuXLq2rWrOnXqpNKlS7tjTgAAAADwak7H17Zt2xQdHa3OnTurc+fODvuysrL08ccfq0OHDi4bEAAAAAB8gdPXfD3++OPav3//Ffft2rVLzz333DUPBQAAAAC+pkhHvoYPH67jx49Lkmw2m8aNG6egoKDLHnfw4EH7dWAAAAAAgP8q0pGve++9Vzabzf6GypLsH1/6ZbVaVb9+fU2ePNltwwIAAACAtyrSka+4uDjFxcVJkrp27apx48apZs2abh0MAAAAAHyJ09d8rVix4qrh9WfXgwEAAABASeb03Q4zMzP1yiuvaNu2bcrLy7Ofimiz2XT+/HllZmZq9+7dLh8UAAAAALyZ00e+XnzxRaWkpKh69ery8/NTuXLlVLduXeXl5SkrK0svvPCCO+YEAAAAAK/mdHx9/vnneuaZZzR37lw9+uijioiI0PTp0/Wvf/1LtWvX1r59+9wxJwAAAAB4NafjKysrS3fccYck6W9/+5t+/PFHSVLZsmXVo0cPffrppy4dEAAAAAB8gdPxFRoaqjNnzkiSIiMjlZ6eroyMDElSeHi4Tpw44doJAQAAAMAHOB1fd911l+bNm6cjR46oatWqCgkJ0Zo1ayRJn3zyiUJDQ10+JAAAAAB4O6fj69lnn1V6erpGjBghi8Wi3r17a8qUKWrcuLGWLVumhIQEd8wJAAAAAF7N6VvNV6lSRR9++KEOHjwoSerevbtuvPFG7dixQzExMYqPj3f1jAAAAADg9ZyOL0kKDAxUVFSU/eOOHTuqY8eOLhsKAAAAAHxNkeJr9uzZTr3oM888U6xhAAAAAMBXFSu+LBaLbDab/Pz8FBoaqszMTOXl5emGG25Q+fLliS8AAAAA+IMixdeePXvsv9+8ebMGDx6sMWPG6N5775Wfn58kadOmTRo1apRGjBjhnkkBAAAAwIs5fbfDF154Qc8++6zat29vDy9Jat68uQYOHKjk5GSXDggAAAAAvsDp+Dp+/LgqV658xX0VKlRQenr6NQ8FAAAAAL7G6fiKiorS66+/rry8PIftOTk5WrRokWJiYlw2HAAAAAD4CqdvNT948GD17NlTbdu2VbNmzVShQgX9/vvv+uyzz3ThwgW9/vrr7pgTAAAAALya0/HVuHFjrVy5UvPnz9cnn3yi06dPKzQ0VHfffbf69eunyMhId8wJAAAAAF6tWG+yXKdOHc2cOdPVswAAAACAz3L6mi8AAAAAgPOILwAAAAAwgPgCAAAAAAOILwAAAAAwgPgCAAAAAAOKdbfDL7/8Up988okuXLigwsJCh30Wi0UvvviiS4YDAAAAAF/hdHwtWrRIU6dOValSpVShQgVZLBaH/X/8GAAAAABQjPj65z//qY4dO2rSpEkKCAhwx0wAAAAA4HOcvuYrPT1dDz30EOEFAAAAAE5wOr6io6P1yy+/uGMWAAAAAPBZTp92OHLkSA0cOFBlypRRvXr1VLp06csec9NNN7lkOAAAAADwFU7H12OPPabCwkKNHDnyT2+usXv37mseDAAAAAB8idPxNXHiRHfMAQAAAAA+zen4io+Pd8ccRXbgwAF16tRJY8aMUadOnSRdPNI2adIk/fjjjwoJCVHXrl3Vs2dP+3MKCws1e/ZsrV69WllZWbrjjjs0duxYRUZGemoZAAAAAEqYYr3Jcmpqqnbs2KHc3Fz7tsLCQl24cEHbt29XcnKyywb8X3l5eRo6dKjOnz9v35aRkaHu3burTZs2Gj9+vL777juNHz9eISEhSkhIkCTNmTNHK1eu1OTJkxUeHq4pU6aoV69eWrduHXdtBAAAAGCE0/G1fv16JSUlKT8/337Nl81ms//+lltuce2E/2PWrFkqW7asw7a33npLAQEBGjdunPz9/VWzZk0dOnRICxcuVEJCgnJzc7VkyRIlJSWpRYsWkqTk5GQ1a9ZMGzZsUIcOHdw2LwAAAABc4vSt5ufPn6/o6GitWbNGnTp10gMPPKAPPvhASUlJ8vf318iRI90xp7Zt26ZVq1bp5Zdfdti+fft2xcbGyt//vx3ZpEkTHThwQOnp6dqzZ4/OnTunJk2a2PcHBwcrOjpa27Ztc8usAAAAAPBHTsfXgQMH1KtXL0VHR+uuu+7S3r17VbNmTfXo0UOPP/645s2b5/Ihs7KyNGzYMI0ePVqVK1d22JeamqqIiAiHbZUqVZIkHTt2TKmpqZJ02fMqVaqk48ePu3xWAAAAALgSp087tFqtCgkJkSRVr15dv/76qwoLC2W1WtWsWTOtWbPG1TNq3Lhxql+/vjp27HjZvuzs7Muu2ypVqpQkKScnRxcuXJCkKz4mMzPzmuby93dsVz8/p1v2ulTUdfjCekvSWiXWCwAA4ElOx9ctt9yib775RrGxsapevbry8vK0e/du1alTR1lZWQ434XCFtWvXavv27Xr//fevuD8wMPCyPzMnJ0eSVKZMGQUGBkqScnNz7b+/9JgrvUF0UVmtFoWGlv3rB3qh4ODif168TUlaq8R6AQAAPMnp+Hr00Uc1duxYnT9/XoMHD9add96pkSNH6qGHHtLrr7+uOnXquHTAlJQUpaenq2XLlg7bx44dq8WLF+umm25SWlqaw75LH4eHhys/P9++rVq1ag6PiYqKKvZchYU2ZWWdd9jm52f1iR/2srIuqKCg8C8f5wvrLUlrlVgvAACAqwUHly7y2TZOx9fDDz+s3NxcHTlyRJL0wgsvqHfv3po0aZKqVKmiUaNGOfuSVzV16lRlZ2c7bGvXrp0GDBig9u3b64MPPtDKlStVUFAgPz8/SdLmzZtVo0YNhYWFqVy5cgoKCtKWLVvs8ZWVlaVdu3YpMTHxmmbLz/fNH+oKCgp9dm1/VJLWKrFeAAAATyrW+3x16dLF/vtq1app/fr1ysjIUIUKFVw22CXh4eFX3B4WFqYqVaooISFBixYt0qhRo/Tkk0/q+++/1/LlyzV+/HhJF6/1SkxM1NSpU1WhQgVVqVJFU6ZMUUREhNq2bevyeQEAAADgSooVX5K0f/9+ffnll0pLS1PXrl11+PBhBQQEKCgoyJXz/aWwsDAtWrRIkyZNUnx8vCpWrKhhw4YpPj7e/pgBAwYoPz9fo0ePVnZ2tmJjY7V48WLeYBkAAACAMU7HV0FBgcaOHauUlBT7myv//e9/16uvvqrffvtN//znPy+79bur7d271+HjmJgYrVq16k8f7+fnp6SkJCUlJbl1LgAAAAD4M07fh3nu3Ll6//33NXHiRH355Zey2WySpOHDh8tmsyk5OdnlQwIAAACAt3M6vlJSUjRgwAAlJCTY3+9LkqKiojRgwAB9+eWXrpwPAAAAAHyC0/H1+++/67bbbrvivvDwcGVlZV3zUAAAAADga5yOr8jISH322WdX3Ld161ZFRkZe81AAAAAA4GucvuFGt27d9PzzzysvL0+tWrWSxWLRoUOHtGXLFi1ZskQjRoxwx5wAAAAA4NWK9SbLp06d0rx58/Tmm2/KZrNp8ODBuuGGG/Tkk0/qsccec8ecAAAAAODVivU+X0899ZS6dOmiHTt2KDMzU8HBwapXr57DDTgAAAAAAP9V7DdZDgoKUvPmzV05CwAAAAD4LKfjKzMzUzNnztSOHTuueGdDi8Wijz76yCXDAQAAAICvcDq+xowZo40bN6pZs2aKiopyx0wAAAAA4HOcjq+vvvpKw4YNU7du3dwxDwAAAAD4JKff56ts2bKqUaOGO2YBAAAAAJ/ldHx16dJFS5cu1blz59wxDwAAAAD4JKdPO0xMTNQ777yjFi1a6JZbblFgYKDDfovFouXLl7tsQAAAAADwBU4f+Xr++ed14MABVaxYUaVKlZLNZnP4VVhY6I45AQAAAMCrOX3k6+OPP9bgwYPVu3dvd8wDAAAAAD7J6SNfAQEBqlu3rjtmAQAAAACf5XR8Pfjgg3rzzTc5vRAAAAAAnOD0aYdBQUH66quvFBcXp5iYGJUtW9Zhv8Vi0YsvvuiyAQEAAADAFzgdX2vWrFFwcLAk6ccff7xsv8ViufapAAAAAMDHFOuGGwAAAAAA5zh9zRcAAAAAwHnEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAHEFwAAAAAYQHwBAAAAgAFeEV+nT5/W888/r+bNm6thw4Z67LHHtH37dvv+3bt3KzExUfXr11fLli21ePFih+cXFhZq5syZatasmerVq6cePXro0KFDppcBAAAAoATzivgaPHiwdu7cqWnTpuntt99WnTp11LNnT+3fv18ZGRnq3r27qlevrpSUFPXv318zZsxQSkqK/flz5szRypUrNXHiRK1atUoWi0W9evVSbm6uB1cFAAAAoCTx9/QAf+XQoUP68ssv9eabb6phw4aSpFGjRmnTpk1at26dAgMDFRAQoHHjxsnf3181a9bUoUOHtHDhQiUkJCg3N1dLlixRUlKSWrRoIUlKTk5Ws2bNtGHDBnXo0MGTywMAAABQQlz3R75CQ0O1YMEC3X777fZtFotFNptNmZmZ2r59u2JjY+Xv/9+ObNKkiQ4cOKD09HTt2bNH586dU5MmTez7g4ODFR0drW3bthldCwAAAICS67qPr+DgYLVo0UIBAQH2bevXr9dvv/2mpk2bKjU1VREREQ7PqVSpkiTp2LFjSk1NlSRVrlz5ssccP37czdMDAAAAwEXX/WmHf/TNN99o5MiRat26teLi4jR58mSHMJOkUqVKSZJycnJ04cIFSbriYzIzM69pFn9/x3b187vuW7ZIiroOX1hvSVqrxHoBAAA8yavi66OPPtLQoUNVr149TZs2TZIUGBh42Y0zcnJyJEllypRRYGCgJCk3N9f++0uPKV26dLFnsVotCg0tW+znX8+Cg4v/efE2JWmtEusFAADwJK+Jr9dff12TJk1S27ZtNXXqVPuRrIiICKWlpTk89tLH4eHhys/Pt2+rVq2aw2OioqKKPU9hoU1ZWecdtvn5WX3ih72srAsqKCj8y8f5wnpL0lol1gsAAOBqwcGli3y2jVfE1xtvvKEJEyaoa9euGjlypKzW/y4uNjZWK1euVEFBgfz8/CRJmzdvVo0aNRQWFqZy5copKChIW7ZsscdXVlaWdu3apcTExGuaKz/fN3+oKygo9Nm1/VFJWqvEegEAADzpur8g4sCBA3rxxRfVtm1bPfXUU0pPT9fJkyd18uRJnTlzRgkJCTp79qxGjRqlffv2ac2aNVq+fLmeeuopSRev9UpMTNTUqVO1ceNG7dmzR4MGDVJERITatm3r4dUBAAAAKCmu+yNf//73v5WXl6cNGzZow4YNDvvi4+P10ksvadGiRZo0aZLi4+NVsWJFDRs2TPHx8fbHDRgwQPn5+Ro9erSys7MVGxurxYsXX3YTDgAAAABwl+s+vvr06aM+ffpc9TExMTFatWrVn+738/NTUlKSkpKSXD0eAAAAABTJdX/aIQAAAAD4AuILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAzw9/QAAOBpVqtFVqvF02MUW2GhTYWFNk+PAQAA/gLxBaBEs1otCgktLT+rn6dHKbaCwgKdzrhAgIF/SACA6xzxBaBEs1ot8rP66a0tL+tk1mFPj+O0isE3q/Odw2W1WvihtYS7+A8JZeRn9d4rCgoKC3U64zx/lwH4rBITX4WFhZo9e7ZWr16trKws3XHHHRo7dqwiIyM9PRqA68DJrMM6dnqfp8cAiu3iPyRYNXXLNh05c8bT4zitarlyGnpnLP+QAMCnlZj4mjNnjlauXKnJkycrPDxcU6ZMUa9evbRu3ToFBAR4ejwAAFziyJkz2n8609NjAACuwHvPTXBCbm6ulixZov79+6tFixaKiopScnKyTpw4oQ0bNnh6PAAAAAAlQIk48rVnzx6dO3dOTZo0sW8LDg5WdHS0tm3bpg4dOnhwOgCAO3nzTSi4AQVQMvB1quSw2Gw2n/9s/ec//1H//v21c+dOBQYG2rc/++yzys7O1vz5851+TZvt8r9oFotktVpVeD5btsLCa57bNIvVKmuZQBUWFqoofysurbfgfJZshQXuH9CFLFY/+ZUJdnqtuRdOq7Aw3/0DupjV6q+A0iFOr/eCF6+3dBHXe2mtZ7NPq8AL1+pn9VdQYNH/215i8c7v8ZLk1Dqliz/UWLx0wVf6XvNnLv1dPp2drXwv/EHI32pRSGDRvwdd4qX/aSU5/3dZ8t71lqS1Snyd+iteulRJV/5v68x/vxJx5OvChQuSdNm1XaVKlVJmZvHOi7dYLPLzu/In2Vom8IrbvYXVyTtl+ZUJdtMk7ufsWgNKh7hnEEOcXW/pErTeoMAQ9w1igLP/beEdrva95s+EBJas70EAPKs4X6dKshLxFe7S0a7c3FyH7Tk5OSpdurQnRgIAAABQwpSI+KpcubIkKS0tzWF7WlqaIiIiPDESAAAAgBKmRMRXVFSUgoKCtGXLFvu2rKws7dq1S40aNfLgZAAAAABKihJxzVdAQIASExM1depUVahQQVWqVNGUKVMUERGhtm3beno8AAAAACVAiYgvSRowYIDy8/M1evRoZWdnKzY2VosXL+YNlgEAAAAYUSJuNQ8AAAAAnlYirvkCAAAAAE8jvgAAAADAAOILAAAAAAwgvgAAAADAAOILAAAAAAwgvgAAAADAAOLLCxQWFmrmzJlq1qyZ6tWrpx49eujQoUOeHsuIOXPmqGvXrp4ew21Onz6t559/Xs2bN1fDhg312GOPafv27Z4ey23S09OVlJSkJk2aqEGDBurdu7f27dvn6bHcYsuWLapdu/YVf7Vu3drT47lcXl6ekpOT1bJlSzVo0ED/+Mc/tGPHDk+P5Tbnzp3ThAkT1KJFC91xxx16+umn9dtvv3l6LJe70tfg3bt3KzExUfXr11fLli21ePFiD03nHn/2fefAgQOqX7++jhw54oGp3ONKa/3444+VkJCgBg0aKC4uTi+//LKys7M9NKHrXGmtH3zwgTp27KiYmBi1adNGCxYskK+8A9Nf/fw0evRoxcXFGZzIfa601ueee+6y773Nmzf30ISOiC8vMGfOHK1cuVITJ07UqlWrZLFY1KtXL+Xm5np6NLdatmyZZs6c6ekx3Grw4MHauXOnpk2bprffflt16tRRz549tX//fk+P5hZ9+/bV4cOHtXDhQr399tsKDAzUE088oQsXLnh6NJdr0KCBvvjiC4dfS5Yskb+/v/r06ePp8Vxu7ty5SklJ0cSJE7V27Vrdcsst6tWrl06cOOHp0dxi4MCB2rBhg8aNG6e33npLYWFheuyxx5SRkeHp0VzmSl+DMzIy1L17d1WvXl0pKSnq37+/ZsyYoZSUFA9N6Vp/9n1n79696t69u099rbrSWrdv365nnnlG9957r9auXatx48Zp/fr1Gj9+vIemdI0rrfWzzz7TsGHD9Oijj+qDDz7QsGHDNHfuXC1fvtxDU7rOX/389NFHH2n16tUGJ3Kfq/0/26dPH4fvwWvXrjU/4BUQX9e53NxcLVmyRP3791eLFi0UFRWl5ORknThxQhs2bPD0eG5x4sQJPfnkk5oxY4Zq1Kjh6XHc5tChQ/ryyy81duxYNWrUSLfccotGjRql8PBwrVu3ztPjuVxGRoaqVq2qCRMmqG7duqpZs6aefvppnTx5Ur/88ounx3O5gIAAVaxY0f4rJCREkydPVrt27fTwww97ejyX27hxo+6//341bdpUkZGRGjFihM6ePavvvvvO06O53J49e7Rp0yZNmDBBrVq1Us2aNTV+/HgFBQXpjTfe8PR41+xqX4PfeustBQQEaNy4capZs6YSEhL0xBNPaOHChR6a1jWutua5c+eqc+fOqlChgoemc62rrXXlypVq0qSJevfurcjISDVv3lyDBg3Se++955X/4Hu1tZ48eVK9evVSly5ddPPNN6tdu3a6++679dVXX3lo2mtXlJ+f0tLSNGbMGDVu3NjwdK51tbUWFBRo3759qlu3rsP34evl/2Hi6zq3Z88enTt3Tk2aNLFvCw4OVnR0tLZt2+bBydznp59+Uvny5fXee++pXr16nh7HbUJDQ7VgwQLdfvvt9m0Wi0U2m02ZmZkenMw9QkNDNW3aNP3tb3+TJP3+++9avHixIiIiVKtWLQ9P537//Oc/dfz4cT333HOeHsUtQkJC9Mknn+jIkSMqKCjQqlWrFBAQoNtuu83To7ncgQMHJEmNGjWyb7NarYqKivKJr8tX+xq8fft2xcbGyt/f376tSZMmOnDggNLT002P6jJXW/Pnn3+uKVOmaPjw4R6azrWuttYePXpo2LBhlz0nPz9fZ8+eNTWiy1xtrQ899JAGDhwo6eIP65s2bdLWrVt1zz33eGBS1/irn59sNptGjBih//u///P6+LraWg8ePKicnBzVrFnTQ9Ndnf9fPwSelJqaKkmqXLmyw/ZKlSrp+PHjnhjJ7eLi4nzmPOSrCQ4OVosWLRy2rV+/Xr/99puaNm3qoanMGDNmjP1f0OfOnasyZcp4eiS3ysnJ0bx589StWzdVqlTJ0+O4xahRozRo0CC1bt1afn5+slqtmjFjhqpVq+bp0VyuYsWKki5+ff7fb+5Hjx5VTk6Op8Zymat9DU5NTdWtt97qsO3S3+ljx44pLCzM7fO5w9XWfOlo5pYtW0yO5DZXW2t0dLTDx7m5uVq6dKnq1Klz3Rw1cEZRfp44duyY2rRpo4KCAjVt2lSPPfaYoelc76/Wu2zZMp08eVLz5s3T/PnzDU7meldb688//yyLxaLly5dr06ZNslqtatGihQYOHKhy5coZnvRyHPm6zl06vzwgIMBhe6lSpXzimzz+65tvvtHIkSPVunVrn4/Pbt26KSUlRQ888ID69eunn376ydMjudW7776rnJwcn755zP79+xUcHKxXX31Vq1atUqdOnTR8+HDt2bPH06O5XL169VSzZk2NHTtWx48fV25urpYtW6bdu3d75alZzsjOzr7i9yNJfE/yMfn5+Ro2bJj27dunsWPHenoctwkODtbbb7+tGTNmaO/evVc88ucL9uzZo9mzZ2vKlCmX/T/sa3755RdZrVZVqVJF8+bN0/Dhw/XZZ5/p6aefVmFhoafHI76ud4GBgZJ02Tf0nJwclS5d2hMjwQ0++ugj9ezZUzExMZo2bZqnx3G7WrVq6fbbb9eECRNUtWpVvf76654eya3Wrl2rdu3aKTQ01NOjuMXRo0eVlJSkIUOGqE2bNqpbt65eeOEF3XrrrZo1a5anx3O5G264Qa+++qry8vLsd3fctm2bHnroIQUFBXl6PLcKDAy84vcjST5/BLskOXv2rPr06aONGzdq5syZPn0JQFBQkKKjo3Xfffdp5MiRWr9+vY4ePerpsVwqJydHQ4cOVd++fRUVFeXpcdyuf//++vrrr9WrVy/deuutatu2raZOnaqtW7fqhx9+8PR4xNf17tLphmlpaQ7b09LSFBER4YmR4GKvv/66+vfvr+bNm2vhwoX24PY16enpWrdunQoKCuzbrFaratasednfb19y6tQpffvtt2rfvr2nR3Gb77//Xnl5eapbt67D9nr16ungwYOeGcrNatSooVWrVmnr1q3avHmzXn31VZ0+fVrVq1f39GhuFRERccXvR5IUHh7uiZHgYmlpaerSpYu+/fZbLVy40GfPxNi+fftlP4hfuibZ174n7dy5U7/88otmz56tBg0aqEGDBpo/f76OHTumBg0a6L333vP0iC5lsVgUHBzssO3S6dKXLufxJOLrOhcVFaWgoCCHc82zsrK0a9cuh4u94Z3eeOMNTZgwQV26dNH06dN9+lSAtLQ0DRkyRFu3brVvy8vL065du67bi2JdYceOHbJYLF5/cfPVXPpHor179zps//nnnxUZGemJkdzq7NmzSkxM1I8//qjy5csrODhYZ86c0VdffaVmzZp5ejy3io2N1TfffOPwjyibN29WjRo1vPZ6L/xXZmamunXrplOnTumNN95wuNmXr1myZIkmT57ssG3nzp3y9/f3uX9EiYmJ0X/+8x+9++67Wrt2rdauXatHH31UlSpV0tq1a30usIcMGaKePXs6bLsU2tfDDb6Ir+tcQECAEhMTNXXqVG3cuFF79uzRoEGDFBERobZt23p6PFyDAwcO6MUXX1Tbtm311FNPKT09XSdPntTJkyd15swZT4/nclFRUWratKnGjx+v7du36+eff9bw4cOVlZWlJ554wtPjuc2ePXt08803+/RpwjExMWrUqJGGDx+ur7/+WgcPHtT06dO1efNm9e7d29PjuVxQUJAsFotefPFF7d27V3v27FGfPn1000036f777/f0eG6VkJCgs2fPatSoUdq3b5/WrFmj5cuX66mnnvL0aHCByZMn6/Dhw5oyZYoqVKhg/5508uRJh+D2BT169NB3332nmTNn6tChQ/rwww81ZcoUPf744z53inhgYKAiIyMdfpUvX17+/v6KjIz0udOl77//fn355ZeaO3eufvvtN3322WcaOXKk7r///uviH3u526EXGDBggPLz8zV69GhlZ2crNjZWixcv9umjJCXBv//9b+Xl5WnDhg2XvWdbfHy8XnrpJQ9N5h4Wi0XTp0/XK6+8ooEDB+rMmTNq1KiR/vnPf+qmm27y9Hhu8/vvvyskJMTTY7iV1WrVnDlzNH36dD333HPKzMzUrbfeqmXLlql+/fqeHs8tXnnlFU2cOFGJiYmyWq1q1aqVhg0b5nALdl8UFhamRYsWadKkSYqPj1fFihU1bNgwxcfHe3o0XKPCwkJ9+OGHysvLU7du3S7bv3HjRlWtWtUDk7lHo0aNNH/+fE2fPl2LFy9WhQoV1KNHD/Xq1cvTo+EatWrVSjNmzNC8efM0b948lStXTh07drS/tYCnWWw2m83TQwAAAACAr+O0QwAAAAAwgPgCAAAAAAOILwAAAAAwgPgCAAAAAAOILwAAAAAwgPgCAAAAAAOILwAAAAAwgPgCAJR4vOUlAMAE4gsAUKLt27dPjz32mFPP6dq1q7p27XrVx8yaNUu1a9e+ltEAAD7G39MDAADgSevXr9e3337r8td9+OGH1axZM5e/LgDAexFfAAC4QUREhCIiIjw9BgDgOsJphwBQwsXFxWnmzJl6+eWXdffddysmJkY9e/bUgQMHJEkjRoxQXFycw3OOHDmi2rVra82aNZKkLVu2qHbt2tq8ebO6du2qmJgYtWzZUqtXr1ZaWpqeeeYZNWjQQC1atNCyZcuKNePs2bM1efJk3XnnnWrQoIGGDBmic+fOacGCBWrevLnuuOMO9e/fXxkZGfbnZWdn65VXXlG7du10++23q2HDhurevbt2794t6eKpgbNnz5Yk1a5dW7NmzZIk5eXl6dVXX1WbNm0UExOjDh06KCUlxWEmm82mhQsXqmXLloqJidEjjzyiH374wb7/j6cddu3aVaNGjdKCBQvUsmVL1a1bV48++qh27tzp8LqffvqpOnXqpJiYGN17771at26d2rZta5/Nmc9ZcnKyJk+erMaNG6tx48ZKSkpy+PyMGDFC3bp109ixY9WoUSPFx8crPz9fOTk5evXVV3Xfffepbt26ateunRYsWKDCwkKH9YwYMULz58/XPffco4YNG6pv3746fPiw/TE5OTkaP368mjdvrttvv1333XeflixZ4tQ6AMCXcOQLAKDXXntNd9xxhyZPnqzMzExNmjRJI0aM0KpVq5x6ncGDB6t3797q27evFixYoLFjx6patWpq3769HnnkEb355puaPHmyGjZsqJiYGKdee+nSpbr77ruVnJysH374QdOmTdNPP/2k8PBwTZgwQQcOHND/+3//TzfeeKPGjh0rSRo2bJi2bdumIUOGqFq1ajp48KBmzJihQYMGaf369Xr44YeVmpqqt99+W6tWrbIfqRo+fLg2btyovn37ql69evr88881cuRI+fn56cEHH5QkffPNN8rNzdWYMWOUm5url19+WX369NFnn30mf/8rf3v997//rZo1a2r06NGy2Wx6+eWXNWDAAH388cfy8/PT119/raefflqtWrXSs88+q0OHDmns2LHKyclx6nN1yRtvvKHIyEi9+OKLOnXqlF555RX9+uuvWr16tazWi//+un37dlksFs2aNUvnzp2Tn5+fevXqpe+++079+vXTbbfdpi1btmj69Ok6fPiwJkyYYH/9jRs3KjQ0VKNGjVJhYaFeeeUVPf744/rggw9UpkwZTZo0SV988YWGDx+uG2+8UZs2bdLLL7+skJAQderUqVhrAgBvRnwBABQcHKw5c+bIz89PkvTbb79p1qxZDkdJiiIhIUHdu3eXJJUpU0aPPPKIYmJiNGDAAEnS7bffro0bN2rHjh1Ox1fZsmWVnJwsf39/3X333XrnnXeUlpam1atXq1y5cmrRooW+/vpr7dixQ5KUm5urc+fOacyYMWrfvr0kqXHjxjp37pxeeuklnTx50uHUwPr160uSfvnlF33wwQcaNWqUHn/8cUnSXXfdpWPHjmnLli32+AoICNCCBQsUEhIiSTp79qxGjx6tffv2KSoq6opryM/P1+LFixUUFCRJOnfunIYPH67du3fr9ttv16xZs1SrVi3Nnj1bFotFkhQWFqbBgwc79bm6xGKxaOnSpSpXrpwkqUKFCurXr582bdqkli1b2mcaP368IiMjJUmfffaZvvrqK02ZMkUPPPCAJOmee+5RYGCgZsyYoW7duqlWrVqSpPPnzyslJUXVqlWTJN1yyy2Kj4/XO++8oy5dumjr1q26++671aFDB0nSnXfeqTJlyig0NLRY6wEAb0d8AQBUt25de3hJsgfJhQsXnHqdBg0a2H9/4403SpLq1atn33bph+4zZ844PWNMTIzDEaWKFSsqKCjIHhaSFBISop9//lnSxThavHixJCktLU2HDh3Sr7/+qk8++UTSxVMLr2T79u2SpLZt2zpsnz59usPHtWrVsoeXJFWtWvUv11arVi17eElSeHi4pIuf59zcXH377bfq16+fPbwk6d577/3TI2l/pVWrVg6fn7i4ON1www3avn27Pb4CAwPt8SRJW7dulZ+fnz1YL3nggQc0Y8YMbdmyxR5fDRo0cHhudHS0br75Zm3fvl1dunTRnXfeqZUrV+rEiRNq1aqVWrRooX79+hVrLQDgC4gvAIBKly7t8PGlU9L+9xqfovjfsPiz1y6u4rz2559/rhdffFG//vqrypYtq9q1a6ts2bKS/vy9vU6fPi3p4hGnqylTpozDx0X5nF3t83z69GkVFBRc9uf6+/sX+0hRpUqVLvvzQkJClJWVZd8WFhbmEHuZmZkKDQ29LPgqVqwoyTEu//j6l17v0uuPGjVKEREReu+99zR+/HhJF4Pt+eefV3R0dLHWBADejBtuAACuymKxqKCgwGHb+fPnPTRN0f3222/q16+foqKitGHDBu3YsUNvvvmmWrVqddXnBQcHS5JOnTrlsP3XX3+1HxVzh7CwMN1www1KT0932F5YWOj06Z+XXArJSwoKCpSRkaEKFSr86XPKly+vjIwM5efnO2xPS0uTJIcQ/OPrS9Lvv/9uf/2AgAD17dtX69ev1yeffKLnn39ehw8f1pAhQ4q1HgDwdsQXAOCqypYtq4yMDIebPly6rup69uOPPyonJ0dPPfWUw6lxn3/+uaT/Hvm6dPTpkjvuuEOS9NFHHzlsT05OdrjZhKv5+fmpYcOGl/25H3/88WUhVFSff/65cnNz7R9v3LhR+fn5uuuuu/70OY0bN1ZBQYE+/PBDh+3vvfeepP9+fiTp22+/dYjUn376SUeOHNFdd92l7Oxs3Xvvvfa7G950003q0qWLOnTooNTU1GKtBwC8HacdAgCuqlWrVlqxYoVGjhyphx9+WL/88ouWLFnicI3Y9ahOnTry9/fXlClT1KNHD+Xm5mrNmjX69NNPJf336N2lI13r1q1TvXr1FBUVpfvuu09Tp05Vdna26tSpoy+++EIbNmy47LovVxswYIC6du2qAQMG6KGHHtKxY8c0Y8YMSXI4NbCoUlNT1bdvXz3++OM6fvy4pk2bpqZNm+rOO+/80+c0b95cd955p8aOHau0tDRFR0dr69atWrhwoeLj4+3Xe0kXr1Xr1auX+vbtq3Pnzik5OVm33nqr7r//fgUEBKhOnTqaPXu2brjhBtWuXVsHDhzQO++8o3vvvdf5Tw4A+ADiCwBwVffcc4+GDx+uFStW6D//+Y/9B+pHH33U06NdVWRkpF555RXNnj1bffv2Vfny5VW/fn2tWLFCXbt21fbt21W7dm21a9dO7777rkaMGKGHHnpI48aN05QpUzR79mytWLFCGRkZqlGjhqZPn6777rvPrTM3atRIs2bN0owZM/T000+rSpUqGjNmjAYNGmS/Vs0ZHTp0UHBwsAYOHKgyZcooPj5egwYNuupzLBaL5s+fr5kzZ+q1117TqVOnVLVqVQ0aNMh+J8v/nbdJkyYaNWqUpIs39Bg2bJgCAgIkSS+88IKmT5+uJUuW6OTJkwoLC9NDDz2kZ5991um1AIAvsNj+7IpjAABg1MaNGxUREaE6derYt/3yyy+6//77NWfOHLVu3brIrxUXF6fGjRvrpZdecseo6tq1qyRpxYoVbnl9APBFHPkCAHhEYWFhke6mWNzbrHujL774Qh9++KGGDh2qGjVqKDU1VXPnztUtt9yipk2b8jkDAC/HV2cAgEeMHDlS77zzzl8+buPGjfb30PJ1w4cPV2BgoObOnau0tDSFhISoWbNmGjJkiEqVKqURI0YU+XMGALj+cNohAMAjjhw5UqRbqNeuXdt+DVFJx+cMALwb8QUAAAAABvA+XwAAAABgAPEFAAAAAAYQXwAAAABgAPEFAAAAAAYQXwAAAABgAPEFAAAAAAYQXwAAAABgAPEFAAAAAAb8f5ZWr5v4YkwaAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.barplot(data=df_date_sorted, x='num_matching_props', y='date_range', errorbar=None)\n",
"axes.set_ylabel('mean date_range [days]')"
]
},
{
"cell_type": "code",
"execution_count": 252,
"metadata": {},
"outputs": [],
"source": [
"if SAVE_FIGS:\n",
" fig.savefig('VorgangsID-duplicates.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 253,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{17: [[(0, 1), 11, 0], [(0, 2), 1, 835], [(1, 2), 1, 835], [13, 835]],\n",
" 36: [[(0, 1), 11, 0], [11, 0]],\n",
" 54: [[(0, 1), 14, 0], [14, 0]],\n",
" 56: [[(0, 1), 13, 0], [13, 0]],\n",
" 74: [[(0, 1), 14, 0], [14, 0]],\n",
" 77: [[(0, 1), 14, 0], [14, 0]],\n",
" 79: [[(0, 1), 15, 0], [15, 0]],\n",
" 81: [[(0, 1), 14, 0], [14, 0]],\n",
" 85: [[(0, 1), 13, 0], [13, 0]],\n",
" 87: [[(0, 1), 14, 0], [14, 0]],\n",
" 91: [[(0, 1), 15, 0], [15, 0]],\n",
" 92: [[(0, 1), 14, 0], [14, 0]],\n",
" 94: [[(0, 1), 14, 0], [14, 0]],\n",
" 96: [[(0, 1), 14, 0], [14, 0]],\n",
" 97: [[(0, 1), 14, 0], [14, 0]],\n",
" 100: [[(0, 1), 14, 0], [14, 0]],\n",
" 102: [[(0, 1), 14, 0], [14, 0]],\n",
" 103: [[(0, 1), 14, 0], [14, 0]],\n",
" 106: [[(0, 1), 14, 0], [14, 0]],\n",
" 108: [[(0, 1), 14, 0], [14, 0]],\n",
" 116: [[(0, 1), 14, 0], [14, 0]],\n",
" 123: [[(0, 1), 14, 0], [14, 0]],\n",
" 124: [[(0, 1), 14, 0], [14, 0]],\n",
" 134: [[(0, 1), 14, 0], [14, 0]],\n",
" 140: [[(0, 1), 14, 0], [14, 0]],\n",
" 141: [[(0, 1), 14, 0], [14, 0]],\n",
" 142: [[(0, 1), 12, 0], [12, 0]],\n",
" 146: [[(0, 1), 14, 0], [14, 0]],\n",
" 147: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 151: [[(0, 1), 13, 0], [13, 0]],\n",
" 153: [[(0, 1), 14, 0], [14, 0]],\n",
" 156: [[(0, 1), 14, 0], [14, 0]],\n",
" 164: [[(0, 1), 14, 0], [14, 0]],\n",
" 165: [[(0, 1), 15, 0], [15, 0]],\n",
" 170: [[(0, 1), 14, 0], [14, 0]],\n",
" 173: [[(0, 1), 14, 0], [14, 0]],\n",
" 352: [[(0, 1), 14, 0], [14, 0]],\n",
" 354: [[(0, 1), 14, 0], [14, 0]],\n",
" 355: [[(0, 1), 14, 0], [14, 0]],\n",
" 358: [[(0, 1), 14, 0], [14, 0]],\n",
" 370: [[(0, 1), 14, 0], [14, 0]],\n",
" 401: [[(0, 1), 14, 0], [14, 0]],\n",
" 403: [[(0, 1), 14, 0], [14, 0]],\n",
" 453: [[(0, 1), 14, 0], [14, 0]],\n",
" 458: [[(0, 1), 14, 0], [14, 0]],\n",
" 462: [[(0, 1), 14, 0], [14, 0]],\n",
" 469: [[(0, 1), 14, 0], [14, 0]],\n",
" 472: [[(0, 1), 14, 0], [14, 0]],\n",
" 473: [[(0, 1), 14, 0], [14, 0]],\n",
" 521: [[(0, 1), 14, 0], [14, 0]],\n",
" 522: [[(0, 1), 14, 0], [14, 0]],\n",
" 523: [[(0, 1), 14, 0], [14, 0]],\n",
" 524: [[(0, 1), 14, 0], [14, 0]],\n",
" 529: [[(0, 1), 14, 0], [14, 0]],\n",
" 568: [[(0, 1), 14, 0], [14, 0]],\n",
" 569: [[(0, 1), 14, 0], [14, 0]],\n",
" 575: [[(0, 1), 14, 0], [14, 0]],\n",
" 576: [[(0, 1), 14, 0], [14, 0]],\n",
" 578: [[(0, 1), 14, 0], [14, 0]],\n",
" 579: [[(0, 1), 14, 0], [14, 0]],\n",
" 580: [[(0, 1), 14, 0], [14, 0]],\n",
" 583: [[(0, 1), 14, 0], [14, 0]],\n",
" 584: [[(0, 1), 14, 0], [14, 0]],\n",
" 586: [[(0, 1), 15, 0], [15, 0]],\n",
" 588: [[(0, 1), 14, 0], [14, 0]],\n",
" 594: [[(0, 1), 14, 0], [14, 0]],\n",
" 609: [[(0, 1), 15, 0], [15, 0]],\n",
" 610: [[(0, 1), 14, 0], [14, 0]],\n",
" 879: [[(0, 1), 14, 0], [14, 0]],\n",
" 881: [[(0, 1), 14, 0], [14, 0]],\n",
" 1032: [[(0, 1), 10, 0], [10, 0]],\n",
" 1086: [[(0, 1), 14, 0], [14, 0]],\n",
" 1106: [[(0, 1), 2, 816], [2, 816]],\n",
" 1109: [[(0, 1), 1, 818], [1, 818]],\n",
" 1110: [[(0, 1), 2, 818], [2, 818]],\n",
" 1113: [[(0, 1), 1, 819], [(0, 2), 1, 819], [(1, 2), 14, 0], [16, 819]],\n",
" 1115: [[(0, 1), 1, 818], [1, 818]],\n",
" 1122: [[(0, 1), 14, 0], [14, 0]],\n",
" 1127: [[(0, 1), 14, 0], [14, 0]],\n",
" 1129: [[(0, 1), 14, 0], [14, 0]],\n",
" 1131: [[(0, 1), 14, 0], [14, 0]],\n",
" 1145: [[(0, 1), 2, 823], [2, 823]],\n",
" 1151: [[(0, 1), 1, 824], [1, 824]],\n",
" 1156: [[(0, 1), 1, 825], [1, 825]],\n",
" 1159: [[(0, 1), 14, 0], [14, 0]],\n",
" 1160: [[(0, 1), 14, 0], [14, 0]],\n",
" 1163: [[(0, 1), 14, 0], [14, 0]],\n",
" 1164: [[(0, 1), 14, 0], [14, 0]],\n",
" 1167: [[(0, 1), 1, 826], [(0, 2), 1, 826], [(1, 2), 14, 0], [16, 826]],\n",
" 1169: [[(0, 1), 1, 827], [1, 827]],\n",
" 1174: [[(0, 1), 1, 827], [1, 827]],\n",
" 1175: [[(0, 1), 2, 827], [2, 827]],\n",
" 1184: [[(0, 1), 14, 0], [14, 0]],\n",
" 1197: [[(0, 1), 3, 838], [3, 838]],\n",
" 1211: [[(0, 1), 15, 0], [15, 0]],\n",
" 1212: [[(0, 1), 14, 0], [14, 0]],\n",
" 1215: [[(0, 1), 14, 0], [14, 0]],\n",
" 1216: [[(0, 1), 1, 840], [1, 840]],\n",
" 1217: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 1231: [[(0, 1), 14, 0], [14, 0]],\n",
" 1814: [[(0, 1), 2, 232], [2, 232]],\n",
" 2358: [[(0, 1), 15, 0], [15, 0]],\n",
" 2383: [[(0, 1), 14, 0], [14, 0]],\n",
" 2398: [[(0, 1), 14, 0], [14, 0]],\n",
" 2460: [[(0, 1), 14, 0], [14, 0]],\n",
" 2525: [[(0, 1), 14, 0], [14, 0]],\n",
" 2665: [[(0, 1), 14, 0], [14, 0]],\n",
" 2675: [[(0, 1), 14, 0], [14, 0]],\n",
" 2679: [[(0, 1), 14, 0], [14, 0]],\n",
" 2680: [[(0, 1), 12, 0], [12, 0]],\n",
" 2681: [[(0, 1), 14, 0], [14, 0]],\n",
" 2736: [[(0, 1), 14, 0], [14, 0]],\n",
" 2745: [[(0, 1), 14, 0], [14, 0]],\n",
" 3021: [[(0, 1), 14, 0], [14, 0]],\n",
" 3122: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 3123: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 3155: [[(0, 1), 14, 0], [14, 0]],\n",
" 3157: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 3158: [[(0, 1), 12, 0], [(0, 2), 12, 0], [(1, 2), 14, 0], [38, 0]],\n",
" 3163: [[(0, 1), 14, 0], [14, 0]],\n",
" 3165: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 3170: [[(0, 1), 14, 0], [14, 0]],\n",
" 3175: [[(0, 1), 13, 0], [13, 0]],\n",
" 3410: [[(0, 1), 14, 0], [14, 0]],\n",
" 3411: [[(0, 1), 14, 0], [14, 0]],\n",
" 3802: [[(0, 1), 14, 0], [14, 0]],\n",
" 3803: [[(0, 1), 1, 705], [1, 705]],\n",
" 3807: [[(0, 1), 14, 0], [14, 0]],\n",
" 3813: [[(0, 1), 1, 700], [1, 700]],\n",
" 3814: [[(0, 1), 2, 706], [2, 706]],\n",
" 3816: [[(0, 1), 13, 0], [13, 0]],\n",
" 3817: [[(0, 1), 14, 0], [14, 0]],\n",
" 3822: [[(0, 1), 1, 703], [1, 703]],\n",
" 3829: [[(0, 1), 14, 0], [14, 0]],\n",
" 3832: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 3842: [[(0, 1), 14, 0], [14, 0]],\n",
" 3844: [[(0, 1), 14, 0], [14, 0]],\n",
" 3849: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 3853: [[(0, 1), 14, 0], [14, 0]],\n",
" 3854: [[(0, 1), 14, 0], [14, 0]],\n",
" 3861: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 4017: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 4021: [[(0, 1), 14, 0], [(0, 2), 14, 0], [(1, 2), 14, 0], [42, 0]],\n",
" 4023: [[(0, 1), 14, 0], [14, 0]],\n",
" 4105: [[(0, 1), 14, 0], [14, 0]],\n",
" 4121: [[(0, 1), 12, 0], [12, 0]],\n",
" 4124: [[(0, 1), 15, 0], [15, 0]],\n",
" 4264: [[(0, 1), 14, 0], [14, 0]],\n",
" 4308: [[(0, 1), 14, 0], [14, 0]],\n",
" 4314: [[(0, 1), 14, 0], [(0, 2), 13, 0], [(1, 2), 13, 0], [40, 0]],\n",
" 4317: [[(0, 1), 13, 0], [13, 0]],\n",
" 4577: [[(0, 1), 1, 692], [1, 692]],\n",
" 4578: [[(0, 1), 1, 712], [1, 712]],\n",
" 4766: [[(0, 1), 10, 0], [10, 0]],\n",
" 6317: [[(0, 1), 12, 0], [12, 0]],\n",
" 7353: [[(0, 1), 1, 54], [1, 54]],\n",
" 7354: [[(0, 1), 8, 0], [8, 0]],\n",
" 7856: [[(0, 1), 14, 0], [14, 0]],\n",
" 8103: [[(0, 1), 10, 0], [(0, 2), 9, 0], [(1, 2), 10, 0], [29, 0]],\n",
" 9193: [[(0, 1), 10, 0], [10, 0]],\n",
" 10850: [[(0, 1), 14, 0], [14, 0]],\n",
" 11014: [[(0, 1), 1, 789], [1, 789]],\n",
" 14574: [[(0, 1), 13, 0], [13, 0]],\n",
" 14710: [[(0, 1), 12, 0], [12, 0]],\n",
" 15121: [[(0, 1), 11, 0], [11, 0]],\n",
" 15128: [[(0, 1), 12, 0], [(0, 2), 14, 0], [(1, 2), 12, 0], [38, 0]],\n",
" 16045: [[(0, 1), 3, 841], [3, 841]],\n",
" 16103: [[(0, 1), 2, 845], [2, 845]],\n",
" 16108: [[(0, 1), 2, 845],\n",
" [(0, 2), 2, 845],\n",
" [(0, 3), 2, 845],\n",
" [(1, 2), 11, 0],\n",
" [(1, 3), 13, 0],\n",
" [(2, 3), 11, 0],\n",
" [41, 845]],\n",
" 16111: [[(0, 1), 9, 1], [(0, 2), 1, 851], [(1, 2), 1, 852], [11, 852]],\n",
" 16653: [[(0, 1), 14, 0], [14, 0]],\n",
" 16723: [[(0, 1), 14, 0], [14, 0]],\n",
" 17419: [[(0, 1), 10, 0], [10, 0]],\n",
" 18225: [[(0, 1), 10, 0], [10, 0]],\n",
" 19984: [[(0, 1), 11, 0], [11, 0]],\n",
" 20103: [[(0, 1), 2, 962], [(0, 2), 2, 962], [(1, 2), 12, 0], [16, 962]],\n",
" 20104: [[(0, 1), 2, 963], [2, 963]],\n",
" 20105: [[(0, 1), 2, 963], [2, 963]],\n",
" 20112: [[(0, 1), 2, 966], [2, 966]],\n",
" 20128: [[(0, 1), 2, 965], [2, 965]],\n",
" 20133: [[(0, 1), 13, 0], [13, 0]],\n",
" 20135: [[(0, 1), 1, 966], [1, 966]],\n",
" 20143: [[(0, 1), 2, 1009], [2, 1009]],\n",
" 20167: [[(0, 1), 2, 962], [2, 962]],\n",
" 20173: [[(0, 1), 2, 961], [2, 961]],\n",
" 20174: [[(0, 1), 2, 961], [2, 961]],\n",
" 20177: [[(0, 1), 2, 961], [2, 961]],\n",
" 20178: [[(0, 1), 1, 961], [1, 961]],\n",
" 20402: [[(0, 1), 12, 0], [12, 0]],\n",
" 20403: [[(0, 1), 12, 0], [12, 0]],\n",
" 20433: [[(0, 1), 2, 966], [2, 966]],\n",
" 20436: [[(0, 1), 2, 966], [2, 966]],\n",
" 20438: [[(0, 1), 2, 967], [2, 967]],\n",
" 20439: [[(0, 1), 2, 967], [2, 967]],\n",
" 20441: [[(0, 1), 2, 966], [(0, 2), 2, 966], [(1, 2), 13, 0], [17, 966]],\n",
" 20443: [[(0, 1), 1, 966], [1, 966]],\n",
" 20449: [[(0, 1), 2, 966], [2, 966]],\n",
" 20604: [[(0, 1), 11, 0], [11, 0]],\n",
" 20794: [[(0, 1), 12, 0], [12, 0]],\n",
" 20830: [[(0, 1), 12, 0], [12, 0]],\n",
" 21566: [[(0, 1), 13, 0], [13, 0]],\n",
" 21729: [[(0, 1), 9, 0], [9, 0]],\n",
" 21750: [[(0, 1), 11, 0], [11, 0]],\n",
" 21786: [[(0, 1), 11, 0], [11, 0]],\n",
" 21863: [[(0, 1), 9, 2], [9, 2]],\n",
" 22074: [[(0, 1), 10, 2], [(0, 2), 9, 2], [(1, 2), 13, 0], [32, 2]],\n",
" 22149: [[(0, 1), 7, 11], [(0, 2), 9, 0], [(1, 2), 9, 11], [25, 11]],\n",
" 22156: [[(0, 1), 11, 0], [11, 0]],\n",
" 22193: [[(0, 1), 10, 0], [(0, 2), 9, 0], [(1, 2), 10, 0], [29, 0]],\n",
" 22649: [[(0, 1), 11, 0], [11, 0]],\n",
" 22658: [[(0, 1), 11, 0], [11, 0]],\n",
" 22948: [[(0, 1), 10, 0], [10, 0]],\n",
" 22974: [[(0, 1), 10, 0], [10, 0]],\n",
" 23006: [[(0, 1), 1, 952], [1, 952]],\n",
" 23014: [[(0, 1), 2, 908], [2, 908]],\n",
" 23017: [[(0, 1), 1, 970], [1, 970]],\n",
" 23019: [[(0, 1), 1, 956], [1, 956]],\n",
" 23020: [[(0, 1), 2, 985], [2, 985]],\n",
" 23024: [[(0, 1), 1, 956], [1, 956]],\n",
" 23025: [[(0, 1), 0, 981], [0, 981]],\n",
" 23026: [[(0, 1), 10, 241], [10, 241]],\n",
" 23027: [[(0, 1), 2, 833], [2, 833]],\n",
" 23028: [[(0, 1), 1, 823], [1, 823]],\n",
" 23035: [[(0, 1), 2, 1085], [2, 1085]],\n",
" 23039: [[(0, 1), 3, 1085], [3, 1085]],\n",
" 23040: [[(0, 1), 1, 1113], [1, 1113]],\n",
" 23041: [[(0, 1), 2, 1085], [2, 1085]],\n",
" 23049: [[(0, 1), 2, 1082], [2, 1082]],\n",
" 23050: [[(0, 1), 3, 1082], [3, 1082]],\n",
" 23080: [[(0, 1), 2, 1084], [2, 1084]],\n",
" 24158: [[(0, 1), 11, 0], [11, 0]],\n",
" 24453: [[(0, 1), 11, 0], [11, 0]],\n",
" 24462: [[(0, 1), 12, 0], [12, 0]],\n",
" 25196: [[(0, 1), 8, 2], [(0, 2), 9, 2], [(1, 2), 11, 0], [28, 2]],\n",
" 25240: [[(0, 1), 11, 0], [11, 0]],\n",
" 25336: [[(0, 1), 2, 1094], [2, 1094]],\n",
" 25337: [[(0, 1), 2, 1094], [2, 1094]],\n",
" 25338: [[(0, 1), 2, 1094], [2, 1094]],\n",
" 25377: [[(0, 1), 2, 1097], [2, 1097]],\n",
" 25378: [[(0, 1), 2, 1097], [2, 1097]],\n",
" 25406: [[(0, 1), 2, 1098], [2, 1098]],\n",
" 25407: [[(0, 1), 2, 1098], [2, 1098]],\n",
" 25425: [[(0, 1), 2, 1096], [2, 1096]],\n",
" 25427: [[(0, 1), 1, 1097], [1, 1097]],\n",
" 25438: [[(0, 1), 2, 1098], [2, 1098]],\n",
" 25448: [[(0, 1), 1, 1097], [1, 1097]],\n",
" 25451: [[(0, 1), 2, 1098], [2, 1098]],\n",
" 25452: [[(0, 1), 2, 1098], [2, 1098]],\n",
" 25460: [[(0, 1), 2, 1099], [(0, 2), 2, 1099], [(1, 2), 14, 0], [18, 1099]],\n",
" 25470: [[(0, 1), 14, 0], [14, 0]],\n",
" 25476: [[(0, 1), 10, 0], [10, 0]],\n",
" 25483: [[(0, 1), 2, 1098], [2, 1098]],\n",
" 25484: [[(0, 1), 2, 1099], [2, 1099]],\n",
" 25566: [[(0, 1), 2, 1080], [2, 1080]],\n",
" 25567: [[(0, 1), 2, 1080], [2, 1080]],\n",
" 25568: [[(0, 1), 1, 1080], [1, 1080]],\n",
" 25573: [[(0, 1), 2, 1081], [2, 1081]],\n",
" 25644: [[(0, 1), 10, 0], [10, 0]],\n",
" 25754: [[(0, 1), 1, 1091], [1, 1091]],\n",
" 26296: [[(0, 1), 8, 0], [8, 0]],\n",
" 27026: [[(0, 1), 10, 0], [10, 0]],\n",
" 27065: [[(0, 1), 12, 0], [12, 0]],\n",
" 27594: [[(0, 1), 9, 0], [9, 0]],\n",
" 29809: [[(0, 1), 10, 0], [10, 0]],\n",
" 30347: [[(0, 1), 11, 0], [11, 0]],\n",
" 30358: [[(0, 1), 13, 0], [13, 0]],\n",
" 32683: [[(0, 1), 13, 0], [13, 0]],\n",
" 32700: [[(0, 1), 14, 0], [14, 0]],\n",
" 32749: [[(0, 1), 0, 878], [0, 878]],\n",
" 32765: [[(0, 1), 1, 886], [1, 886]],\n",
" 32774: [[(0, 1), 11, 0], [11, 0]],\n",
" 32775: [[(0, 1), 14, 0], [14, 0]],\n",
" 32794: [[(0, 1), 2, 889], [2, 889]],\n",
" 35022: [[(0, 1), 13, 0], [13, 0]],\n",
" 35129: [[(0, 1), 12, 0], [12, 0]],\n",
" 35131: [[(0, 1), 2, 862], [2, 862]],\n",
" 35132: [[(0, 1), 1, 863], [1, 863]],\n",
" 35931: [[(0, 1), 14, 0], [14, 0]],\n",
" 36006: [[(0, 1), 14, 0], [14, 0]],\n",
" 36764: [[(0, 1), 13, 0], [13, 0]],\n",
" 37552: [[(0, 1), 9, 0], [(0, 2), 1, 904], [(1, 2), 1, 904], [11, 904]],\n",
" 37566: [[(0, 1), 1, 906], [1, 906]],\n",
" 37567: [[(0, 1), 2, 905], [2, 905]],\n",
" 37570: [[(0, 1), 2, 910], [2, 910]],\n",
" 37572: [[(0, 1), 1, 912], [1, 912]],\n",
" 37581: [[(0, 1), 13, 0], [13, 0]],\n",
" 37843: [[(0, 1), 9, 0], [9, 0]],\n",
" 38478: [[(0, 1), 1, 970], [1, 970]],\n",
" 38486: [[(0, 1), 1, 970], [1, 970]],\n",
" 38510: [[(0, 1), 1, 972], [1, 972]],\n",
" 38520: [[(0, 1), 1, 974], [1, 974]],\n",
" 38521: [[(0, 1), 1, 975], [1, 975]],\n",
" 38542: [[(0, 1), 13, 0], [13, 0]],\n",
" 38564: [[(0, 1), 1, 976], [1, 976]],\n",
" 38565: [[(0, 1), 1, 976], [1, 976]],\n",
" 38566: [[(0, 1), 1, 976], [(0, 2), 1, 976], [(1, 2), 13, 0], [15, 976]],\n",
" 38567: [[(0, 1), 13, 0], [13, 0]],\n",
" 38683: [[(0, 1), 14, 0], [14, 0]],\n",
" 45825: [[(0, 1), 10, 0], [10, 0]],\n",
" 47469: [[(0, 1), 11, 0], [11, 0]],\n",
" 48309: [[(0, 1), 1, 952], [1, 952]],\n",
" 49977: [[(0, 1), 14, 0], [14, 0]],\n",
" 50050: [[(0, 1), 14, 0], [14, 0]],\n",
" 51574: [[(0, 1), 14, 0], [14, 0]],\n",
" 51585: [[(0, 1), 14, 0], [14, 0]],\n",
" 51606: [[(0, 1), 12, 0], [(0, 2), 15, 0], [(1, 2), 12, 0], [39, 0]],\n",
" 51684: [[(0, 1), 12, 0], [12, 0]],\n",
" 60370: [[(0, 1), 13, 0], [13, 0]],\n",
" 60638: [[(0, 1), 13, 0], [13, 0]],\n",
" 60662: [[(0, 1), 14, 0], [14, 0]],\n",
" 61751: [[(0, 1), 12, 0], [12, 0]],\n",
" 61804: [[(0, 1), 10, 0], [10, 0]],\n",
" 61844: [[(0, 1), 10, 0], [10, 0]],\n",
" 61849: [[(0, 1), 13, 0], [13, 0]],\n",
" 61850: [[(0, 1), 12, 0], [12, 0]],\n",
" 61883: [[(0, 1), 11, 0], [11, 0]],\n",
" 61888: [[(0, 1), 14, 0], [14, 0]],\n",
" 61952: [[(0, 1), 10, 0], [10, 0]],\n",
" 61959: [[(0, 1), 10, 0], [10, 0]],\n",
" 62507: [[(0, 1), 10, 0], [10, 0]],\n",
" 62508: [[(0, 1), 13, 0], [13, 0]],\n",
" 62527: [[(0, 1), 13, 0], [13, 0]],\n",
" 62570: [[(0, 1), 11, 0], [11, 0]],\n",
" 63109: [[(0, 1), 13, 0], [13, 0]],\n",
" 65066: [[(0, 1), 14, 0], [14, 0]],\n",
" 65067: [[(0, 1), 12, 0], [12, 0]],\n",
" 65099: [[(0, 1), 14, 0], [14, 0]],\n",
" 65187: [[(0, 1), 14, 0], [14, 0]],\n",
" 65345: [[(0, 1), 11, 0], [11, 0]],\n",
" 65367: [[(0, 1), 13, 0], [13, 0]],\n",
" 65503: [[(0, 1), 13, 0], [13, 0]],\n",
" 67158: [[(0, 1), 12, 0], [12, 0]],\n",
" 68451: [[(0, 1), 9, 0], [9, 0]],\n",
" 69943: [[(0, 1), 1, 902], [1, 902]],\n",
" 69985: [[(0, 1), 14, 0], [14, 0]],\n",
" 70020: [[(0, 1), 12, 0], [12, 0]],\n",
" 70031: [[(0, 1), 14, 0], [14, 0]],\n",
" 70072: [[(0, 1), 13, 0], [13, 0]],\n",
" 70157: [[(0, 1), 0, 947], [0, 947]],\n",
" 70354: [[(0, 1), 11, 0], [11, 0]],\n",
" 87766: [[(0, 1), 9, 0], [9, 0]],\n",
" 92947: [[(0, 1), 14, 0], [14, 0]],\n",
" 101110: [[(0, 1), 13, 0], [13, 0]],\n",
" 102427: [[(0, 1), 13, 0], [13, 0]],\n",
" 102440: [[(0, 1), 13, 0], [13, 0]],\n",
" 102668: [[(0, 1), 12, 0], [(0, 2), 15, 0], [(1, 2), 12, 0], [39, 0]],\n",
" 103437: [[(0, 1), 12, 0], [(0, 2), 15, 0], [(1, 2), 12, 0], [39, 0]],\n",
" 103486: [[(0, 1), 11, 0], [11, 0]],\n",
" 103488: [[(0, 1), 1, 582], [1, 582]],\n",
" 103651: [[(0, 1), 12, 0], [12, 0]],\n",
" 105196: [[(0, 1), 1, 1322], [1, 1322]],\n",
" 105335: [[(0, 1), 2, 1309], [2, 1309]],\n",
" 105446: [[(0, 1), 1, 1217], [1, 1217]],\n",
" 105449: [[(0, 1), 2, 1335], [2, 1335]],\n",
" 105933: [[(0, 1), 13, 0], [13, 0]],\n",
" 105966: [[(0, 1), 12, 0], [12, 0]],\n",
" 107848: [[(0, 1), 10, 0], [10, 0]],\n",
" 110697: [[(0, 1), 9, 0], [9, 0]],\n",
" 111839: [[(0, 1), 12, 0], [(0, 2), 12, 0], [(1, 2), 15, 0], [39, 0]],\n",
" 113489: [[(0, 1), 0, 519], [0, 519]],\n",
" 113490: [[(0, 1), 0, 524], [0, 524]],\n",
" 113502: [[(0, 1), 12, 0], [12, 0]],\n",
" 113572: [[(0, 1), 12, 0], [(0, 2), 11, 0], [(1, 2), 10, 0], [33, 0]],\n",
" 113623: [[(0, 1), 1, 497], [1, 497]],\n",
" 115465: [[(0, 1), 0, 491], [0, 491]],\n",
" 115470: [[(0, 1), 1, 490], [1, 490]],\n",
" 116557: [[(0, 1), 14, 0], [14, 0]],\n",
" 117223: [[(0, 1), 14, 0], [14, 0]],\n",
" 122206: [[(0, 1), 14, 0], [14, 0]],\n",
" 124047: [[(0, 1), 13, 0], [13, 0]],\n",
" 124092: [[(0, 1), 12, 0], [12, 0]],\n",
" 126727: [[(0, 1), 13, 0], [13, 0]],\n",
" 129758: [[(0, 1), 12, 0], [12, 0]],\n",
" 130074: [[(0, 1), 14, 0], [14, 0]],\n",
" 133464: [[(0, 1), 12, 0], [(0, 2), 15, 0], [(1, 2), 13, 0], [40, 0]],\n",
" 137179: [[(0, 1), 10, 0], [10, 0]],\n",
" 137426: [[(0, 1), 9, 0], [9, 0]],\n",
" 138751: [[(0, 1), 9, 0], [9, 0]],\n",
" 138958: [[(0, 1), 1, 447], [1, 447]],\n",
" 139242: [[(0, 1), 13, 0], [13, 0]],\n",
" 139405: [[(0, 1), 2, 301], [2, 301]],\n",
" 140593: [[(0, 1), 1, 420], [1, 420]],\n",
" 140765: [[(0, 1), 1, 423], [1, 423]],\n",
" 142128: [[(0, 1), 11, 0], [11, 0]],\n",
" 142141: [[(0, 1), 1, 406], [1, 406]],\n",
" 144274: [[(0, 1), 14, 0], [14, 0]],\n",
" 145288: [[(0, 1), 12, 0], [12, 0]],\n",
" 145925: [[(0, 1), 14, 0], [14, 0]],\n",
" 145951: [[(0, 1), 13, 0], [(0, 2), 0, 374], [(1, 2), 0, 374], [13, 374]],\n",
" 145952: [[(0, 1), 14, 0], [14, 0]],\n",
" 146069: [[(0, 1), 13, 0], [13, 0]],\n",
" 146092: [[(0, 1), 1, 377], [1, 377]],\n",
" 146093: [[(0, 1), 1, 379], [1, 379]],\n",
" 146420: [[(0, 1), 2, 363], [2, 363]],\n",
" 146509: [[(0, 1), 12, 0], [12, 0]],\n",
" 146517: [[(0, 1), 0, 363], [0, 363]],\n",
" 148721: [[(0, 1), 8, 0], [8, 0]],\n",
" 149024: [[(0, 1), 11, 0], [11, 0]],\n",
" 149287: [[(0, 1), 1, 304], [1, 304]],\n",
" 149289: [[(0, 1), 14, 82], [14, 82]],\n",
" 149540: [[(0, 1), 13, 0], [13, 0]],\n",
" 149559: [[(0, 1), 12, 0], [12, 0]],\n",
" 151811: [[(0, 1), 1, 302], [1, 302]],\n",
" 155950: [[(0, 1), 9, 0], [9, 0]],\n",
" 159093: [[(0, 1), 10, 0], [10, 0]],\n",
" 165020: [[(0, 1), 9, 0], [9, 0]],\n",
" 202309: [[(0, 1), 13, 0], [13, 0]],\n",
" 202312: [[(0, 1), 13, 0], [13, 0]],\n",
" 245822: [[(0, 1), 14, 3], [14, 3]],\n",
" 245888: [[(0, 1), 12, 0], [12, 0]],\n",
" 246859: [[(0, 1), 14, 61], [14, 61]],\n",
" 259321: [[(0, 1), 14, 0], [14, 0]],\n",
" 259392: [[(0, 1), 12, 0], [12, 0]],\n",
" 259801: [[(0, 1), 13, 0], [13, 0]],\n",
" 259889: [[(0, 1), 12, 0], [12, 0]],\n",
" 260519: [[(0, 1), 11, 0], [11, 0]],\n",
" 260685: [[(0, 1), 12, 0], [12, 0]],\n",
" 261775: [[(0, 1), 14, 0], [14, 0]]}"
]
},
"execution_count": 253,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dupl_matches"
]
},
{
"cell_type": "code",
"execution_count": 254,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{17: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 36: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 54: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 56: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 74: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 77: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 79: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 81: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 85: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 87: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 91: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 92: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 94: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 96: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 97: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 100: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 102: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 103: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 106: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 108: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 116: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 123: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 124: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 134: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 140: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 141: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 142: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 146: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 147: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 151: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'Arbeitsbeginn'], dtype='object'))]],\n",
" 153: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 156: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 164: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 165: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 170: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 173: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 352: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 354: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 355: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 358: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 370: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 401: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 403: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 453: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 458: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 462: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 469: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 472: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 473: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 521: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 522: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 523: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 524: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 529: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 568: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 569: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 575: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 576: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 578: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 579: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 580: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 583: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 584: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 586: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 588: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 594: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 609: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 610: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 879: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 881: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1032: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 1086: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1106: [[(0, 1),\n",
" (Index(['ObjektID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['HObjektText', 'VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1109: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1110: [[(0, 1),\n",
" (Index(['ObjektID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['HObjektText', 'VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1113: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1115: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1122: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1127: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 1129: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1131: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1145: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1151: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1156: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1159: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1160: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1163: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1164: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1167: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1169: [[(0, 1),\n",
" (Index(['VorgangsStatusId'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1174: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1175: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1184: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1197: [[(0, 1),\n",
" (Index(['ObjektID', 'VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1211: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 1212: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1215: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1216: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 1217: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1231: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 1814: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 2358: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 2383: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2398: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2460: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2525: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'Arbeitsbeginn'], dtype='object'))]],\n",
" 2665: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2675: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2679: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2680: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2681: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2736: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 2745: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3021: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3122: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3123: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3155: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3157: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3158: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3163: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3165: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3170: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3175: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3410: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3411: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3802: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3803: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 3807: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3813: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 3814: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 3816: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3817: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3822: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 3829: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3832: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3842: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3844: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3849: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3853: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3854: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 3861: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4017: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4021: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4023: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4105: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4121: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 4124: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 4264: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4308: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 4314: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText'], dtype='object'))]],\n",
" 4317: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText'], dtype='object'))]],\n",
" 4577: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 4578: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 4766: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 6317: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 7353: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 7354: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 7856: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt'], dtype='object'))]],\n",
" 8103: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsArtText', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 9193: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 10850: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 11014: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 14574: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 14710: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 15121: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 15128: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 16045: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 16103: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 16108: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 3),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsArtText'],\n",
" dtype='object'))],\n",
" [(1, 3),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText'], dtype='object'))],\n",
" [(2, 3),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsArtText'],\n",
" dtype='object'))]],\n",
" 16111: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 16653: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 16723: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 17419: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 18225: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 19984: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 20103: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 20104: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20105: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20112: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20128: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20133: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText'], dtype='object'))]],\n",
" 20135: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20143: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20167: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20173: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20174: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20177: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20178: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20402: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz'],\n",
" dtype='object'))]],\n",
" 20403: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz'],\n",
" dtype='object'))]],\n",
" 20433: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20436: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20438: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20439: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20441: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 20443: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20449: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 20604: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 20794: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsPrioritaet',\n",
" 'VorgangsBeschreibung', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsStatusId', 'VorgangsOrt'], dtype='object'))]],\n",
" 20830: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsBeschreibung',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 21566: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsBeschreibung',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'MPMelderArbeitsplatz'], dtype='object'))]],\n",
" 21729: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 21750: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 21786: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 21863: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22074: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsPrioritaet',\n",
" 'VorgangsBeschreibung', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsStatusId', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsPrioritaet',\n",
" 'VorgangsBeschreibung', 'VorgangsArtText', 'ErledigungsBeschreibung',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsStatusId', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsBeschreibung',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'MPMelderArbeitsplatz'], dtype='object'))]],\n",
" 22149: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsStatusId', 'VorgangsPrioritaet',\n",
" 'VorgangsBeschreibung', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsOrt',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22156: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22193: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsDatum', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22649: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22658: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22948: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 22974: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 23006: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23014: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23017: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23019: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23020: [[(0, 1),\n",
" (Index(['VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23024: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23025: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23026: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 23027: [[(0, 1),\n",
" (Index(['VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23028: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23035: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23039: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23040: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23041: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23049: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23050: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 23080: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 24158: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 24453: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 24462: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 25196: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsPrioritaet',\n",
" 'VorgangsBeschreibung', 'VorgangsArtText', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsStatusId', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 25240: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPAbteilungBezeichnung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 25336: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25337: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25338: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25377: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25378: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25406: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25407: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25425: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25427: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25438: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25448: [[(0, 1),\n",
" (Index(['VorgangsTypID'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25451: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25452: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25460: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsDatum'], dtype='object'))]],\n",
" 25470: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt'], dtype='object'))]],\n",
" 25476: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsArtText', 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsDatum',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 25483: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25484: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25566: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25567: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25568: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25573: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 25644: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 25754: [[(0, 1),\n",
" (Index(['VorgangsTypID'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 26296: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 27026: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 27065: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 27594: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 29809: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsStatusId', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 30347: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 30358: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 32683: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 32700: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 32749: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 32765: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 32774: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 32775: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 32794: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 35022: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 35129: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 35131: [[(0, 1),\n",
" (Index(['VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 35132: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 35931: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 36006: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 36764: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 37552: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 37566: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 37567: [[(0, 1),\n",
" (Index(['VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 37570: [[(0, 1),\n",
" (Index(['VorgangsStatusId', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 37572: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 37581: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 37843: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 38478: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38486: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38510: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38520: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38521: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38542: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 38564: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38565: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 38566: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 38567: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 38683: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'Arbeitsbeginn'], dtype='object'))]],\n",
" 45825: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 47469: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 48309: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 49977: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsDatum'], dtype='object'))]],\n",
" 50050: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 51574: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 51585: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 51606: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 51684: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 60370: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 60638: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 60662: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 61751: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 61804: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 61844: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 61849: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 61850: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 61883: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 61888: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 61952: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 61959: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 62507: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 62508: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 62527: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'Arbeitsbeginn'], dtype='object'))]],\n",
" 62570: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText'],\n",
" dtype='object'))]],\n",
" 63109: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 65066: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 65067: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 65099: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 65187: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 65345: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 65367: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 65503: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 67158: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 68451: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 69943: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 69985: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 70020: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 70031: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 70072: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 70157: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 70354: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 87766: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 92947: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 101110: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 102427: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 102440: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 102668: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 103437: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 103486: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsBeschreibung'],\n",
" dtype='object'))]],\n",
" 103488: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 103651: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 105196: [[(0, 1),\n",
" (Index(['VorgangsTypID'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 105335: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 105446: [[(0, 1),\n",
" (Index(['VorgangsTypID'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 105449: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 105933: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 105966: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 107848: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 110697: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 111839: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))]],\n",
" 113489: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 113490: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 113502: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 113572: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 113623: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 115465: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 115470: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 116557: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 117223: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 122206: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 124047: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 124092: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 126727: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 129758: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 130074: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 133464: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsArtText'], dtype='object'))],\n",
" [(1, 2),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 137179: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 137426: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 138751: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 138958: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 139242: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsBeschreibung'], dtype='object'))]],\n",
" 139405: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 140593: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 140765: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 142128: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 142141: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 144274: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 145288: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 145925: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 145951: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))],\n",
" [(0, 2),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))],\n",
" [(1, 2),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 145952: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 146069: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 146092: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 146093: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 146420: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsBeschreibung', 'VorgangsOrt', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 146509: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 146517: [[(0, 1),\n",
" (Index([], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 148721: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 149024: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 149287: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 149289: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt'], dtype='object'))]],\n",
" 149540: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 149559: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsDatum', 'Arbeitsbeginn'], dtype='object'))]],\n",
" 151811: [[(0, 1),\n",
" (Index(['VorgangsPrioritaet'], dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsBeschreibung', 'VorgangsOrt',\n",
" 'VorgangsArtText', 'ErledigungsDatum', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'))]],\n",
" 155950: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 159093: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsBeschreibung', 'VorgangsOrt', 'ErledigungsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 165020: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn'],\n",
" dtype='object'))]],\n",
" 202309: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 202312: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 245822: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt'], dtype='object'))]],\n",
" 245888: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 246859: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsDatum', 'VorgangsOrt'], dtype='object'))]],\n",
" 259321: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 259392: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 259801: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'VorgangsArtText',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt'], dtype='object'))]],\n",
" 259889: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 260519: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsBeschreibung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText', 'ErledigungsArtText',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung'],\n",
" dtype='object'))]],\n",
" 260685: [[(0, 1),\n",
" (Index(['VorgangsTypID', 'VorgangsDatum', 'VorgangsStatusId',\n",
" 'VorgangsPrioritaet', 'VorgangsBeschreibung', 'ErledigungsDatum',\n",
" 'ErledigungsArtText', 'ErledigungsBeschreibung', 'MPMelderArbeitsplatz',\n",
" 'MPAbteilungBezeichnung', 'Arbeitsbeginn', 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['ObjektID', 'HObjektText', 'VorgangsOrt', 'VorgangsArtText'], dtype='object'))]],\n",
" 261775: [[(0, 1),\n",
" (Index(['ObjektID', 'HObjektText', 'VorgangsTypID', 'VorgangsDatum',\n",
" 'VorgangsStatusId', 'VorgangsPrioritaet', 'VorgangsBeschreibung',\n",
" 'ErledigungsDatum', 'ErledigungsArtText', 'ErledigungsBeschreibung',\n",
" 'MPMelderArbeitsplatz', 'MPAbteilungBezeichnung', 'Arbeitsbeginn',\n",
" 'ErstellungsDatum'],\n",
" dtype='object'),\n",
" Index(['VorgangsOrt', 'VorgangsArtText'], dtype='object'))]]}"
]
},
"execution_count": 254,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dupl_matches_props"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Date ranges for date columns"
]
},
{
"cell_type": "code",
"execution_count": 255,
"metadata": {},
"outputs": [],
"source": [
"date_ranges = dict()\n",
"for col in date_cols:\n",
" max = data['VorgangsDatum'].max()\n",
" min = data['VorgangsDatum'].min()\n",
" \n",
" date_ranges[col] = max - min"
]
},
{
"cell_type": "code",
"execution_count": 256,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'VorgangsDatum': Timedelta('2045 days 00:00:00'),\n",
" 'ErledigungsDatum': Timedelta('2045 days 00:00:00'),\n",
" 'ErstellungsDatum': Timedelta('2045 days 00:00:00')}"
]
},
"execution_count": 256,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"date_ranges"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"- 2045 days of range in data time stamps of all date columns"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Length of process descriptions\n",
"- ``VorgangsBeschreibung``\n",
"- ``VorgangsArtText``"
]
},
{
"cell_type": "code",
"execution_count": 257,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of NA vals: 378\n"
]
}
],
"source": [
"props = ['VorgangsBeschreibung', 'VorgangsArtText']\n",
"prop = data_rem_dupl['VorgangsBeschreibung']\n",
"print(f\"Number of NA vals: {prop.isna().sum()}\")\n",
"prop = prop.dropna().reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 258,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of NA vals for VorgangsBeschreibung: 378\n",
"Number of NA vals for VorgangsArtText: 0\n"
]
}
],
"source": [
"props = ['VorgangsBeschreibung', 'VorgangsArtText']\n",
"prop_length_analysis: dict[str, tuple[DataFrame, Series]] = dict()\n",
"\n",
"for prop in props:\n",
" df = data_rem_dupl[prop]\n",
" print(f\"Number of NA vals for {prop}: {df.isna().sum()}\")\n",
" df = df.dropna().reset_index(drop=True)\n",
" \n",
" entry_list = df.to_list()\n",
" df = df.to_frame()\n",
" \n",
" str_lengths = list()\n",
" for idx, entry in enumerate(entry_list):\n",
" entry = entry.replace('\\n', '')\n",
" entry = entry.replace(' ', '')\n",
" entry_list[idx] = entry\n",
" str_lengths.append(len(entry))\n",
" \n",
" df['prop_cleaned'] = entry_list\n",
" df['prop_cleaned_length'] = str_lengths\n",
" analysis_res = df['prop_cleaned_length'].describe()\n",
" \n",
" prop_length_analysis[prop] = (df, analysis_res)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"*Results for VorgangsBeschreibung*"
]
},
{
"cell_type": "code",
"execution_count": 259,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 9514.000000\n",
"mean 72.399411\n",
"std 86.569560\n",
"min 0.000000\n",
"25% 28.000000\n",
"50% 46.000000\n",
"75% 81.000000\n",
"max 1296.000000\n",
"Name: prop_cleaned_length, dtype: float64"
]
},
"execution_count": 259,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prop_length_analysis[props[0]][1]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"*Results for VorgangsArtText*"
]
},
{
"cell_type": "code",
"execution_count": 260,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 9892.000000\n",
"mean 21.107157\n",
"std 11.738689\n",
"min 1.000000\n",
"25% 11.000000\n",
"50% 19.000000\n",
"75% 27.000000\n",
"max 133.000000\n",
"Name: prop_cleaned_length, dtype: float64"
]
},
"execution_count": 260,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"prop_length_analysis[props[1]][1]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## ObjektID\n",
"- check uniqueness with ``HObjektText``"
]
},
{
"cell_type": "code",
"execution_count": 261,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" ObjektID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 105360 | \n",
" 4594 | \n",
" DU-04, Instandhaltung Küche, | \n",
" 2 | \n",
" 2023-02-16 | \n",
" 2 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" DU Neubau Spülmaschine - Neuanschaffungg | \n",
" 2023-03-21 | \n",
" Service durch externen Dienstleiter | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2023-02-01 | \n",
"
\n",
" \n",
" | 1 | \n",
" 7257 | \n",
" 241 | \n",
" DU-LA-H12-10, ROB007, | \n",
" 2 | \n",
" 2021-11-25 | \n",
" 0 | \n",
" 0 | \n",
" Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... | \n",
" NaN | \n",
" AKL Roboter 007 hat in letzter Zeit Greiferpro... | \n",
" 2021-11-29 | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-25 | \n",
"
\n",
" \n",
" | 2 | \n",
" 7317 | \n",
" 0 | \n",
" HB-HVW-EG | \n",
" 2 | \n",
" 2021-11-30 | \n",
" 0 | \n",
" 0 | \n",
" Türkontakt Haupteingang prüfen | \n",
" HB-HVW-EG | \n",
" Türkontakt defekt | \n",
" 2021-11-30 | \n",
" Instandsetzung durch Facility Management | \n",
" Türkontakt nachjustiert, Schließriegel der Tür... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2021-11-30 | \n",
"
\n",
" \n",
" | 3 | \n",
" 31673 | \n",
" 4569 | \n",
" HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC | \n",
" 2 | \n",
" 2022-03-14 | \n",
" 0 | \n",
" 0 | \n",
" Umschalter zeitweise ohne Funktion | \n",
" NaN | \n",
" Schalter defekt? | \n",
" 2022-03-14 | \n",
" Instandsetzung durch Facility Management | \n",
" Gehäuse geöffnet, Schalter geprüft, gereinigt,... | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-03-14 | \n",
"
\n",
" \n",
" | 4 | \n",
" 32908 | \n",
" 467 | \n",
" DU-LA-H09-07, Schnelllauftor Halle 9, | \n",
" 2 | \n",
" 2022-07-28 | \n",
" 5 | \n",
" 0 | \n",
" NaN | \n",
" NaN | \n",
" Warnlampe innen - Leuchtmittel defekt | \n",
" 2022-08-10 | \n",
" NaN | \n",
" ausgetauscht ..ok | \n",
" NaN | \n",
" NaN | \n",
" NaN | \n",
" 2022-07-28 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID ObjektID HObjektText \\\n",
"0 105360 4594 DU-04, Instandhaltung Küche, \n",
"1 7257 241 DU-LA-H12-10, ROB007, \n",
"2 7317 0 HB-HVW-EG \n",
"3 31673 4569 HB-LA-H1-20, Funkfernbedienung Kran 12A0357, HBC \n",
"4 32908 467 DU-LA-H09-07, Schnelllauftor Halle 9, \n",
"\n",
" VorgangsTypID VorgangsDatum VorgangsStatusId VorgangsPrioritaet \\\n",
"0 2 2023-02-16 2 0 \n",
"1 2 2021-11-25 0 0 \n",
"2 2 2021-11-30 0 0 \n",
"3 2 2022-03-14 0 0 \n",
"4 2 2022-07-28 5 0 \n",
"\n",
" VorgangsBeschreibung VorgangsOrt \\\n",
"0 NaN NaN \n",
"1 Hi,\\n\\nschaust Du Dir bitte einmal den Roboter... NaN \n",
"2 Türkontakt Haupteingang prüfen HB-HVW-EG \n",
"3 Umschalter zeitweise ohne Funktion NaN \n",
"4 NaN NaN \n",
"\n",
" VorgangsArtText ErledigungsDatum \\\n",
"0 DU Neubau Spülmaschine - Neuanschaffungg 2023-03-21 \n",
"1 AKL Roboter 007 hat in letzter Zeit Greiferpro... 2021-11-29 \n",
"2 Türkontakt defekt 2021-11-30 \n",
"3 Schalter defekt? 2022-03-14 \n",
"4 Warnlampe innen - Leuchtmittel defekt 2022-08-10 \n",
"\n",
" ErledigungsArtText \\\n",
"0 Service durch externen Dienstleiter \n",
"1 NaN \n",
"2 Instandsetzung durch Facility Management \n",
"3 Instandsetzung durch Facility Management \n",
"4 NaN \n",
"\n",
" ErledigungsBeschreibung MPMelderArbeitsplatz \\\n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 Türkontakt nachjustiert, Schließriegel der Tür... NaN \n",
"3 Gehäuse geöffnet, Schalter geprüft, gereinigt,... NaN \n",
"4 ausgetauscht ..ok NaN \n",
"\n",
" MPAbteilungBezeichnung Arbeitsbeginn ErstellungsDatum \n",
"0 NaN NaN 2023-02-01 \n",
"1 NaN NaN 2021-11-25 \n",
"2 NaN NaN 2021-11-30 \n",
"3 NaN NaN 2022-03-14 \n",
"4 NaN NaN 2022-07-28 "
]
},
"execution_count": 261,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_rem_dupl.head()"
]
},
{
"cell_type": "code",
"execution_count": 262,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2243"
]
},
"execution_count": 262,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unique_ids = np.sort(data_rem_dupl['ObjektID'].unique())\n",
"len(unique_ids)"
]
},
{
"cell_type": "code",
"execution_count": 263,
"metadata": {},
"outputs": [],
"source": [
"# dict[object_id] = (num_occurences, num_differing_object_texts, differing_object_texts)\n",
"oid_associated_objects: dict[int, tuple[int, int, Series]] = dict()\n",
"oid_coll_data = list()\n",
"\n",
"# count occurences\n",
"for ident in unique_ids:\n",
" temp = data_rem_dupl.loc[data_rem_dupl['ObjektID']==ident,'HObjektText']\n",
" num_occurences = len(temp)\n",
" differing_object_texts = temp.unique()\n",
" num_differing_object_texts = len(differing_object_texts)\n",
" oid_associated_objects[ident] = (num_occurences, num_differing_object_texts, differing_object_texts)\n",
" oid_coll_data.append([ident, num_occurences, num_differing_object_texts])\n",
"\n",
"# collected data as frame\n",
"df = pd.DataFrame(data=oid_coll_data, columns=['object_id', 'num_occurences', 'num_differing_object_texts'])\n",
"df = df.sort_values(by='num_differing_object_texts', ascending=False, kind='stable')"
]
},
{
"cell_type": "code",
"execution_count": 264,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" object_id | \n",
" num_occurences | \n",
" num_differing_object_texts | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 0 | \n",
" 484 | \n",
" 303 | \n",
"
\n",
" \n",
" | 207 | \n",
" 249 | \n",
" 11 | \n",
" 5 | \n",
"
\n",
" \n",
" | 209 | \n",
" 251 | \n",
" 10 | \n",
" 5 | \n",
"
\n",
" \n",
" | 152 | \n",
" 186 | \n",
" 24 | \n",
" 4 | \n",
"
\n",
" \n",
" | 189 | \n",
" 231 | \n",
" 17 | \n",
" 4 | \n",
"
\n",
" \n",
" | ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" | 2238 | \n",
" 12678 | \n",
" 2 | \n",
" 1 | \n",
"
\n",
" \n",
" | 2239 | \n",
" 12680 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" | 2240 | \n",
" 12681 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" | 2241 | \n",
" 12684 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
" | 2242 | \n",
" 12733 | \n",
" 1 | \n",
" 1 | \n",
"
\n",
" \n",
"
\n",
"
2243 rows × 3 columns
\n",
"
"
],
"text/plain": [
" object_id num_occurences num_differing_object_texts\n",
"0 0 484 303\n",
"207 249 11 5\n",
"209 251 10 5\n",
"152 186 24 4\n",
"189 231 17 4\n",
"... ... ... ...\n",
"2238 12678 2 1\n",
"2239 12680 1 1\n",
"2240 12681 1 1\n",
"2241 12684 1 1\n",
"2242 12733 1 1\n",
"\n",
"[2243 rows x 3 columns]"
]
},
"execution_count": 264,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 265,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAKsCAYAAADvIiygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPm0lEQVR4nOzdd5xU9b3/8fcp02c7WwBBEEXUGEtAsaBGL6ZoCupNtRtjrDH2RGMsETSiJiSiRtCYRKNGjVdTvDGam+rPiLHEgpUmsCxs3+lzzvn9MezIsruUnS0z7Ov5ePjQPfU7+93F8+b7PZ+v4XmeJwAAAADAgJkj3QAAAAAAKHUEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQPZIN6AYeZ4n1/VGuhmSJNM0iqYt2D70Xemi70oT/Va66LvSRd+VJvpt25mmIcMwtulYglUfXNdTS0tspJsh2zZVVRVRR0dc2aw70s3BdqDvShd9V5rot9JF35Uu+q400W/bp7o6IsvatmDFVEAAAAAAKBDBCgAAAAAKNOLBavXq1dp99917/fPrX/9akvTmm2/qxBNP1L777qsjjjhCixcv7nG+67pasGCBZs2apX322Uenn366VqxYMRIfBQAAAMAoNeLvWL311lsKBAL605/+1OPFsLKyMrW2tuq0007Tf/3Xf+naa6/Vyy+/rGuvvVaVlZU6/vjjJUkLFy7Ugw8+qHnz5qm+vl4333yzzjzzTP32t7+V3+8fqY8FAAAAYBQZ8WD19ttva/Lkyaqrq+u177777pPf79c111wj27Y1ZcoUrVixQnfffbeOP/54pdNp3XPPPbr00kt1+OGHS5Juu+02zZo1S08//bSOOeaY4f44AAAAAEahEQ9Wb731lnbdddc+9y1ZskQzZsyQbX/YzJkzZ+quu+5Sc3OzVq9erVgsppkzZ+b3l5eXa88999QLL7xAsAIAADs813XlONkRuK+hZNJSOp2S41C6u1TQbz1Zli3THJy3o0Y8WL399tuqra3VV77yFS1fvlw777yzzjnnHM2aNUuNjY2aOnVqj+O7R7bWrFmjxsZGSdLYsWN7HbN27dqC2mXbI/76mSzL7PFvlA76rnTRd6WJfitd9N3AeZ6ntrZmxWKdI9QCQxs2dK+HxAN66aDfNheJlKmysmab16vqz4gGq3Q6reXLlysUCumyyy5TOBzWE088oTPPPFP33nuvkslkr/ekAoGAJCmVSimRSEhSn8e0t7cPuF2maaiqKjLg8wdbeXlopJuAAaLvShd9V5rot9JF322/NWvWKJGIqaKieuPzUWEPhcDo4ymVSqmzs03BoE/jxo0r6GojGqz8fr9eeOEF2badD0cf+chH9N5772nx4sUKBoNKp9M9zkmlUpKkcDisYDAoKRfQuv+7+5hQaOB/QLuup46O+IDPHyyWZaq8PKSOjoQchwXcSgl9V7rou9JEv5Uu+m5gXNdRc3OLotEqhUJlI9IGw8j1n+O48hj4KBn0W0+hkF+O46m5uUWBQFSmafXYX14e2uYR9RGfChgOh3ttmzp1qv7+97+roaFBTU1NPfZ1f11fX69sNpvfNnHixB7HTJs2raB2FdNK1I7jFlV7sO3ou9JF35Um+q100XfbJ5PJSJL8/sCItaH7oZyH89JCv/XW/XuUSmXk8w185HdEJzQvXbpU++23n5YsWdJj+2uvvaZdd91VM2bM0IsvvijHcfL7nnvuOU2ePFk1NTWaNm2aotGonn/++fz+jo4OvfHGG5o+ffqwfQ4AAICRUOg7IQAG7/doRIPV1KlTtdtuu+naa6/VkiVL9N5772nevHl6+eWX9Y1vfEPHH3+8urq6dOWVV+rdd9/VY489pvvuu09nnXWWpNxUwhNPPFHz58/XM888o6VLl+pb3/qWGhoaNHv27JH8aAAAAMAOxxvgUNdAzxup6w7EiAYr0zR15513au+999aFF16oOXPm6JVXXtG9996r3XffXTU1NVq0aJGWLVumOXPm6Cc/+Ykuu+wyzZkzJ3+NCy64QCeccIKuuuoqffnLX5ZlWVq8eDGLAwMAAJSY3//+SR166HStXbtGkrR48V069NAPZyHFYl264oqLdNRRh+iTn/y4Vq1aqYcf/pU+97lP6MgjD9HPfraooPufcMJndMMN1xR0jaF26KHTtXjxXVs85rzzvq7zzvv6oN63qWmdLrvsQjU2bl/l7YGetzXpdFo//vGtevrppwb1uoUY8XesqqurNXfu3H73f/SjH9VDDz3U737LsnTppZfq0ksvHYrmAQAAYIR85jOf14EHHpz/+qmnfqe///2vuuiiyzV58i6qrq7WT35ymw466BB9+csnaezYwqq6zZ17syKRaKHNHnEXX3zFoF9zyZJ/6Z///Lu+9a3LhuW8rWlu3qCHHnpA3/nO9wb1uoUY8WAFAAAA9KWurl51dfX5r7uX05kz5wQZhqHGxrVyXVeHHfZx7bvv/gXfb+rUwoqfFYvJk3cZ6SaMSqzGBwAAsIM54YTPaPHiu3T77T/SZz5ztI488hBddNF5WrlyhSTphhuu0QknfKbHOWvXrtGhh07X73//pCTp3/9eokMPna4XX3xB559/lo488hAdd9wxevLJx7VhwwZ95zuX6uMfz217+OEHtruNruvqZz9bpOOOO0ZHHXWIvv3ti9XR0XMd0k2nAp533td1zz0/lSTNmjVDJ5zwmfxnmDfvuh5TBv/2t//TGWecpCOPPFif/ewn9MMfzs+vf9p93S9+8fO699679elPH6UvfOFzam9v6zEVsPv78eyzf9JVV12m2bMP0yc/+XHdeOP1isc/XJYnm83qjjt+rDlzPr3x+3y+nnrqdz2mNG6rDRs2aO7ca3XcccfoyCMP0Zlnnqy///0vvY6Lx2O67rrvavbsWTr22Nn64Q9vVjKZzO/ffCqg67r6xS9+pi9+8fP6+McP0n//9+f1yCMP9rrun/70vzrjjJN01FG5fl24cIHS6bR+//snNXfutZKk//7vz27zdMktnffkk4/rxBO/oI9//CAdd9wxWrz4rnzF73XrGvXJTx6h888/K398Op3WSSd9QV/96glavnyZ/vu/PytJmjv32vzPQVtbm6677rv67Gc/oSOPPFinnvoVPfXU77aprYOBYAUAALAD+vWvf6UVK5bpO9/5nq644iq99dabA3p/6Hvf+44OOWSWbrrpVk2YsLPmz5+nCy44S1Om7Kp5827W7rtP04IFt+qNN17brusuXLhA9957t4455rOaO3e+KioqdeedP+n3+IsvvkLHHvs5SdKdd96ra6+dpxtuuFmSdMopZ+jOO++VJP3xj0/p29++RDvvPElz587X6aefqf/939/riisu7lHooLFxrf7ylz/r2mtv0Jlnnq2Kiso+73vzzXPV0DBO8+bN11e/erJ+97sn9POf35Pf/4Mf3KBf//pXOv74L2jevPmqrq7WD35ww3Z9LySppaVZZ555sl566d8688yzdcMNN6mhYZy+/e1L9Mc//qHHsY888pC6urp03XU36qSTTtWTTz6um276fr/Xnj9/nhYvvlNHH/0p3XTTbTryyP/SggW39ngn7fHHH9U111yp3Xabqrlz5+vkk0/Tb37ziG655UYddNChOuWUMyRJN9xws0499Wvb9Jn6O+8Xv7hXP/jBDZo+/QDddNNtOv74L+j++3+um2/OvR5UX9+g88+/SC+99KJ+97snJEl3332HVq1aqauv/r7GjRvfo+/nzs3993XXXaVly97TJZd8Wzff/CNNnbq7vv/97+nf/16yedOGBFMBAQAAdkBlZeWaN+8WWVZuwdPVqz/Q4sV3qb29bbuuc8wxn9WXvnSiJCkUCusb3zhNe+yxl8444yzZtqnddpumv/3tL3rttVe1554f2aZrdnZ26pFHHtQXvvAVnXFGblTiwAMP0vr16/X88//s85zJk3dRbW2dJOkjH9lbkvIjQuPH76SPfGRveZ6nO+/8sQ488GBdffX1+XN32mmiLrzwHD333D908MGHSpIcx9G5535TM2YcuMW2HnzwITrvvAslSdOnH6AXXnhe//zn3/SNb5yn1as/0B/+8Fude+4389+jAw88SC0tLfrXv57bpu9FtwcfvF9tba26//5HNG7ceEm5YPLNb56j22//of7rvz4h08yNiUyYsLNuvPEWmaapgw46RIZh6sc/vlWnnvo17bzzpB7XXblyhZ588nGddda5OvHEUzd+poMlGfr5z+/VnDknqKysXPfc81MddtjHdcUV382fmxut+q0ikYjGj99JkjR16u7b/C5bVVVVr/O6urp0332L9bnPHacLL7xEknTAATNVUVGhG2/8vr74xa9ql12m6JhjPqu//OVZLVz4I1VWVumhh+7XmWeeo913n5a/npTr++4pnC+//G+dcsoZOuywIyRJ++33MZWXV8iyhifyMGIFAACwA5o2bc98qJKUDyWJRLK/U/q0994fzf93TU2NJGmvvfbOb+se6ens7Nzma77++n+UzWZ16KGH99h+5JH/tV1t29zKlSvU1LROhx56mLLZbP6ffffdX5FIRC+88HyP46dM2XWr19xrr4/2+Lq2ti7/Pfz3v5fI8zx9/OM92z179ie2u+0vvfSi9tpr73yo6vaJT3xKzc3NWrFieX7bxz9+VD5kSdLhh39cnufpxRdf6HXdf//7BXmep0MO6fk9OfTQw5ROp/TKKy9r1aqVamlpzgeSbl/4wlf0s589MKjVtl977VUlk8le7TnkkMMkSUuWfNhHl112lTxP+va3L9ZHP7qvvvrVk7d47f32m6577vmpvvvdK/T73z+ptrZWnXfehdpnn30Hrf1bwogVAADADigYDPb4uvtB3PPc7bpOOBzZ6rW3V0dHhySpqqqyx/aamjEFXbd7NO6WW27ULbfc2Gv/hg3re3xdXV2z1Wv29X3s/h62tbVKkqqqqrf7upvr7OzQuHG9i2d0X6urq7PXtm7d9+/s7Oh1fnfBj5NO+kKf992wYb0qKyt7XGcodb9Hd+ml3+y3Pd3GjBmjGTMO0DPPPK2ZMw/uESb7cu21c/Xzn9+jZ599Wn/+859kmqamTz9Ql1xyRa/AOhQIVgAAAKOMYRhy3Z4BK5GI93P04Ot+kG9padHEiZPy2zcvXrG9otEySdI553xT++//sV77y8rKC7r+5rpHAVtbW1Rf35Df3trast3XKisrV3Nzc6/tzc0bJKnHO2CbB6iWltx5fQWj7u/JggV3KhwOS5Isy5Tj5Pq/vr5Bra25gNgdFLt1dLTrrbfe7DVqV4ju9lx99fc1ceLEXvs3/QxLlvxLzz77J+2221T97GeLdMQRR2mnnSZs4dpRnXPOBTrnnAu0cuVy/e1vf9HPfrZIt9xyk265ZcGgfYb+MBWwSBmG5GQzal7fItfJyjBGukUAAGBHEQ5H1NbWplQqld/26quvDNv9P/KRjyoQCOjPf/5Tj+3/+MdfC7ruzjtPUlVVtdauXaNp0/bM/1NbW6c77viJ3n57aUHX39zee+8jy7L0l7/8ucf2v/zl2e2+1n777a/XX/+P1qxZ3WP7H//4B9XU1PQIFM8/3/P9rT/96X9lGIb22693mNxvv1wZ+ra2tvz3Y4899lR7e7t++tM71N7erp13nqTKykr97W//1+vel1zyTaXT6a2OFvVn8/P22usj8vl82rChqUcf2bZPd9zxk/x7c7FYl+bNu0777fcx3X77IlVWVumGG67J/4XA5tdtbFyr4447Jv8zNXHiJH31q6do+vQD1dTUOKC2by9GrIqQ42S0bs1aLV54v5a/v0q7TZ2s087+quoa6mSYdBkAACjMIYccqkceeVDz5l2nz352jt5//1396le/7PFO1lAKh8M69dSv6e6771AwGNLHPjZDzz33D/3jH38r6LqWZenrXz9HN988V5Zl6pBDZqmzs0v33bdITU1N2n33PQbpE+SMH7+TPv3pz+quu36ibDajXXedqr/+9c/5z2EY2x5GvvjFr+p///f3uvDCc3T66V9XRUWlnnrqt3rxxRf07W9f3SNILF36hm688XrNnv1JvfHG67rnnrt07LGf04QJvUeAdtllV33iE5/SD37wfTU25gLnBx+s1B13/ERjx47ThAkTZVmWTj/9LN16602aP/9GHX74EVq1apXuvvsOff7zx6uysjI/0vSXvzyrgw46tFeRjP70dd5XvnKyFi26U7FYTPvt9zGtX9+kRYvulGEY2nXXqZKkBQtuVVtbq370ozsUDod18cWX69JLL9SDD96vr3zlJEWjuYWcX3zxX9p558naa6+PqLa2Tj/84XzFYjGNH7+Tli59U//v//0jX7RjqPGUXmQMw9O//vGCrrpobn7b8vdW6k9P/VW33HGt9jtgf7nbNzUaAACghxkzZurccy/UI488qL/+9c/affdpmjt3vs4++/Rha8NJJ52mUCikhx/+lX7961/pIx/5qM4770LNn9/73ajt8ZnPfF7hcEQPPPBzPfHEbxQKhbT33vvky3QPtm9961KFwyH96le/VCwW0/TpM3TKKWfo3nvvVjgc2ubr1NSM0R133KM77/yJfvjD+fmgduONt/Qq8nHKKWfo7beX6rLLLlQ0GtVXvnKyTjvtzH6v/e1vf0+//OXP9Pjjj6qpaaGqq2t01FFH6+tfPzsfpo877r8VCoX0wAM/1+9+9z8aM6ZOX/7ySflQsv/+0zV9+gG6667b9eKLL+jmm3+0TZ+rr/POPPNs1dSM0WOP/VoPPPBzlZWVa/r0A/T1r5+raDSq5577h373uyd09tnn50fqDjroUB155GwtWnSnDj74UE2aNFlf/OJX9cQTj+kf//i7nnzyj5o792bdddftWrToTrW3t6murl6nnXbmsAUrw9u0oD8kSY7jqqUlNiL3TsQ69YVPn654LNFrX0VluR544qcKhqMj0DJsD9s2VVUVUWtrTNksSbiU0HeliX4rXfTdwGQyaTU3r1VNzVj5fINXsW172bY5qvuto6Nd/+///VMHHnhQj3egbr/9R/rd757Q73//zIi06+tfP1UVFRX9hp/R3m+b29LvU3V1RJa1bSOPjFgVmZbm1j5DlSS1t3WorbVdDQQrAABQhFzX7VUUoy+2vWM8ggYCQf3wh/O122676wtf+LJCoZD+859X9MgjD+qkk06TJGWz2a1exzCMQZmGuXLlCv3nP6/ovffe0Wc+8/mCr9cfz/PkOM5WjzNNc8DvZpWiHeOnegeytSIVBlUsAABAkZo37zr94Q+/3epxv/71E9u8yGwxCwQC+tGPFuruu+/Q3LnXKJFIavz48TrvvAt13HG58uZHHDFzq9fZd9/99ZOf/LTg9vz973/VPffcpd12211f+tJJBV+vPy+99KIuuOAbWz3utNPOzC8APRowFbAPIzoVMN6pLx97pjo7unrtq6mt1s8fW6hgiBGrYsfUltJF35Um+q100XcDU6xTAdeuXZNfS2pLpkzZTT6fbwhbVjyWLn1jq8eEw+EeZeeHWqFTAePxmFauXLHV48aMqdWYMbUDvs9wYSrgDioSLdN1N1+ui75xtTbNvJZl6fr531Y4UibXJQsDAIDiM3bsuB1iJGowTZu250g3YdCFw5Ed8nMVimBVZFxX2nv/j+qh3y/Sr+59VO+9s1y777mrvnTycaqsqSZUAQAAAEWIYFWEDMNSTW29LvzOObJMyXUNZbIEKgAAAKBYjZ4yHSXJVHlFmTxRsAIAAAAoZgQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAACAIvKzny3Seed9faSbge1EsAIAAACKxMMPP6DFi+8a6WZgACi3DgAAAEiS50nphAw3K8+0JX9IMoanOvP69U268cbv69VXX9LEiTsPyz0xuBixAgAAABKdMpvel9WySmbb2ty/m96XEp3Dcvu33lqqsrIy/exnv9Kee35kWO6JwcWIFQAAAEa3RKfMtjW9t7tZmW1r5GqcFCob0iYceuhhOvTQw4b0HhhajFgBAABg9PI8mR1NkqTNJ/11f212NOWmCQJbQLACAADA6LXxnar+3qQyJBluVkonhrNVKEEEKwAAAIxahpsd1OMwehGsAAAAMGp55raVHNjW4zB6EawAAAAwevlD8kxb/b1B5Ukfll4HtoBgBQAAgNHLMOSW10lSr3DV/bVbXjds61mhdDGmCQAAgNEtVCZX43LV/zZ9l8q0c6FqiEutb+7KK68Z1vthcBCsAAAAgFCZ3GA0XyUwP/2PkSpsI4IVAAAAIOVCVCDc7/tWwJbwjhUAAAAAFIhgBQAAAAAFIlgBAAAAQIEIVgAAAABQIIIVAAAAABSIYAUAAAAABSJYAQAAAECBWMcKAAAAGGEdHe26667b9c9//l2xWExTpuyqb3zjfO2zz74j3TRsI0asAAAAgBH2ve99R6+//pquuWauFi26T7vvPk0XXXSuVqxYPtJNwzYiWAEAAACS5HlSKi4j0SGl4rmvh8EHH6zSCy88r4svvlz77LOvJk6cpG9+8xLV1tbp6aefGpY2oHBMBQQAAAASnTI7mmS42fwmz7TlltdJobIhvXVFRaVuvvmH2n33PfLbDMOQ53nq6Ggf0ntj8DBiBQAAgNEt0SmzbY20SaiSJLnZ3PZE55DevqysTAcddKj8fn9+27PP/kmrV3+gAw44aEjvjcFDsAIAAMDo5XkyO5okScZmu7q/Njuahm1aoCS9+urLmjfvOs2adbgOPfSwYbsvCkOwAgAAwOiVTshws71CVTdDyk0PTCeGpTl/+9v/6aKLztOee+6la665YVjuicFBsAIAAMCoZWw+/a/A4wrx6KMP6corL9PMmYfo5pt/pEAgOOT3xOCheAUAAABGLc/ctsfhbT1uoH7zm0d0220364QTvqQLLrhIpsn4R6khWAEAAGD08odyoamf6YCeJJm25A8NWRNWrlyhH/1ovg477OM66aRT1drakt8XCAQVjUaH7N4YPAQrAAAAjF6GIbe8TmbbGnnqWcCiu1yFW14nGf29hVW4//u/Z5TNZvXXv/5Zf/3rn3vs+9SnjtWVV14zZPfG4CFYAQAAYHQLlcnVuFz1v03fpRqmdaxOPvl0nXzy6UN6Dww9ghUAAAAQKpMbjOarBHrd0/+GcKQKOxaCFQAAACDlQlQgrOFbsQo7EsqNAAAAAECBCFYAAAAAUCCCFQAAAAAUiGAFAAAAAAUiWAEAAABAgQhWAAAAAFAgghUAAAAAFIhgBQAAAAAFYoFgAAAAYIS1trboJz+5Tc8//5xSqZT23Xd/nXPONzV58i4j3TRsI0asAAAAgBF2+eUXafXq1Zo/f4HuvvvnCgQCuvDCc5RMJke6adhGBCsAAABAkjxPSsVkxDukVCz39TBob2/T2LHjdNllV2ratD01adJknXLK19TcvEHLlr03LG1A4ZgKCAAAACQ6Zbavk+Fm85s805ZbUS+Fyob01hUVlbr22rn5r1tamvXgg79QXV29Jk1iKmCpIFgBAABgdEt0ymxd3Xu7m5XZulquxg95uOp200036MknfyO/368bb7xVoVBoWO6LwjEVEAAAAKOX58lsXydJMjbb1f212b5u2KYFfuELX9aiRb/Q0Ud/St/+9sV6662lw3JfFI5gBQAAgNErHZfhZnuFqm6GlJsemI4PS3MmT95F06btocsuu1Jjx47Xo48+NCz3ReEIVgAAABi1DMcZ1OMGorW1RU8//ZScTe5hmqYmTZqsDRvWD9l9MbgIVgAAABi1PMsa1OMGYsOG9br22qv08sv/zm/LZrN6++2lmjRp8pDdF4OLYAUAAIDRyx+WZ9rq7w0qT7nqgPKHh6wJu+46VQcccJBuueVGvfLKS3r//Xd1/fVXq7OzU1/4wleH7L4YXAQrAAAAjF6GkSupLvUKV91fuxX1ktHfW1iD0QRD1103T/vvP0NXX/1tnXnmKers7NDtt9+thoaGIbsvBhfl1gEAADC6hcrkanyu+t8m61hpmNaxkqRoNKpLLrlCl1xyxZDfC0ODYAUAAACEyuQGo7kqgY6Te6fKHx7SkSrsWAhWAAAAgJQLUYFIv+9bAVvCO1YAAAAAUCCCFQAAAAAUiGAFAAAAAAUiWAEAAABAgQhWAAAAAFAgghUAAAAAFIhgBQAAAAAFIlgBAAAAQIEIVgAAAEARWblyhWbPnqXf//7JkW4KtgPBCgAAACgS2WxW1133XSUSiZFuCraTPdINAAAAAIqC50npuAzHkWdZkj8sGcawNmHx4rsUDoeH9Z4YHAQrAAAAINEps32dDDeb3+SZttyKeilUNixNePnlf+t//ucx3Xvv/Tr++GOH5Z4YPEwFBAAAwOiW6JTZulraJFRJktxsbnuic8ib0NnZqeuvv1oXXnip6usbhvx+GHwEKwAAAIxeniezfZ0kafNJf91fm+3rctMEh9D8+fP0kY/sraOP/uSQ3gdDh6mAAAAAGL3S8R7T/zZnSLmRrHRcCkSGpAlPPfU7vfrqy7rvvgeH5PoYHgQrAAAAjFqG42zzcUM1ZvW73z2hlpZmHX/8MT22z58/Tw888Av98pcPD9GdMZgIVgAAABi1PMsa1OMG4uqrr1cqleqx7UtfmqMzzjhLRx119JDdF4OLYAUAAIDRyx+WZ9qSm+31jpWk3CiVaedKrw+R2tq6PrdXVVWroWHskN0Xg4viFQAAABi9DCNXUl3qNdWv+2u3on7Y17NC6WHECgAAAKNbqEyuxueq/21ayGKY17Ha1N//vmTY74nCEKwAAACAUJncYDRXJdBxcu9U+cOMVGGbEawAAAAAKReiApEhq/6HHRvvWAEAAABAgQhWAAAAAFAgghUAAAAAFIhgBQAAAAAFKqpgtWzZMu2333567LHH8tvefPNNnXjiidp33311xBFHaPHixT3OcV1XCxYs0KxZs7TPPvvo9NNP14oVK4a76QAAAABGsaIJVplMRpdcconi8Xh+W2trq0477TRNmjRJjz76qM4//3z96Ec/0qOPPpo/ZuHChXrwwQf1/e9/Xw899JAMw9CZZ56pdDo9Eh8DAAAAwChUNMHqxz/+sSKRSI9tDz/8sPx+v6655hpNmTJFxx9/vE499VTdfffdkqR0Oq177rlH559/vg4//HBNmzZNt912m9atW6enn356JD4GAAAAgFGoKILVCy+8oIceekg33XRTj+1LlizRjBkzZNsfLrc1c+ZMLVu2TM3NzVq6dKlisZhmzpyZ319eXq4999xTL7zwwrC1HwAAAChEY+NaHXro9F7/PPnk4yPdNGyjEV8guKOjQ5dddpmuuuoqjR07tse+xsZGTZ06tce2uro6SdKaNWvU2NgoSb3Oq6ur09q1awtql22PfOa0LLPHv1E66LvSRd+VJvqtdNF3A+O6xkg3QYbx4b89VtQt2LvvviO/P6CHH/6f/PdWkqLR6KDeh37rn2UZBWWAEQ9W11xzjfbdd1995jOf6bUvmUzK7/f32BYIBCRJqVRKiURCkvo8pr29fcBtMk1DVVWRrR84TMrLQyPdBAwQfVe66LvSRL+VLvpu+ySTljZsMAt+EBwMO1Io9jxPSsUlJytZthQIyzCGJ8QuX/6edt55ZzU01A3L/XakfiuU6xoyTVMVFWEFg8EBX2dEg9Xjjz+uJUuW6Mknn+xzfzAY7FWEIpVKSZLC4Q8/eDqd7vFNSKVSCoUG/ge063rq6Ihv/cAhZlmmystD6uhIyHHckW4OtgN9V7rou9JEv5Uu+m5g0umUXNeV43jKZkfm+2YYuf5zHHfHGPlIdMhsWyfDzeY3eaYtp7JeCpUP+e3feedt7bzz5CHvzx2u3waB43hyXVft7XElEk6PfeXloW0OoSMarB599FE1NzfriCOO6LH9e9/7nhYvXqxx48apqampx77ur+vr65XNZvPbJk6c2OOYadOmFdS2kfpDqi+O4xZVe7Dt6LvSRd+VJvqtdNF328dxRv6JuPuhfId4OE90yGxZ3Xu7m5XZslputYY8XL333nuqqRmjc875mlatWqmddpqgU0/9mg488KBBvc8O1W+DrNC/qBjRYDV//nwlk8ke244++mhdcMEF+vSnP63f/e53evDBB+U4jizLkiQ999xzmjx5smpqalRWVqZoNKrnn38+H6w6Ojr0xhtv6MQTTxz2zwMAAIAS43ky29ZJkjaf9GdI8iSZ7evkBsukIZoWmMlktGrVCoVCQZ1zzjcVCoX1xz/+XpdccoFuu+12TZ9+wJDcF4NrRINVfX19n9tramo0fvx4HX/88Vq0aJGuvPJKfe1rX9Orr76q++67T9dee62k3LtVJ554oubPn6/q6mqNHz9eN998sxoaGjR79uzh/CgAAAAoRel4j+l/mzOk3DtX6bgUGJp38H0+n5566v9kWVa+dsC0aXto+fLl+tWvfkmwKhEjXrxiS2pqarRo0SLdcMMNmjNnjmpra3XZZZdpzpw5+WMuuOACZbNZXXXVVUomk5oxY4YWL17cq6AFAAAAsDnD6T9UbX7cUM6e66s+wJQpu+r55/85hHfFYCq6YPXWW2/1+PqjH/2oHnrooX6PtyxLl156qS699NKhbhoAAAB2MJ61bY/D23rcQLz77js6++zTNX/+j7XPPvvmty9d+oYmT95lyO6LwUWdRQAAAIxe/rA80+53NMrTxlDlDw9ZE3bZZYomT56iW26Zp1deeVkrVizXj398q15//T86+eQzhuy+GFxFN2IFAAAADBvDkFtZL7NltTz1LGDRHbbcivohK1whSaZp6qabbtOdd/5YV199uTo7u7T77rvrtttu15Qpuw7ZfTG4CFYAAAAY3ULlcquVqw64aSELy86FqmFYx6qqqkrf/vbVQ34fDB2CFQAAABAqz5VUT8dzhSq6p/8N4UgVdiwEKwAAAEDKhahAZEir/2HHRfEKAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBALBAMAAAAjLDW1hb95Ce36fnnn1MqldK+++6vc875piZP3kWS9M47b+lHP7pFS5e+ofLyCp1wwpf0la+ctM3nY+gxYgUAAACMsMsvv0irV6/W/PkLdPfdP1cgENCFF56jZDKp9vY2fetb52rChIlatOgXOuOMs7Ro0Z363e+e2KbzMTwYsQIAAAAkOY6j/7z0ulo2tKp6TJX23m8vWZY15Pdtb2/T2LHjdMopZ2iXXaZIkk455Ws67bSvaNmy97Rkyb/k8/l18cVXyLZtTZo0WR98sEr333+fjjnms1s9f4899hryzwCCFQAAAKC/PftP3T7/p1rftCG/rbZujM695OuadeTBQ3rviopKXXvt3PzXLS3NevDBX6iurl6TJu2ixYvv0j777Cfb/vDRff/9p+sXv7hXra0tqqqq3uL5GB5MBQQAAMCo9rdn/6lrLpvbI1RJ0vqmDbrmsrn627P/HLa23HTTDfrsZz+hP//5GV1xxXcVCoW0fn2T6urqexw3ZkytJGndusatno/hQbACAADAqOU4jm6f/9MtHnP7LT+V4zjD0p4vfOHLWrToFzr66E/p29++WG+9tVTJZFJ+v7/Hcd1fp1LprZ6P4UGwAgAAwKj1n5de7zVStbn16zboPy+9PiztmTx5F02btocuu+xKjR07Xo8++pACgYDS6Z4BqvvrUCi41fMxPAhWAAAAGLVaNrQO6nED0draoqeffqrHqJhpmpo0abI2bFivurp6NTev73HOhg25r2tr67Z6PoYHwQoAAACjVvWYqkE9biA2bFiva6+9Si+//O/8tmw2q7ffXqpJkyZrn3321yuvvNwjOL344guaOHFnVVVVb/V8DA+CFQAAAEatvffbS7V1Y7Z4TG39GO2939CVLN9116k64ICDdMstN+qVV17S+++/q+uvv1qdnZ36whe+qmOP/axisZhuvPF6LVv2vn7/+yf18MO/0kknnbZN52N4EKwAAAAwalmWpXMv+foWjzn34q8P6XpWhmHouuvmaf/9Z+jqq7+tM888RZ2dHbr99rvV0NCgqqpq3Xrrj7Vy5QqdccaJuvfeu3XuuRfoU586dpvOx/AwPM/zRroRxcZxXLW0xEa6GbJtU1VVEbW2xpTNuiPdHGwH+q500XeliX4rXfTdwGQyaTU3r1VNzVj5fP6tnzBEbNvcYfqtz3Ws6sfo3IuHfh2r4bYj9dtg2NLvU3V1RJa1bWNRLBAMAACAUW/WkQfr4MMP1H9eel0tG1pVPaZKe++315COVGHHQrACAAAAlJsWuO/0j450M1CieMcKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAIASRXFnoHCD9XtEsAIAACgx3ZXq0unUCLcEKH3dv0eWVVhdP6oCAgAAlBjTtBQKRdXV1SpJ8vsDMgxj2NvhuoYch1GzUkO/5Xiep3Q6pa6uVoVCUZlmYWNOBCsAAIASVF5eLUn5cDUSTNOU67LQbKmh33oKhaL536dCEKwAAABKkGEYqqioUVlZlRwnO+z3tyxDFRVhtbfHGf0oIfRbT5ZlFzxS1Y1gBQAAUMJM05Rp+of9vrZtKhgMKpFwlM0y+lEq6LehQ/EKAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBAIx6smpubdemll2rmzJnab7/99PWvf13vvvtufv+bb76pE088Ufvuu6+OOOIILV68uMf5rutqwYIFmjVrlvbZZx+dfvrpWrFixXB/DAAAAACj2IgHq7PPPlurVq3S3XffrUceeUTBYFCnnnqqEomEWltbddppp2nSpEl69NFHdf755+tHP/qRHn300fz5Cxcu1IMPPqjvf//7euihh2QYhs4880yl0+kR/FQAAAAARhN7JG/e2tqqnXbaSWeffbZ22203SdI555yjz33uc3rnnXf03HPPye/365prrpFt25oyZYpWrFihu+++W8cff7zS6bTuueceXXrppTr88MMlSbfddptmzZqlp59+Wsccc8xIfjwAAAAAo8SIjlhVVVXp1ltvzYeqDRs2aPHixWpoaNCuu+6qJUuWaMaMGbLtD/PfzJkztWzZMjU3N2vp0qWKxWKaOXNmfn95ebn23HNPvfDCC8P+eQAAAACMTiM6YrWp7373u3r44Yfl9/t1xx13KBwOq7GxUVOnTu1xXF1dnSRpzZo1amxslCSNHTu21zFr164tqD22PeKzJGVZZo9/o3TQd6WLvitN9Fvpou9KF31Xmui3oVM0weqUU07RF7/4Rf3qV7/SueeeqwceeEDJZFJ+v7/HcYFAQJKUSqWUSCQkqc9j2tvbB9wW0zRUVRUZ8PmDrbw8NNJNwADRd6WLvitN9Fvpou9KF31Xmui3wVc0wWrXXXeVJF1//fV6+eWX9ctf/lLBYLBXEYpUKiVJCofDCgaDkqR0Op3/7+5jQqGB/7C4rqeOjviAzx8slmWqvDykjo6EHMcd6eZgO9B3pYu+K030W+mi70oXfVea6LftU14e2ubRvRENVs3NzXruuef0qU99SpZlSZJM09SUKVPU1NSkhoYGNTU19Tin++v6+npls9n8tokTJ/Y4Ztq0aQW1LZstnh80x3GLqj3YdvRd6aLvShP9Vrrou9JF35Um+m3wjejkyqamJl188cX617/+ld+WyWT0xhtvaMqUKZoxY4ZefPFFOY6T3//cc89p8uTJqqmp0bRp0xSNRvX888/n93d0dOiNN97Q9OnTh/WzAAAAABi9RjRYTZs2TYceeqiuvfZaLVmyRG+//bYuv/xydXR06NRTT9Xxxx+vrq4uXXnllXr33Xf12GOP6b777tNZZ50lKfdu1Yknnqj58+frmWee0dKlS/Wtb31LDQ0Nmj179kh+NAAAAACjyIhOBTQMQz/84Q91yy236MILL1RnZ6emT5+u+++/X+PGjZMkLVq0SDfccIPmzJmj2tpaXXbZZZozZ07+GhdccIGy2ayuuuoqJZNJzZgxQ4sXL+5V0AIAAAAAhorheZ430o0oNo7jqqUlNtLNkG2bqqqKqLU1xhzYEkPflS76rjTRb6WLvitd9F1pot+2T3V1ZJuLVwzaVMBXX31Vf/zjH9XR0TFYlwQAAACAkjCgYLV+/XqdfPLJuv322yVJP//5z/XFL35RF1xwgY4++mi98847g9pIAAAAAChmAwpWP/jBD/T+++/rox/9qFzX1U9/+lMdfPDBevzxx7XrrrvqlltuGex2AgAAAEDRGlCw+vvf/67LL79cs2bN0ssvv6wNGzbo5JNP1rRp0/S1r31NS5YsGex2AgAAAEDRGlCwisfjamhokCT95S9/kd/v18yZMyXlSqBTDwMAAADAaDKgYDVp0iQtWbJE6XRaTz31lA444AAFAgFJ0hNPPKFJkyYNZhsBAAAAoKgNKFidddZZ+slPfqKDDjpIq1at0mmnnSZJ+u///m898cQTOuOMMwa1kQAAAABQzAa0QPCnP/1p1dfX68UXX9QBBxygfffdV5I0ffp0XXDBBZo1a9ZgthEAAAAAitqAgpUkfexjH9PHPvYxSVIqlZLf79fll18+aA0DAAAAgFIx4AWC33//fV144YU64IADtN9+++mNN97QNddco1/84heD2T4AAAAAKHoDClZvvvmmTjjhBL3++uv6zGc+k68C6PP5NHfuXP3mN78Z1EYCAAAAQDEb0FTAm266SR/5yEd0zz33SJLuv/9+SdKVV16pZDKpn//855ozZ87gtRIAAAAAitiARqxefvllnXrqqbJtW4Zh9Nj36U9/WsuXLx+MtgEAAABASRhQsAoEAkomk33ua2trk9/vL6hRAAAAAFBKBhSsDjnkEC1YsECNjY35bYZhKBaL6Z577tHBBx88aA0EAAAAgGI3oHesLr30Un3xi1/UJz/5SU2bNk2GYejGG2/UsmXL5Hmebr311sFuJwAAAAAUrQGNWI0dO1b/8z//o1NOOUWe52nixImKx+M69thj9dhjj2nChAmD3U4AAAAAKFoDXiC4qqpKJ554or71rW9Jyr1b1djYqLq6ukFrHAAAAACUggGNWHV0dOi0007TSSedlN/26quv6vOf/7zOOeccJRKJQWsgAAAAABS7AQWr+fPn65133tFFF12U3zZz5kwtXLhQr732mhYsWDBoDQQAAACAYjegYPXss8/q8ssv19FHH53f5vf7deSRR+qiiy7SH/7wh0FrIAAAAAAUuwEFq1gspvLy8j731dTUqLW1taBGAQAAAEApGVCw2muvvfToo4/2ue+xxx7T7rvvXlCjAAAAAKCUDKgq4Nlnn60zzzxTxx13nGbPnq2amhq1tLTomWee0euvv64777xzsNsJAAAAAEVrQMHqkEMO0R133KEFCxZowYIF8jxPhmFojz320MKFC3XYYYcNdjsBAAAAoGgNeB2rww8/XIcffrhSqZTa2tpUVlamcDg8mG0DAAAAgJIw4GAlSe3t7UokEnJdV21tbWpra8vvGzduXKFtAwAAAICSMKBgtXz5cl1xxRV65ZVX+j3mzTffHHCjAAAAAKCUDChYXX/99Vq+fLnOO+88NTQ0yDQHVFwQAAAAAHYIAwpWS5Ys0Q033KBjjz12sNsDAAAAACVnQENN0WhUFRUVg90WAAAAAChJAwpWn/vc53T//ffL87zBbg8AAAAAlJwBTQUMhUJ68cUXNXv2bO29994KBoM99huGoblz5w5KAwEAAACg2A0oWP3mN79RWVmZXNftszKgYRgFNwwAAAAASsWAgtWzzz472O0AAAAAgJJVUJ1013W1dOlS/fWvf1VXV1ePBYIBAAAAYLQY0IiVJP3P//yPbrnlFjU1NckwDD3yyCP68Y9/LJ/Pp1tuuUV+v38w2wkAAAAARWtAI1a///3vdfnll2vmzJm67bbb8tUBjz76aP31r3/VwoULB7WRAAAAAFDMBjRideedd+pLX/qSrrnmGjmOk99+3HHHqbm5WQ8//LAuvPDCwWojAAAAABS1AY1YLVu2TLNnz+5z3z777KN169YV1CgAAAAAKCUDClY1NTV67733+tz33nvvqaampqBGAQAAAEApGVCw+vSnP60FCxboqaeeUjqdlpRbu+q1117TwoUL9clPfnJQGwkAAAAAxWxA71hdeOGFevvtt3XhhRfKNHPZ7KSTTlI8Htf06dP1zW9+c1AbCQAAAADFbEDByu/3a9GiRfrHP/6h//f//p/a2tpUVlamAw44QIcffrgMwxjsdgIAAABA0RpQsPrGN76hk08+WYcccogOOeSQwW4TAAAAAJSUAb1j9cILL8iyrMFuCwAAAACUpAEFq0MOOUS//vWvlUqlBrs9AAAAAFByBjQVMBAI6A9/+IOefvpp7bTTTr3KqxuGofvuu29QGggAAAAAxW5AwaqxsVH77bdf/mvP83rs3/xrAAAAANiRDShY/eIXvxjsdgAAAABAyRrQO1YAAAAAgA8NaMTqyCOP3OpaVc8888yAGgQAAAAApWZAweqAAw7oFaxisZj+85//KJVK6ZRTThmUxgEAAABAKRhQsLrxxhv73J7JZHTeeecpkUgU1CgAAAAAKCWD+o6Vz+fTSSedpEceeWQwLwsAAAAARW3Qi1e0trYqFosN9mUBAAAAoGgNaCrg448/3mub4zhau3atfvnLX2r69OmFtgsAAAAASsaAgtUVV1zR77799ttP3/3udwfcIAAAAAAoNQMKVn2VUjcMQ9FoVOXl5QU3CgAAAABKyYDesRo/frwikYjeeecdjR8/XuPHj5fjOHr88cfV0dEx2G0EAAAAgKI2oGD17rvv6thjj9V1112X37Z69WrdfPPNOu644/TBBx8MWgMBAAAAoNgNKFj94Ac/0Pjx4/XQQw/lt82cOVN/+ctfNGbMGN18882D1kAAAAAAKHYDClYvv/yyzj33XNXW1vbYXl1drbPOOkvPP//8oDQOAAAAAErBgIKVYRj9rlWVTqeVyWQKahQAAAAAlJIBBasDDzxQCxcuVEtLS4/tLS0tuvPOO3XggQcOSuMAAAAAoBQMqNz6pZdeqhNOOEFHHXWU9t13X1VXV6u1tVUvvfSSAoGAbr311sFuJwAAAAAUrQGNWE2YMEG//e1v9aUvfUnxeFyvvfaaOjo69MUvflGPP/64Jk+ePNjtBAAAAICiNaARK0mqra3V6aefrssvv1yS1NbWpsbGRjU0NAxa4wAAAACgFAxoxKqjo0OnnXaaTjrppPy2V199VZ///Od1zjnnKJFIDFoDAQAAAKDYDShYzZ8/X++8844uuuii/LaZM2dq4cKFeu2117RgwYJBayAAAAAAFLsBBatnn31Wl19+uY4++uj8Nr/fryOPPFIXXXSR/vCHPwxaAwEAAACg2A0oWMViMZWXl/e5r6amRq2trQU1CgAAAABKyYCC1V577aVHH320z32PPfaYdt9994IaBQAAAAClZEBVAc8++2ydeeaZOu644zR79mzV1NSopaVFzzzzjF5//XXdeeedg91OAAAAAChaAwpWhxxyiO644w4tWLBACxYskOd5MgxDe+yxhxYuXKjDDjtssNsJAAAAAEVrwOtYHX744Tr88MOVSqXU1tamsrIyhcPhwWwbAAAAAJSEAQcrSfrb3/6m559/Xh0dHaqurtbHPvYxzZo1a7DaBgAAAAAlYUDBKp1O65xzztHf//53WZalqqoqtba26q677tLMmTN11113ye/3D3ZbAQAAAKAoDagq4I9//GO9+OKL+sEPfqBXX31Vf//73/XKK69o3rx5evnll7Vw4cLBbicAAAAAFK0BBavf/va3Ou+88/TZz35WlmVJkmzb1uc//3mdd955+u1vfzuojQQAAACAYjagYNXS0qI999yzz3177rmn1q1bV1CjAAAAAKCUDChYTZw4US+88EKf+55//nmNHTu2oEYBAAAAQCkZUPGKL33pS5o3b56CwaCOPfZYjRkzRhs2bNCTTz6pRYsW6fzzzx/sdgIAAABA0RpQsPryl7+sN954Q7feeqtuu+22/HbP8zRnzhx9/etfH7QGAgAAAECxG1CwMk1TN9xwg04//XT961//Unt7uyoqKnTAAQdoypQpPY5ds2aN6urqZNsFLZk1qhiGoUjQlCVHqbZmhW2/XL+leNKV63oj3TwAAAAAmyko7UyZMqVXkNqU4zg66qij9Mgjj2ivvfYq5FajhmFI5WFLiVXvyUkl89tNf0BlE6eoM0G4AgAAAIrNgIpXbA/PIwRsj1DAUmLNih6hSpLcdEqJVe8rFBjyLgMAAACwnXhKLzI+05MT7+pzn5NKyjYIqgAAAECxIVgVGc91t7zfcYapJQAAAAC2FcGq2JjWFncbFAEBAAAAig7BqsikHclfNabPfXZ5pdIMWAEAAABFh2BVZJIpR3Z1vfw1dbkSgZJkGPJXjVGgbrwSSZIVAAAAUGyYV1aEOuNZBaJjFK2qlWl4cj1DyYynjlh2pJsGAAAAoA+MWBWpVNpRLOXKDoUVS7lKMQcQAAAAKFpDGqxM09ScOXNUVVU1lLcBAAAAgBE14KmA//nPf/TSSy+po6Oj1z7DMHTuuefKMAzNmzevoAYCAAAAQLEbULC67777dOONN8rz+l6stjtYAQAAAMBoMKBgde+99+qoo47S97//fVVWVg5ykwAAAACgtAzoHav29nZ9+ctfJlQBAAAAgAYYrA499FC99NJLg90WAAAAAChJA5oKePXVV+vkk0/W6tWr9dGPflShUKjXMZ///OcLbRsAAAAAlIQBBav/+7//08qVK7Vs2TL95je/6bXfMAyCFQAAAIBRY0DBauHChTrwwAP1zW9+U2PGjBnsNgEAAABASRlQsGppadHcuXO1zz77DHZ7AAAAAKDkDKh4xT777KO33357UBrQ1tamq6++Wocddpj2339/ffnLX9aSJUvy+998802deOKJ2nfffXXEEUdo8eLFPc53XVcLFizQrFmztM8+++j000/XihUrBqVtAAAAALAtBjRidc455+jiiy9WS0uL9t13X0Wj0V7HzJgxY5uuddFFF6m5uVm33nqrqqur9cADD+iMM87QY489purqap122mn6r//6L1177bV6+eWXde2116qyslLHH3+8pNy0xAcffFDz5s1TfX29br75Zp155pn67W9/K7/fP5CPBwAAAADbxfA8z9vek6ZNm9bzIoaR/2/P82QYht58882tXmfFihU6+uij9atf/Ur7779//vxPfOITOuaYYxQMBnX//ffr2WeflW3nMuCtt96qP/7xj3rqqaeUTqc1c+ZMXXrppfryl78sSero6NCsWbM0d+5cHXPMMdv70SRJjuOqpSU2oHMHk22bqqqKqLU1pmzWHenmYDvQd6WLvitN9Fvpou9KF31Xmui37VNdHZFlbdskvwGNWP385z8fyGm9VFVV6ac//ak+8pGP5LcZhiHP89Te3q7XXntNM2bMyIcqSZo5c6buuusuNTc3a/Xq1YrFYpo5c2Z+f3l5ufbcc0+98MILAw5WAAAAALA9BhSsDjjggEG5eXl5uQ4//PAe2/7whz9o5cqVOvTQQ3Xbbbdp6tSpPfbX1dVJktasWaPGxkZJ0tixY3sds3bt2oLaZtsDev1sUHWn421NySge9F3pou9KE/1Wuui70kXflSb6begMKFg9/vjjWz1mIOtYvfjii/rOd76jo446SkceeaTmzZvX6z2pQCAgSUqlUkokEpLU5zHt7e3bff9upmmoqioy4PMHW3l57wWYMbg815XrZCVJpmXLMAfnDxv6rnTRd6WJfitd9F3pou9KE/02+AYUrK644oo+txuGIcuyZFnWdgerP/3pT7rkkku0zz776NZbb5UkBYNBpdPpHselUilJUjgcVjAYlCSl0+n8f3cfEwoN/IfFdT11dMQHfP5gsSxT5eUhdXQk5DjMgR0KhmEoHDCUaVmvdFuzJEP+ymr5qmsVT3kawCuIkui7UkbflSb6rXTRd6WLvitN9Nv2KS8PDe07Vs8880yvbfF4XC+++KJ++tOf6vbbb9+u6/3yl7/UDTfcoNmzZ2v+/Pn5EaiGhgY1NTX1OLb76/r6emWz2fy2iRMn9jhm8wIb26uYXuZzHLeo2rMjqYjYii97W27mwwCf2rBOmfZWhSdNVXvMKej69F3pou9KE/1Wuui70kXflSb6bfANKFiNHz++z+277babMpmMrr/+ej3wwAPbdK0HHnhA119/vU466SR95zvfkbnJFKwZM2bowQcflOM4sixLkvTcc89p8uTJqqmpUVlZmaLRqJ5//vl8sOro6NAbb7yhE088cSAfDaOIzzaV7WztEaq6uZm0sp1t8vnLleEPHQAAAGzFoL+1NnXqVL3++uvbdOyyZcs0d+5czZ49W2eddZaam5u1fv16rV+/Xp2dnTr++OPV1dWlK6+8Uu+++64ee+wx3XfffTrrrLMk5d6tOvHEEzV//nw988wzWrp0qb71rW+poaFBs2fPHuyPhh2MzzaUaW/td3+mvUW2NYwNAgAAQMka0IhVf9LptB5++GHV1NRs0/H/+7//q0wmo6efflpPP/10j31z5szRjTfeqEWLFumGG27QnDlzVFtbq8suu0xz5szJH3fBBRcom83qqquuUjKZ1IwZM7R48WIWB8ZWeZ5kGP3/3UKugIXR734AAACg24AWCD7yyCN7LAosSa7rqrW1VclkUldccYVOPfXUwWrjsGOB4NHBsgyFvKQSHyzrc394wi6KKyDH2f4CFvRd6aLvShP9Vrrou9JF35Um+m37DPkCwQcccECvYCVJ0WhUH//4x3XwwQcP5LLAsHIcTwpHZEXL5XR19NhnR8vlBcJy4tkRah0AAABKyYCC1Y033ihJam9vVyKRkOv2TLtr1qzRuHHjCm8dMMS64llF6yfIGJNWpnWDJMlXNUae5VcXoQoAAADbaEDBasWKFbr88sv1yiuv9HvMm2++OeBGAcOpK+HING35qnJ/GdCVceWlCyuzDgAAgNFlQMHquuuu0/Lly3XeeeepoaGhR4l0oBS5rqcUYQoAAAADNKBgtWTJEt1www069thjB7s9AAAAAFByBjTUFI1GVVFRMdhtAQAAAICSNKBg9bnPfU7333+/BlCpHQAAAAB2OAOaChgKhfTiiy9q9uzZ2nvvvRUMBnvsNwxDc+fOHZQGAgAAAECxG1Cw+s1vfqOysjK5rttnZcC+1rgCAAAAgB3VgILVs88+O9jtAAAAAICSRZ10AAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLACAAAAgAIRrAAAAACgQAQrAAAAACgQwQoAAAAACkSwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBABCsAAAAAKBDBCgAAAAAKRLAqYj7blJNOK+Q35bPpKgAAAKBY2SPdAPRmmYaiIVPp5kZ1dLTJMC35q2sVKqtUZzwrzxvpFgIAAADYFMGqCEVDpmLvL5XnOJIkT1klGz+Q2d6iyPjJ6oo7I9xCAAAAAJtiflmRCfgtpTY05kPVptxEXEYmJdM0RqBlAAAAAPpDsCoyPkvKtrf1uz/T1sz7VgAAAECR4Qm9GG1pRMq0eMcKAAAAKDIEqyKTzkr+qjH97vdX1SiT5R0rAAAAoJgQrIpMOuPIVzlGZiDYa5+vaoyyshmxAgAAAIoMVQGLUEc8q+iEKVIqoUx7swzTkq+qVlnDVjz54WiVzzZlW5JkKJVx5bokLgAAAGAkEKyKkOdJnXFHfn9I5Tvvqlg8rc5kRp6XC1WmaagsZCnT2arsxnWuIjW18gJBdSWYJggAAAAMN4JVEXNdT4ZpKpNxekz/KwtZii1/W142k9+WjXXKLq9UpGacYknCFQAAADCceMeqxAT8llLN63qEqm7ZjjZZyspgmSsAAABgWBGsSozfljLtLf3uz7S3yOezhrFFAAAAAAhWOxrqVwAAAADDjmBVYtJZT76Kqn73+yqqlcnwjhUAAAAwnAhWJSaVdhWoaZBh9647YpdXyDFZ5woAAAAYblQFLEGdCUdlk3ZXpr1F2c5cuXV/da28QFhd8exINw8AAAAYdQhWJch1PbXHsvKFKuWLVsnzpFjGlUuoAgAAAEYEwaqEZTKuMr2rrgMAAAAYZrxjBQAAAAAFIlgBAAAAQIEIVgAAAABQIIIVAAAAABSIYAUAAAAABSJYAQAAAECBCFYAAAAAUCCCFQAAAAAUiGAFAAAAAAUiWAEAAABAgQhWAAAAAFAgghUAAAAAFIhgBQAAAAAFIlgBAAAAQIEIVgAAAABQIIIVAAAAABTIHukGoH+WZcpJpxTxS57fUiojpTLOSDcLAAAAwGYIVkUqErKkeJs6VjXKcxzJMOWvqlF5dZ06Yln5bFMBnyHDMJR1PCXTjjxvpFsNAAAAjE4EqyLk95vyulqValr74UbPVbplvdxsVpUN45Vua1FybZM8x5EdKVN5/XjF054yWdIVAAAAMNx4x6oIBW1DqfXr+tznj5Yp8cFypZrWyMtmJc9TtqtDXe8vVdgnGYYxzK0FAAAAQLAqRp6b+2czhmXJsC1l4119nOMpse4DhQJ0KQAAADDceAovRkbf3WIFw8rG+ghVGzmxLtn0KAAAADDseAwvQllXsiJlvXd4rgzT6v9EwxBvWAEAAADDj2BVhBIpR6GxE2UGAj22O6mU/BXV/Z7nr6xROjvUrQMAAACwOaoCFiHPkzrijsom7CrTyyobj8vwByQ7oFTWU7BhJyUbP+hxjhkIyF9Tr/YYyQoAAAAYbgSrIuV5nuIpV1VVZYpnLWUyrryNw1HBQJmiU/ZQuq1ZnpOVr6xS8ofUEWfxYAAAAGAkEKxKgOt68jZZ/TeZdpVMS77IGBmGoVjWkRtnpKoQpmnI5zMlT0pnWGwZAAAA24dgVcIyGUaoCmUYUjRkS+mEMi0tkmmqrHKMHMNWLMn3FwAAANuGYIVRrSxsK/HB+3KTify2TFuLfJU1ilTVE64AAACwTagKiFHLZ5vKdrT2CFXdMm3NsrysDGMEGgYAAICSQ7DCqOX3Gcq0buh3f7ptg/y+LawbBgAAAGxEsMKoZUjyXLf/A1xXDFkBAABgWxCsMGplHMkur+x3v6+imgIhAAAA2CYEK4xaqbSjQE29DKv3dD8zGJL8IbkuddcBAACwdVQFxKjWlXAUnTxN6eZ1ynS0yTBN+arGyC6vUidrgwEAAGAbEawwqjmup/ZYVoHyOgWr6uRJSmc8xWOEKgAAAGw7ghWg3LTA1Eg3AgAAACWLd6wAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhVVsFq4cKFOOumkHtvefPNNnXjiidp33311xBFHaPHixT32u66rBQsWaNasWdpnn310+umna8WKFcPZbAAAAACjXNEEq5/97GdasGBBj22tra067bTTNGnSJD366KM6//zz9aMf/UiPPvpo/piFCxfqwQcf1Pe//3099NBDMgxDZ555ptLp9HB/BAAAAACj1IiXW1+3bp2uvPJKvfjii5o8eXKPfQ8//LD8fr+uueYa2batKVOmaMWKFbr77rt1/PHHK51O65577tGll16qww8/XJJ02223adasWXr66ad1zDHHjMRHAgAAADDKjPiI1euvv66Kigo98cQT2meffXrsW7JkiWbMmCHb/jD/zZw5U8uWLVNzc7OWLl2qWCymmTNn5veXl5drzz331AsvvDBsnwEAAADA6DbiI1ZHHnmkjjzyyD73NTY2aurUqT221dXVSZLWrFmjxsZGSdLYsWN7HbN27dqC2mXbI545ZVlmj3+jdNB3pYu+K030W+mi70oXfVea6LehM+LBakuSyaT8fn+PbYFAQJKUSqWUSCQkqc9j2tvbB3xf0zRUVRUZ8PmDrbw8NNJNwADRd6WLvitN9Fvpou9KF31Xmui3wVfUwSoYDPYqQpFKpSRJ4XBYwWBQkpROp/P/3X1MKDTwHxbX9dTRER/w+YPFskyVl4fU0ZGQ47gj3RxsB/qudNF3pYl+K130Xemi70oT/bZ9ystD2zy6V9TBqqGhQU1NTT22dX9dX1+vbDab3zZx4sQex0ybNq2ge2ezxfOD5jhuUbUH246+K130XWmi30oXfVe66LvSRL8NvqKeXDljxgy9+OKLchwnv+25557T5MmTVVNTo2nTpikajer555/P7+/o6NAbb7yh6dOnj0STAQAAAIxCRR2sjj/+eHV1denKK6/Uu+++q8cee0z33XefzjrrLEm5d6tOPPFEzZ8/X88884yWLl2qb33rW2poaNDs2bNHuPUAAAAARouingpYU1OjRYsW6YYbbtCcOXNUW1uryy67THPmzMkfc8EFFyibzeqqq65SMpnUjBkztHjx4l4FLQAAAABgqBie53kj3Yhi4ziuWlpiI90M2bapqqqIWltjzIEtMfRd6aLvShP9Vrrou9JF35Um+m37VFdHtrl4RVFPBQQAAACAUkCwAgAAAIACEawAAAAAoEAEKwAAAAAoEMEKAAAAAApEsAIAAACAAhGsAAAAAKBARb1A8GhnWaacTFqRgCHXbymV8ZTOsN4AAAAAUGwIVkUqFLBkO3F1vrtabiYtmaYC1XUKVNaoM5Yd6eYBAAAA2ARTAYuQzzZlZWKKr1qWC1WS5LpKbWhUuvEDhYPWyDYQAAAAQA8EqyIU9BtKNq7uc1+2q10+0xvmFgEAAADYEoJVETI8T57T/3Q/J5mQaRrD2CIAAAAAW0KwKkbGlkOTYdvyPEatAAAAgGJBsCpCGUeyo+V97jNMS4btF7kKAAAAKB4EqyKUTDsKNkyQ6Q/03GGYCu88RfEUJdcBAACAYkK59SLkeVJH3FHZxF1lOhllYp0yfAGZobDiKU9Zh2AFAAAAFBOCVZHyPE/xlKuqqnIlPJ+yWUdOzBnpZgEAAADoA8GqBDiOK8fhpaqh5vfn1gfLZFyKgwAAAGC7EKww6oWDlmzDVaZtveS6ClZUybX86kowQggAAIBtQ7DCqBYOWvLa1yvW3JTflm7dICscVdn4SeqM9b+eGAAAANCNqoAYtQxDsr2s0puEqm5OvEtuZ5tsi18RAAAAbB1PjRi1/D5L6db1/e5Pt6xXwLflxZoBAAAAiWCF0cyQ5Pb/HpXnOjLIVQAAANgGBCuMWtmsJ7u8ut/9dlmFMlRjBAAAwDYgWO3gfD5LAb8t26arN+c4roxgWKY/0HunaSowpkGpNIsxAwAAYOt42t5B+X2mKsKWfIkWGa2rFch0qiJiybKY27aproSr8M67yT+mXoZpSYYhX3mVolP2UCxJqAIAAMC2odz6DshnGwoora733stvy3S0yTAtRSfvps6kIddlipskeZ6n9lhW/kiNQpVjJEkZR+qIO2KNYAAAAGwrglUJsi1T4YCRK7zguTJsv5JpV6lMboQl5DcVW7as13me6yixeoVC4yYrxuK3PaQzrtKZkW4FAAAAShXBqsT4faaCRkbx5cvkORvDkWEoWDdWVrhS8aQjORnJ7Xsam5NMKGgwFAMAAAAMJt6xKjEhv6HYivc+DFWS5HlKrlsj20nJsgx5/YSqTY8HAAAAMHgIViXE5zOVaWuR1HcwSq5fq6Df7LvK3UaGbcsz6HYAAABgMPGEXUL8tiU3leh3v5tOyTINpTKeAmPq+zwmNHaCEilGrAAAAIDBRLAqJYZkBUP97raCIRmSkmlXRlmNwhMm57aZlqxwVJHJU5U2g8o6lBEHAAAABhPFK0pINusqVF6h5IYmyesdjgJj6pVxcqNRsaQjywoqOHayDFNyHKkr7crd2vtXAAAAALYbI1YlJJV25MpUdOLkHu9RGZal8LgJMm1byfSHwclxXMWSjrrijhIph7WrAAAAgCHCiFWJSWUlv+spOKZeps8neZ48eXIcV45ryXVZnwoAAAAYboxYlZhU2lVKARnhqFxPcj1Dhj+krB3OrWEFAAAAYNgxYlWC0llXrkwFfAGZRm4UK53h3SkAAABgpBCsSlA0bEuJTqXWrZPnZGWFy1ReN1bxjJQhYI0YwzAU8JsyJNELAAAAowvBqgTYtiUpVxUwHLSUWb9a2Y62/P5sZ5u6OtsV3WWqOh2DIhUjIBK0ZLlppZrXy3Mc2WUVcoKWTNMY6aYBAABgGBCsipRpGgoHTaXbW2V0dijg8ytSViF5rlKbhKoPeUqsXaVQwyTFeNdqWIWDlty2JiVbN+S3ZeNdSjU3KTp5qtLpEWwcAAAAhgXBqggZhlQWshRf8Y7cTZ7KrY5W+Ssq+z3PScQVpBzJsLMNV7FNQlU3L5tRav1aBSoalEoTdgEAAHZkPIYXoYDfUrJpdY9QJUlyXYlZfkXF57OU7Wjtd3+6vVV+m+mAAAAAOzqCVRHyW+rxDlU3J5WUFYr0e55dXikGRoaf520h7XqeDNIwAADADo9gVZT6fxBPt7UoNHanXtsN26dg3TimnA2zbNaRr7yq3/0+wi4AAMCowDtWRcj1DJn+gNx0qte+dFuzomP2VGTKNGVaN8jLZmVHy2WGy9SZcLSlwRMMPs+THMOSXV7Za5TRMC0F68epPUayAgAA2NERrIpQIu0pMnaCYive7bXPjpYr60ixpCd/tE6GaSiRdeXEsiPQUkhSLOEoWjtevvIqpZub5DlZ+coqFBxTp66kS9gFAAAYBQhWRchxXKUsnyKTpyrZ+IGcRFyGZctfUyervEqdG0NUJuvKNA25LsvRjrSueFaWFVSgfmfJ8OTKlBUIyo3HRrppAAAAGAYEqyKVSrvy/LbKJu+mbCYrx/WUSnuKx7KyLEPhgCVlU3LTKVmBoDzLr1jSYXHgEeQ4ruIbZ/3Z/GYBAACMKjz+FTHX9WTaPsU608pmc6NSpmkoGjAUW/GWvOyH0/9Mf0BlE3dVR9zZcpU6AAAAAIOOqoAlJhwwFV/5Xo9QJUluOqXEmuUKBehSAAAAYLgxYlViTLlyM+k+9znxmELkqhHjs00F/IZMwxAzMgEAAEYXglWpcbZc/c/zKO09EsrCttxYu5JrG+Vls7ICQVnjJsjv8ylLwUYAAIAdHuMbJcbw+bew05AMq89dtm0qELDk9/W9HwMXCpjKbFijZOMH+SmaTiqprmXvyEonZFv8mgEAAOzoeOIrMems5Kuo6nNfYEy9UpuNjlimoYqIpUC2S1bnBtnJNlWETQV8dP1g8VtSpr21z32Jxg8UChjD3CIAAAAMN56uS0wi5chXO07+mnrJzHWfYVkK1o+XWV6jVPrDqYCmaagsZMhLxmXZtgzTlGWZkpNRwMzIR7jabsZmGck0DTmpRL/He9mMDI91xgAAAHZ0vGNVgjpjWfmj1YpU1kjy5MlQMuMpE+85XBUNWZKbUXJ9o5xU8sMdhqHIhMkKB0y1Z3jo3xrDkMJBS7bhyc2mZdg+OZ6peNKV53kyrK38GhmmJN59AwAA2JERrEpUOu0q3XdxQEm5MGCZUmL9+h6hygpFFKyplSHJ9FxFQ5biKZeFhfthGFJ52FZi9XIlE7H8disYUvlOu6gjnpXhD+RGD93eIdWORJUlUwEAAOzwCFY7KL/Pkjyvx7s//soa2ZGo4o2r5WUzkiQrEFTZ+EmKpQ1lHcLV5kIBS4m1K+RsEqokyUkmlFi9XOGGnRVPuYpM2EWxle9JmyzObNg+hcZNVHuMZAUAALCjI1jtoHLvAm36kG/LX1GprhXv9TjOSSXVtfxtRXfZQ+0x6oJvzmd6SsW6+tznJGIKmZ5iWVcJ21Z0yh7KdnXITadkR8rki0TVlchumrUAAACwg6J6wQ4q63iSYcrw+SRJgaoxSm5o6vtg11W2s022TSn2zXl9TO/ruT83GpXJemqPOUr5ypSN1iplBmX5/UyxBAAAGCUIViXEtk35fJZMc+vlu7NZV54MherHS5JMf0BOMt7v8U68Sxa5qhfD3PI3ZfPCFdmsq0zGIVABAACMMgSrEmBbG9eiynTJjjcrYmVVFrZlbF77ezOd8azscFSRCZPlea7MLSwubAaChIE+pB3JV973umF2WYUyzJ4EAACAeMeq6HmuI7+bUte7H74bldY6mYGgyidOUXtX/0/2juOprSujSDginyWZtk+xle/3eayvolrxOKXXN5dIOSqvGycZhjLtLfntvvIq+evGqYP30gAAACCCVdFzMxnFVvUOQ24qqVTTWgWrGpRM9V91zjQNyXXluK7MQFDB2rFKrl+76QEK7zRJicxQtH7H0BHLKlhVr8iYBslzJcNU2hGhCgAAAHkEqyJmmoay8Zj6KyuXaW9VZEyDNln6VwG/pYAt5RYONmV6WcU/eE9uOiVJ8lfXqmzXPeRm0pJMyedXIuUok2W0akuSKXeT7zPl0wEAANATwaqIGYYhN7uloSRP3SXVDUMqC9vKNDcq1toseZ7KdpmqzuXv5UZZNkq3rFe6Zb0ik3ZTV8aSm2bURcqF2KDflGVKjisl0yyaDAAAgG1HsCpijuMqHClTop/9pj8g18sVsIgELSVXL5MTzy1ka0eiynR19ghVm0o2rVGwfmfFk4y+hAKmbDet1No1SqWSsgJBRerGKesLKLGFaZYAAABAN6oCFjnT75cdifa5Lzh2ghLp3KiK6Tn5UJU7LyAnlezzPElyk0mZ9L78PlNmslPxFe/KScRz76Ml4oqveFdmskN+H98kAAAAbB1PjUXOtH0KjpukwJiG/JpKVjCkyM67KS2fHMeVZZlyErEe57mZ9FbKqwfU19q3pmls0zpZO4qgz1CycXWf+5LrVivoHz3fCwAAAAwcUwFLQCzpyAxXK1RRI0OeHE/qSrlyNyYjz/Nk2r4e52S7OhWsbVCqZX2fxS8CtWMVS3+YrIJ+UwGfkRu1MSQrElYy4ymV3rGLWhie0+90Sbmu5DAVEAAAAFtHsCoR6YyjdD91LFzXkxEJSaapTYehUhvWKbLTJMXXrJTXHRAMQ4HasXKsgNxMbls4aEldLepa39jjusGGnWQGy3fo94y2tshybj9FLAAAALBlBKsSYtumgj5DprzcgrWOlEw78jwpnvIU2XlXxZa/mx+ByXR2yLNslU2ZJieTlTxXhu1XMuMqtbFohWkast2MYpuFKklKNn6gyOTdlTT6rfhe0nw+S56bkWH75PVRfdHw+WRYliQqJwIAAGDLCFYlIhKyZWUTSqz6YOMaVJJdVq7y+gnqTDjKZl0lZCu6254yHEcyJBmmXJlKZ12Zpi3X85RMunKcD0e1Aj5TyQ19v2MkSanmdQpUjVMyveONWhmGoXRHuyLjJ6pr5fs906NhKDJuopwdMVECAABg0BGsSkAkZMtLxRVb+X6P7dnODsWT7yiy827qjGXl9xlyYp1KrW+Um04pNG6CTNundNNauamkzEBA4dpxcoKhfJl1w5C8TP9rZXmZjHbUWhbZrKNAuEzJDesUnbSrsrFOOamUrEBQdiSqdGeHZAZHupnDzrZNBXzda3p5Smc9ZTI79rt2AAAAhSJYFTk3k5bhZJRYt6bf/UolFAoE5batV7q5SZLkK6+U57qKrVomKTetzQqGlelolRlKKxCoUCrjyHElKxyR209pdisSlbODPlO7ricFA3KdrLqWvSM7EpXp8ysb61RyfaOiU/ZQR2LHG6nrT/ci06bnyEl2KtXaLM915S+vVLi8Wl1JR47DCB4AAEBfKLdexAzDkJNJy7AsOcn+lgmWsrFOhQLWh6GqrEKhhvFKNjVKpqnITjsrXD8+NzvQsuQLBBQK5oahUmlHgZr63FN1rwaY8lfWKJ3ZccNFV8JReMIU+cfUy0kklG5rkUxT0Sl7KJ7eMd8t609Z2JaX6FKyaa3iq1cqG4/JSSaUbFqr2LK3FA1aI91EAACAosWIVRGzbVOGacrNpGRYtjyn7yIKdiAoN5OSDFN2OCx/ZbXcdEryXEUn7qpE09oe61ylW5vlrx6jcEWd4klH8ZSryKSpSq5dmQ9wViis0NiJiiV37GTheVJ7LCt/pEahyjGSpKwjdSScURWqbNuUm+iSaZnKdLb32u85WaWb1ylQXqfUDvi+HQAAQKEIVkXMMDxJnrKJhAI1tUo2re11jOkPyi4rl+c4ik7eVabPr1TzevnKymWXVchJJXotHixJ6ZYNipRXyzAMZbKeHNdQaNxkBY1cmnBcQ52brJW1o0tn3H7L2Y8GPsuQm0jK6Se8S1K6vUXh6jql0sPYMAAAgBJBsCpiPsuQPMkOBuU5jvxVY2SHQjJ9fkmS6ziyAkF1LXsnXylQkvxVNTL9AYVqGxT7YHm/18+0rpe/cqxSaUeu6yk2it4nQm+s2IXNGYahUMCUbUryXHmGqUTKU3ZHffESAIACEKyKlGkaMlxXsixlOtrlpJIK1jUovuYD2cGgfBWVskNhdb7/1oeL/26Ubm2W5Q/IV1ElbwsjTp7r5p6mMeqls55CgaB8lqV0a3Ofx/grqpVmSa9RwzQNlYVMJdasVCreJUkybFuhhgnK+EM75BIMAAAUguIVRcowcuMHnuvKzWYUqmtQbNUyhcfuJJmmEo1rlY119QpV3ZIb1kmeJ1+0vN97+Curlc2W/hiF328qErIUDlqy7cJ+pC3LUDhoKRI0FfCXVrGGgD/X7nDQkmVtX2J2HFdGKCrPdeQrr+y137B98o+p5/2qUSQashRb/racjaFKkrxsVvEPlsmvtMwddR0GAAAGiBGrIuW6rjzDlmlI/soapdpbFR47QfG1q+SmkrkS6elUv+d7jiN5ngJV1cp0tMlzP3wgtoIh2WUVsiJlcjv6v0axs0xD0ZCldOt6pTvbZJiWgtW1MsJl6oxv/9BKNGTLSMeValwnL5uVFS1TRU29Ysmhmfrk91kyDSnrespmB3592zIVCRpKNTcp3dWRG1WoqZdCIXX1M72z+96O6ymz8d5d8ayioaiCtSH5yyuVamuW57jyV1TKilaqM06oGi0sy5CbjMnLZiXTlK+sQoZpykkm5CTiSq5brdDYyYol+ZkAAKAbwapIeZ7kypDpubKCQaVaN8jz3Px6U246Lasm1O/5hu2T53nKxDoV3XkXpVqblU3EFR67k9x0SpnODiXXrVZZ5RhlPEuJVO4BybJMGUZuBGMkq+KZpiHTNOW6bm69qT5EQ5Ziy5b2GLVLrFkpK1KmaP2EfkNFX8JBS05Lo9JtH06Dc1ublWlrVXSXqepIGPIG6RsS9JsK2J7SrU3yMmkFIuWKRCvUlXDk9PNZ+2MYhiIBqeu9pZK3MZxl0kp8sEy+imqFqxvyi0FLkt9nKuQ3lG7dIC+dlC8UVbi8SrGkq6zjqjOelWWZCvgi8jdE5bqeUhlXmRhzAEcTyzLldHYpOKZediSqTKxThgxZVTWy6sYqvmaVLOY7AADQA8GqiHmuJ5m50SdfJKps14dTckyfT1YwlAtQ2d7l7IK19ZIh+aLlynR2SKal6MRd1LX83VyhCzP3VJRubVagtkHRsmpZZm5NLC+blR0tk2PYw17QwrJMRYKmvFRCTjKR+4yhkGJJV84mo0YBv6XUhrV9ToV0Yp0y3YwMw9qmMBQN2/IZrjra+ni3yHOVaPxAobqJiicdGUZha1v5fabsTExdK1bmt2U6O2RYjYpOnqqOuLtdAS7kN5VoXPVhqNpEpr1FkZq6/Nc+21BAaXW9+96HB3V2KLWhUZFJu6krZch1PTmOqzjFCUY11/UULKvIj4pb/oDcdFqGacqTFJkwWTvALGIAAAYVwaqI2YYnmZbS7a0KVFbLzW7I7wvWNij2wQpFJ0xSfO0HHy4gbBgK1tTJV16pdPN6OemkAjV1Mm2/kuvXygqFFR4/Mb8mlmHZyiYTMlJxda1enr9+av1aWeGoysftrI5hGq0wTUPRgBRb9laPNbsMy1Z00m7qTBr50Su/LcU72vq9VrqtWb6KsUpvpdpCJGzLZ3pKt7X2e4yTiCtsG/KFTbmZtAzbJ1em4qn+R9P6E/Ib6lq5std2z8kqsXalQrUTFU9te5i1LSkV6+x3f7arQ3agQtmsq5DfVGzZst4Hua4Sq1coNH4XKkNCkpTNujKjARmSulYtkzYpgmP6fIpM3EWuxztWAABsimBVpAxDMkxTmY5WmT6f5HnyV1QptWGdJMm0fXIScXWtWq5gbb0sfyA3lGIYSre15BZ0bW9VZKedZWzcZ5iWrFBETiIuKxjaON/QlT9aro533+zVBifepWx7i3yhSmUyQz+CEQ6Yiq96r9dCyJ6TVXzV+wrvNCU/vc9Tbhpcf7HGMExtrXi4YUh+S7lKi+FIPweZik7cRYnVy5WNf7gemBkIqGzCFHUmtj1cmaYhJxHvd78T61KwYZsutc1yRVC6b5Dp8YC8KTeVlEWxdWxk26bkOop9sKLXz4ybySixdrVC43dW/z/NAACMPsySL1J+nyXJk5POyBeOSqapbDymUP04bVoj3ctmlFj7gbpWvKeule+ra8V7Sre3Sp6n6OSpMnz+3HQe15Wvqlp2MKhMZ7tSLRvkeZ4M21Z6SyM/LU0K+obnb6ZNw+u3IIebTsnUhw946awnX0V1v9fyVdYok9ny6EvAb8vLZnKjOv0Eq2BNrVLN63uEKklyUynFV72ncGDbf4VyhR63FlC3L9ykHckuq+x3vx0tVzbrbpzCuLVrE6zwIc9xe/0lR7dsvEv8vAAA0BMjVkWq+yE8WDNGnuNsHL1qk+kPKDppigzLkgyz7wd105Rh+5Tt6lRi3Rp52YwMy1Kgpk5WMKTAmHpl412Kr14pOxKVYff/Y+A5Ts9RjyFkbC10bBIM0mlXFTV1yna291gcWcqFqqwsed6Wg5W58f01Scp0tis4pj5Xpn4TdrSs17Zubqpn2DMMKei3ci/19/E9cxxPdiTab3usQFCeTEnbPjqYSjuqqB+nrnhXr4fgQG2DumcVep42Lizd9zLAhm3LM0xJWwujlnxW7grpzIcVBbFjcRxXnrmVvt3CGnkAAIxGBKsi5TiePHvj8/nGigl2pEzJpjVKt25Q+W57KlQ/VonG1fKVVcj0B+RlM0p3tCuy0yRl2luVaFydv57nOEo2rZW/slp2OKrUhibJMGTYPvmiZf0uCmuFo3JcKRjIremUyXo9ikgMFtM0ZFqm+q0OYRi5MLnJg39n3FF0593kxjuVaW+VLFOBqlo5ln+b3hXKZFwFggFJUqp5vYK1DYpM3EXp9tZcAY9IVOYWQqeUGzE0DFs+21TI9pRs+kCZRFymzyezbqxC/pA6N4YPwzDkea78lTU9qg92C9aP0/a+tlIe9slJdik6cRdlYp3KxrpkWJb8NXXKylZyk4qAyYynQN1YpZrW9LpOaOxEJVL9j0DkS9s3r1Oys02GacpfVatQWaU649kRrSCJwed5kukP9LvfMC252noQBwBgNCFYFalM1pUR9kuuk5/454tElLJyXea5rsxAUOW77Zmb1uc6skJhldXWyzBMxT5Y3ud1020t8lfWyFdeqUB1rdLtrTIsS2YgIDeVkhWOyDAtOcmEPCeryE4TlU0k5LRukCdPoYoaGeGIuhLb/jDt820MZVuYmhf0m7kiHdVjlGpe32t/oKZWm9ehcF1PHbGsbDsiuzYqeVJnxpW3jYvYZrKuZPrkr6xWuq1FyfWNMixLvrJKmcGgTJ9fnmH1H/aUGwUyXSloZNX1/jv57Y6TVWzl+/LX1CpUNkaJlCvLMpTpbJMdDssOh5Vq2SA3m5EdiihQU6dUc5P8deO3qe2Waag8Yiu+ermysVy1SDsclRUKyXNcGaalxGbhMpV2FY5UKjwxpNT6xtz0ylBIobpxSjqmsun+A3M0ZPYobe9JSq5bLbOjVdFxk1jjageUykq+impl2lt67QvWjVWydzFSAABGNYJVUfPkOo5My5I8T6m2ZpXtMlUyzNwDeiis+JpVCtbWy0nE5abTcpJJ2YHgFqfpeJ4rf3mlupbngkCmo03RSbtKnqdMV4c8x1GgulZWMKT4mpXKdnXkz812dcoMhlS20y5brRYYDlqyDUfZjtyDWai8QlnP6rGuUjfblGJNaxUeN0Gh+nFKNjfJy2Zl2LaCNXWyQhHF+/lI2ayr7HYWLjRNQ54ndcSyKq8fJzMQUGpDkzzHUSbWoVDdWBnhqJIZT/7qMUr3EfasSFRZ11DILyU+6F3pT5LSzesVraxVQrkgaPmDin+wTGYgqEBltQzLlpNKKLbyfUmSbxvabhiGokFDTiKWD1VS7r2X3LsvkutkFawZn1+frFs86cg0fQo27LxxgWCpI+nK28I0zFxp+8Y+S9u7ibiUSck0ffkiHoaRa+P2VkxEcbEMyaqqluX3K9WyXp7jyPT5c8VyohXq6iRZAQCwKYJVEfOy2dx7MZ4rN5NWoCYXoBLrGxUZP1GJ5vUK1IxR7IMVCtWPlS8QlJvJbHU6meXzq/ODt/Nf29EyOYmYEusbFa4fJ5mW5GTlJOM9QlU3N5mQ09Uu2y5Ttp9pgZGQJadlnWKbTHlLbWiUr7JGker6XlP1PBmSaSq+ZpXsSFThhp1ya+a4bm5xZMOQ5yvfju9e3wJ+S0Gf8gstm4Gg0hlXvqpa+SuqN1ZWNJVyPMW7sqqI2vIiZTI8T6nW5vzIla+8UoH6ndTelVF5yOy36IYkOcm4TDMo1/VkRMK5aVSppBLrek7JC9SOVWobnlWDflOZ9mbJ7X+UKNvZrnDdTn3uc12vz3DbH58tJTva+92faW+Rr3Ksso6rcMCU4WTlZlIyQ0E5MhVPOkwVLDGmacjIptS18j35ouUKj5sgwzDlOo5SLetlO458/gresQMAYBMEqyJl26YMy8w/yBuWLcMw8lP8DNNSsKJKsTWrFJkwSYk1q+RsDAuh+nGywhE5m1WykzYWKXDd/OiDr6JKoboGdS57V9EJkxRbvVJuOqVA9Ri56XSv861AUIHaepm2T7blyZOlRLpnEQPTNGRmU0r28R5Rpq1ZvvLKHiMckpTKuApU1yq1YZ2ysa4eIzGSFBw7UbFYYdPNwkFLirepa8UayTQVrKmTaZnyGaaUdpRqb1WqJTcyFRo3UdFwVKl1q5XpaJO/qkbRibtsfPnEzC263F0EYitB1jDNfD2KWNJRZNJuiq98V94mw2y+iipZ5dWKx7c+9OazpFQyLisQ2tJN8/UzAn5LAZ+k7iIorqFEajsWIvYkmUb/NTUMMzeKFjAUW/FOjwWrrVBE5eMnqX2Y1kIrdcGAJb+l3BTgfF8NfzD12abSrbl18zJdHcps9hcsnuPIP75SGboVAIA8glWRCgc2vtvjOvJcRzItZTcuBBvZeYqk3HtWwZpaJdetzYcqSUp3tCmy0yTFPlguf3mV7HBkY+EHQzKNfPW4UMP4jdMKOxSqa1B8zapNRl4MeZtVj7MjUQXH1OeO21iJz7AsBRsmyPKHlNz4jk7AZyq9vqnfz5ZublKgdkKPaWrpjKtg5Rhl4129AmF4p8lKpPt+sjQMQ0G/qdxrXJ4c11Ai3XttKdM0ZHsZxdblQlV04i5KbmhScn1j/hhfRZWiE3dR18r3lVi9QuVT91JiYyn6dGtzrwIfdjgi0wwo6xqywlFZgYD8ZRWSJNd1lGrekButCoTkbgwWjuMpljIU3nmqDNeR52Rl+gNKZ6XObQhV3bKxLgU3vpeV/15YtgLVY3L9bVqSaagsbCvb2qRY64Z8SO8OO50JZ4vT9YIBU37LkGEa8lfVKrV+bZ/H+avGyDM9xVa82yNUSZKTiCnZtFrB6nFKbsfCx6NRWdhWtmVdrq82yi/SHXe2PQgPAqPv4pEf8ryt/oXCcDAMQ6GAKXtj3Rs3mx22KqZDJR+u5cn1DCUznrKMDAJASSBYFalcgTxD2UxKhmHKtGy52ayik3fLjXQYhjzXlRUK95pSFqobq/j6RoXHTVCmq1NOOiXT9inT2aZUa4uiEyfLCkckw5AVCCgT65IvGOoRzjKxTgWra5Xt6sxvC9aNVdfyd3sUcvAcR4nVyxWZNFUpw8ytjWWoz/VvzEBQ4frxMv1+yTTkeJbSmxSa6IhlFW3YWaaXVTbWKcOyZUfKlEh7SvexQLFl5t41SjSuUnpj6LRCYUXHTlAiYyiT/bCdAZ+p1PrV+e9Psqkx/z5S/jO3t8qQPiygsZVy0m42K9MOKpl2VbHTJCWb1qhr1bLcYsw+n0L142SHIkpkez6hOq6XL/ZgGLa8ray3tbmsK1nBkLLxLgU2rrNlBYIKjZugZFNjPiwGaupkWKbSLT3fD3MSMcVXvqvwhCnq2tiOYNBWwM49KzuuIdP0lFq3RrGOVklSdPJuynYEe/yMSJKvaoyysmS72V6hKt/ejjZFascp2edeSLlRxWzb+vwoUTcn3qXEB+8rMm5yfnHs4ZDOuIpUVCvT2fcUUF9F9YiPVtmWoUjAUGLtSqU2/i5bobDC4yYq5pklF0YMQyqP2Eo1rVWsvVWSJ9PnV6hhJ2X8QSW3sSgPAGDksEBwsdpYmtvLOjItn9x0Sv6KKkmGsom4PM/LLWq72cO/6fPLzWQUqqpRfPVKWT6fvGxGqeYmpVo2yAqGZPj8Co/dSV42q3R7u+xQSIbR80fBTSVl2LasYG66mR0tU7azo9/qeMn1axTcuFhuxvFkbxy56RZsGK/ITjsr2dKkjvfeUteyd+RPdaiyrGe5hq6Eo86UoWyoWgqVK52V+htUiYYsxZa/LSf2YfhzEnHFlr2tsL/n31pbppEfZesOJX1Jt7fKX16lYG2DZBhbLDlth8JyXU/hgKnYqmVKt7XIMC0FqmsVqKxRpr1N2ViX7HRMZZG+/w5jIIMQybSr0NiJSm5okmHZik7cReGdJim28v38qKaUG2FMbuh75NBNp2Q6WQUClqrKfbLjbUqvX6tMe6ts01V8xbvKbAxVkhRb+b6C9WMVmTBZvrIK+SqqFJm8u/w1DbnP0U+o+vCDltZD7nAL2OoVgLs5yYTMYS5r7rqejFBEwYadFBxTn/9zQFJuiYaqGqW38S8EAn5L4YCloN/KT081DEPBgKVQwNy4GPr2iwQtdS17S84mv8tOIq6u999SJFB6o1aRkK34yvc2VmHM/cHgZtKKr3pfPi8ly+J/1wBQ7PiTukh5nid5khUI5NZw8tmSPJmWJX95peQ4yibjMmyfNp2TY/r9kmEo1dqiQPUYJZoaZYXCynR1KFBTlws3TWtlmJbsSFTp1vW5sGX3friJr16pUP24/MiLk0r02143mZS1sRmZjCtfRc3G6Ye5d758oYg633srNwK2sRhHovEDJdeuUvlmoSMasuV3Yso2rpDRuV5Rv1RZHugxxcdnm8p0tvZZqU6ep1TzOgX8m3wm08gFUcPo4xxDdqQs9+6XPyCpuzpiVqG6sfnvq6+8Una0LHd8tEyybLmuJ9Nz5CRiCtaNVXjcBLmZtDLxLvnKKmSHcwswp9auUiS0fQ+QlmXK77dlb9Y3ftuQZ0plk6fKTaeU6mjNV3OUkWubr7wy9/3qZ9TNCoVl2ZaCyijZ1Cg7HM4FprJyOclEr2IcnuMotjIXHv31E+SvHSfPySrVuELZxuWyfP7+P4hp5haz3oEZhuT3W/JvEh62i+duMWW76bRMc5gW6jaksogtN9ahbEersvFY7h3DnacoUDdWkUlTt6m8vs9nqiJsyuxoUnbdcql1rcqCuVGZMp8jbfhAzroVsuMtqojYsqxt/3w+X3cBlz5+vj0vN914gIFtJBiGZDrpfFGdzSUbP1DQX9xh0TQN+f12fnmN0cjns+T3b9/PMgpnGEZhf/4Cg2jHftopUZZpbAwRngzTkudmZciUk0pJlqlMZ7sM21L8gxUyfD75q2s+PDcckRUIKhvvkmn75LmO3GxW/qoxssvKlWprlr+iSm4mLc91u1cgVrqzQ77yyvx1TH9Ahm2pa8V7ciXZVWNkbqFYghkI9BhZ6ko4ikzeXYExDfJVVCmxybtMm8p0tvf42/iysK3U2uVKN69XePxE2aGwUs3rlGltUmXEVHhjOLEsQ84m0xQ358S6ZG/y0214nvxVYyRP+cAnSf7KakUnTZEVCsswTQXH1MuwfXIzGSXXr5NMU+W77aFg7VgZpikrGFLZLlMVqh+vjOPJsky5ybgC1WMk11Vs1TLZkahCNXVyknElm9fJMi0FKitly+nzD33TNHr8j9iycmtUhby4zPa18qfaVBGx5LdN+X2m7GxcsXeXqnPZ25IMherGKdvVKX/VGEV3niIrEJIZCORCYh+BxrB9CtWPV+fydzcuWFwlb+PPm5tOKrt50RPLkh0tlxkI5vrL8JRev0bxle8p29UpJxFXNhGTHY722ReBMfVKZnbcsoCRkKUyvyero+n/t3fmwZYd5WH/dZ/1Lm9fZp/RaJewkGSbrTBGyCFxRYGKnYDLLGZRyEJiTNlBUgxlSDkhcQyIGBlsq4RIxcZWBSjKBNsUBOIsKFhgjFPBAo1mX97Me/OW++52tu788fU97z3NgJYBzQz0zzXm6dx7zz33dJ/ub/8I1s8wlog35WmhXJKQ+1snCWpTc2odxU+5fL1SMoeebq6RfE4z1gwZHj/I4ORRyn6Pst9lcOo4gzOniCamWeuVT3otQaBp6JLuoW9T9ruYPKforFB2VilXFukdeYyi26Ea9MmWFugdfJR2+tSvOdRqi3f2iZT9LkEg1/F0Ba0nPo/ye9T3VbENAn1OwZ7NmDzjYsvq3+keKCXrdiso0GsLRP2zTDR13VT+h4E40kw0A6LBCnrtFA2GjLfCZ80Y8sNMuxEwFldu/V1kLHGFqjxPG6WU2zsu9pVc3vgcq0sMrRXthpYcJSXhawqkP1WjiTVW8h6CgGR2GxhD1GyjlMJWBh2EIpiFEWhNPDmDDiPS2XlpRps2GZw5RXvfVWAqwmYbW1UMT5+k7cK8dBRTDQegpEADWlOUlmhyhmzpDOfLak/ndtDd1GC2Mpa8tKRT05S9LtHYOOnsNvLVs+SrWxuOlt11ongCYwxkfUyRM3bFNawf2lphbnhmgdae/TTSBsbgvHXnR4XRlqtUGLLFBVp792OKgqDRRMcJYaMpeWOOfHUZHcW091xB2e8TpA26hw9s8eBkS2do7tpLFbYItUKrkCCZonv4sTqvbbBwYuOcK2fl98+lNNKI/kCSU+JI04gV1aAPxhA0WxSVIgqhd+hbW/LUsjOnaO69Eh0ndB93PbOsJZqcwpSFKMXGSN7V9CymyKlcdcfNBS6isQnSbTsYnDxG2GgCCqU1SgcUgz62KmuBXgUR7X1XyhgNeugoIkgaWFNSrG2ECQIMTp+kvfdKspWzG69pTTK7Dd2eJh/8YJaPazdDitPHGXY3cpHy5SWiiWlaM9vPaSvwnchLiKZmiNIGOoyosgwVhugwZLi8RBCFxJU5b67hCKVEydOmlPDBOEaFMb2hofouilAQKJqJhjLHVjmmV2KG53qnq0Ef0+8y0WrTG1aU1Xc+ZyNRkJe0du/DZENpG6EVOoxYP/jtc95vTcVw4TiNuT1PqRWA5Ts//zpOJNTZFqgqI0hSTBDSH55b1GYzcahpJMo1R68Im02sDlDGUA56KB0QtJoMMkP+Pc7fslaU5+/IRfT4NtOASFuqQQ90QNBqMMhsfQ/GmyH9Y49v8bZlS6dJt+0iTcfrokY/qMShJjFDuo8fqo8Vq8uoKGJs3zWu8MxFvMAfYMaaIdnCMareRtXSfHmRaGqG1uQ2ek+jrcgPM4FWtFKNLXJMkROkKUaH9AZ+7j4TvGJ1idGIRcAxxhAkCUppVBAwPHGM9r4rMcM+SgdErTFUGFJ21+mfOEI8IXlBnccfpb2/TbptJzqOicMQpQOqfo8gbWCspbX3SkyRo6MIFQRiJbaWKhtiqpL+iSP19agwpH3FNcSBxVpD+4qr6B07tBFOpxTptl0UKsZs6qvUSgNMZ4nO2a05Po1tO0meWM1OB1hrxY1fasb2XU3/1LFz8naisQmU1iS6wijQs+IVasxtFy+UK4Wer5wlHJ+it2VDV2IhL3Lae/YT7NgD1jqvz1ZMkTNcXiKenGF4+uQ5YXHR2ARho0mARWmNKUKqQV/up9YUrpJgPDVDPDGFtVZC5bQmMYZkLMSiqHoduge2NhaOp+ewrfZ5in9Y+scPi6KjFI35HQStNjqMMHlO1B6j6K4TNcdEEXT5ZK09+1HRbsI0lWvNc2xRUGVDxq64xnmqoCpydBiSr3do7NjN8Mwpxq66lv7xIzLGM3OuYEp1jmIsN83QPfI4ydQsY9f+SB3aZisD2pImAXkhfa408poKAoYFZN+jpPw00SShC/XUGmMV/ey7C9MXQhBoyPqUm5SqEcXaMtHE1DltBZ5IIwmIQwm1DOe20z16iGrQI2i2SGfn5T1z26WPnbKoOCI7j6CqlBNwjx+slSIdx6RzOxhrNDCVlWbURhFoK/NLBxg0gTL0DosRI53f8YSCFYpkdo6oPY7SASoIsGVBOw2obEBveG5lSaUgChTdM6e2CNthe4xobAK0pjG3naDRxBqD0pqy32O4dJpGqOif57c1koBII957HVIYCGfmKd2zNkJHMc1de+kdO7xl/dBxwtjeq79jdcU40iQ2o3vgYB2S2dqzn7yzWj/Po4tp7t4PUbJFyQ20opFq9CikMwjIcsieYh5aVRmCloQqn0+SiadmGJbPvoQz3grJF0/RXdv0zCtFc9cVEKWgIF9ZPG8I4/D0CdpXjTM8t2vHZUcSa5JIoUyF0kp6ullpsB5oRffA4XM+Y4uCbOE44zv2UFX2e74WPdvr3aVGEGjsoEvV60h14rntBGmjXlNUYMXg7DWDc9Ba0Yg15XBAuxGgTMX6oW9vkTt02mB8z5V0eiXWjgwsYgRTOqAwXJRWIJcDXrG6xAi0hUoEraLXI2w00Fo8WNYaBmdO09y1R5QhtdHnqsoz8vU14olp8pUl0vntkn8w6oMVhpjKNRzWASq0gChFaEU8MY2OYgaLCyQz88ST0/IdQUC2dIYgSdFhCEFA+4prAMTDFEQMc0PuSmkHgZYmseWQ4WZPyfiknBOIxhMR0F358rA1hu1XJMrQO3WM5s49W6oRglS4C+JEqu65vIp0xx5aO/dSDAfEaaMuAR3PzEIQY7obi0RRQdgeRwUh2coS5aBPPDldvx622iQzcwRRUudhqShikA0JGk2SmTl0GKPiGKqK3oljJLNzKCvhjKMcrWxVvDXNnXud8hDW4zc4dYLmjl0U3XXCRpP+ia1KFYi1LZ6cZvyaGwEl6XPGYI0h76yCtbT3XkXR7RBqja0qdBxRdtcJmy36J47UShVICBFKYbIhYXuc3okDjF99PcnMPP2FEzR37ZVG1GHEcHmRZHYb1lrGr7qO4eJpwvEJgiimzDPiiektoVpB2pBxaTRFsTVG8qmckrW5dH8yv4Px8Ql6Rw9s6o+mSGbnaY3PbPHsBIGU0A+Q8SyNYnieEvr13IgDGrHClgXWgA4CFBAow0QroDu0lGVFGgdSlt9aDN+9jLWpKtlwrJYiMmgGhSHfpNTEIeSnv0tbgeVFmtv2oLFubiqyckORHGuFFEun6K4uE0/NUFjxCkTjk8Tjk/RPHEOHIcnMvHgLw4hmoMkLe46wkMYBw9PHaqUqnpolnZmle/TQ1nGYmUUlDfonjxJPTpPObsMUOc2dezYUZivV6JKZOaKxCakyaS3ZytKWlgM6SRnbcyXrA0MYaNLIfTbU9E8cRYcRjfkdbq1SVNkQawztvVcxXFzYUs00bI3R3nvleSu4jzdDqfy3KfQvaI0R79pHMr+T7MzGedL57fRPHD3HKGPyjOHJwzS27TuvR6wRKboHHt+4nmYbk2cU62vEU7PE4xNiKLCWfHWJxvxucvcVYaBpxYbe0cewhTuoFMncDpqtSfpDCQFOnXKItRilGOZb518/M7T2XkXv6ONblKug2SKanmewqRdcGCjSRKPdvCoqGOZPTciJI+lrp9xn85LzVhxM4wDT67hiGpuwlv7xQ7SvuhGDov+ESpabKTorRI1piqdZ+fRSopUG2O4KvaWFelxGCrwdDrFRxHfqTVB0OyTZkGzhOGN7r2J9sHUdi6Ogfm6euD5spi7Bby1WSchssXyG7qaCNzpJGNt9JetDzrtWRqEmjRVaUa/jCrDWYFBk30Mj13djJNQH2skuVvoqPl2FMIkU+akzqCCgtfdKBqdPUm2KFInGJpjYvofV7pMUVvoBIww0jVQTKpDch82rqrTRUcZQZX1sLLJY99ihc4y5ZjiQ3M6ZXcShIls8RZWmUsioKgitZbzdotMtLki5CgKJ3NHuWkvD0+uzeQniFatLDWvrf0W3I5aXZkQ0MSmT1xp0nFL21onihKDRBCCdnafKMtL57ZT9njQBLisIApS16CQVwTcIoSohCCnXO4TtMaypJDzs1HHae69CBZps6TTJzDxlTwT2gfPcxNNzJNOzaB2gAlgfVLVwkMSamALbG4gS4Gju3octCskTiBPKfp9wbIJ0dh5robISwtQ9+Ki02npCSIxOEqLxCbqHHkNHEYmzdus4duGPmu7xw8RjE9LDKYxQSjE5FpGVlkBZAq3QO8VL1Xn8UZrbd9Vet3RuOzpO0FFCMegTtcckP80a2vuuohr0qQYDwkYLgN7JYzS270QFIWW3Q762QjK7TQRYUxG22qg4RgcBWEPZ65GtLBNPTlMO+oSNFtnyhkAepA2S6VmCJEXFCfnqCjqSRs7D06fqBS+anEYnKVW/VyvWSpLG0GGMNUZCOLUmmZwmnp7FFIU0lw4C8tVl0rltoBRRe4y8syZeLFOhwxAViAczW1wgnd+BTlOiZgtQBI0W1lTYshQvXFVJsY+kgTIVveOHacztQIUh3UOPbSzSWpNMzZBMTLJ+8FtPKBxiJWQoignDNmVpSJOQNLTYMsdkGVWeEbXHSFopWQmDYbllER9rhVSri6wfXaKxfRdRq0X/5LG66qOOY5q7rkAlIf2TG2X5dRTT2LEH20xrYT4rDUVhaKUB1aBHvraCNYZoTLw1zTCkmUSUpWFYOGvoJi+tjuWcQZLKAWMwGOxwgG400UoRhopmqskKS7W+Qjw5Q2PbTpmXj31TBPLpObqHHyOamCKemGKwcKJWjsJmm8ldeymtQuMcHEqhrGF9XcJhmjv3EDRarB86QJA2aOzYRRDFWAumLAiSlPHrfoRs6TSdxx8lbLaIp2ZIt+1E6QAdp+gwoOh1yc6eIWyNUfZ7G0qVUlKQpj0OWjHRDilWVyi7OdHkFMoqeQa0pn/yGFhLun2neKuUon/i6Jb8KB3Fci6ngKVJQKip81OGC0epeuuicE5MgdboIEJZSzI1TTI55QwxlqDRdMYETTw5RTQ2DiiK9Q756jKJtkShJokVWinKylIaRdHZUB7CZovGjt10jx+mve8q8tVluscOEY9PEY1PuP5/sr5YIMCy9ti3wBriqRmS6TlUFKGMBS1GAmst2fISqjWGThICIGooUCHGmE2W9YCxq2+Uyq9VKV5696y0myH9YUUcKqJqyODo8VqRC9vjjG/fs6U3nXbfHYUarcSQhlIUa8sMF84ST80QtcdoxJpGEtEbVlu8cI1Y0T152s3tRNaoOAEXHaBsRRhFtaFrtI7pMMKUBaaqiFpjxKHGphrRKa30Gbcyj2oh30VMtNKAYaGJtEVrRWUsw9ySxAFxaFEoKgumMmitageftZCX9ryKQRIHxJGMt3yXqdWg0XePTmSAYbYRchuGGpX3GW7q4Re22hJiH8WoLNsS0aCjmGR6jiBJMJUzHmpFY8dutFZMuEJNxn1lsbZM//hpWUeUIpqcZnxmOx2nRIehZqwRMDh9gl5njXhyinhyhrLfpVhbES9Nowm46ABTMdGKMBbKSu5dVRmaaYAarlOs94jHJ1FRDFgxyK4uUw4GNHfspjHWpKogK+x3rPoZhgHNVBG4OZsbVc+3ViMg2DRuVbXVcBUGmmZsGZ48xNAZgYK0wdjOvfQLRWUgjTVhILnfCouxFoNGY9EaQMkzAxSmojG/g8HCCQmp30SxvoZKEiZntqOQ9xsLvaG5rBX98yFVVjVxqKDMoITe4gKN+Z1UWUbUapGtLhOPTaCCgKK7TpCmZCtLRO1xaeGziWhsQozJSYJCM1g8RTI1I8qrM4hFkzM00iaTY05es0bkOSOPt1ZgEI+uFg1evLwWtxbI32GVMTh+DFMUJFPTROOTJO2EYW639Dq9nPCK1SWGVZogTlBRQpANJExmIM1gjalobt8F1gkQRS5Czo49mKoinpgExPqLNVRlnzAaA2xtUBNBTP7WcQIWik6HaGycZHpWvGInT1IN+6TbdhIkKd3DB4hn5mnMzpN3VjFFBpFU6RtLFVYlgIGyoHfsCK19V5M5S1o8NQNWlKPhomwg7b1XkS0v0j9+mLDRpLFzL9VgQNBs0tx1BSYbuLLxOcncdpLpWfrHjxBPTtehdSiNrYxYlddWaG7fJYpCGDE8cwosIlD21zDWEk1OY0vptRSNTaLCiKDRIuisEiQpQbOFtYgQjeQUBWlDqrEFAbrdJu+socNA8kaqkmrQJ2yNuX5RAeHElOQgJIkIspXBWoOOE/FE7N7HcOk0Kgxri3pj+y6UU2qIIvLVZYIkxZal5EGNjZNMzxM0GihnMa8GfVQUocNQFBVrak9akKQ0d+2V8M+yQGsnBOmAqshpbNuFyYdoHdDec4X0HQsjTJkTjU+gghBTFKAU8diE/P4kwea5eKPCEJMNa+ERY+kc+jbNnXsxZV43PQYIWm1aO/eQrXfqvBUVRiSz20RhCwOwSgqLaE1lNGQ9sk6PqD1GODZOtbxEWRTESYMkgiSKxehQieBVLJ4iXz1L2GwRtdqsH3oMFYQ09+xHB6Es8GFY5+sFjSbptl0EIw+upg4dCRMNaUjRWaXKhiQTk2RrK6ggkgqIq4tyXWlKO9HSbG58kmxxgcaeK4iaLWxRMlw6Q5A2iNpjlJ01olabYm0VrCFojRGEIWkcYsJJlIXh4mkJtbSWaHySvLOCCkLSmXnWD34LHSU0d19BkDQgEC9ltd4hGBsHHdSWvsaOPVhrscZSDQc0d+4RT3VRUFQZUaNJEGtMIe0Xim6Hsf3XUvZ7otQDZbdD2GzROfAo41ddR+/EEeKpWfqnjsnzPFoHuh2stZSDPpQlYbMJ4YSzgEuBmMGp48Sz86TTcxS9bu3NLHvroDTp3DaisQnx5p4+SeDWnDDvSohyKHO8GvRpX3E1xfoaRb9POj1Dvr4qBooVKcYTttrYIMBmGTpOaO3aS5UXBA3Xr6/ZJp3bjtKQ9FcxgwKCiLDZIEkSSGeIJ6dkvV1fw1Ql6fQcwzMLkvO57yp5/oNAitoEIY3ZefEkr6+BtYxfcyNVnsvznecQhhSdNeL2BCbPiCamUCBCYFHQ3rWXbO0scXuM4dlFbFWRzM2jkyZRu40y4iUcraXNXfuYaLcw2YDu8UPoOCHdsUfuvYVq0GW8PU6eV1JowpRgcsrVLuVQBOdidVn+3r0XZWFw+gRldx2lA+LpWRpTc3UvQhBFPJmZI2yOka2dJWw0GZ5dJGg0RSCrKuetn0ApxXDpNOHENOnkFNnKch06Wva6Ek3QGiNfXCAen5Rmzo2mM2BURGMTBGmDuOgxPHNKcj3a40zs2ku2vER3eYl4elZyjbOMYHyCwemT8tnxSRqtcZpphLUieKMUgYJ8fRWNKDo6DCnW14ja45iyBCzlYEAQx65SakQrUbQaMVleEUWa/iERJMP2hEQcrHeo8pwqG5CdXWRs/7VurxPP5mDpNGGRopOUdPsugijClGUdwRFPTKMCMUYMN3lbsZZi5Sw6bTA1PinbdlXSO3YQW1WM7b+G7Owitiop+11ae64gX1tBVRVh2sDYISYbSjRDo0UYhIw1Q0DWjDwb0pjfga0qsuWzRGNj6EabRnMMqpL+wgn0eodwfJJmktBKI0oj3ntjFRYlns6qIF9exYSyvgZxTBlCMxTDnkURBAFjaYJVoesnqQgCCDUU651637NlKb0RraHdTDB5TjnoELTHGSyephoOaO3aR3H2FMPOqjPq7CJqtbFK0dojOcDVqeOy56QN0vkdsla6OVz117FKiVHAWpqBwcZRrbxe7kSRphlZyv46NBroIGK4uCByYSaGyf7xQzR375N1Ih+KQb0sKLodotZ4fS7daNLes1/2RBe5Y60YU3tHDqLiiPYV14iMUpWYqkBVinLQgygmajQJtQKtscagqxJlYLi8SNBsEzWaVPlQvF5aExQF60cOSPTDFVdRZkNUEGJNRawtSTukqCzZZdYkXdnL2d/mMMZw33338V/+y3+h0+nwYz/2Y7z73e9m3759z+h8VWVYXu49+Ru/D0ShptUMKVbPEo9NUGZDgiSRCn7WUnTXXdEKsXBhKrCIR2RmTjwYbkhtWaDitLbQKYsIN07LUkjIoS1LVBJj8wIUdA8fYOzKa0FphosL0tMJqLKhJILn0rQ476yQzMxjyxJT5GRnF0nntmGRZrvVcEBr75WU/S7940dIt+0inpisw8TGrrwelKXsdWUDn5oFYLB4mmRyGhXHcs3WiJdobjsqjql66yJ0RTGDk8dI57aR97qkUzOsH3qM9r4rJeRveckpi87S6RRVHSfS3DcIsFaEajFaOoturycLd1VCVZF1O8TNNkGjSTWUc1gFZadDNDGFrUp0JIn0Js/QSSrhbgpMlqGjiN7xI+6eQr58VsYuDFBWvEdVkRPECXlnlXh8ku7RgzR37pW8LTdi1lQoFNnaCvHEFDrQWCsWWLRypiLJMxsunSGd2yYCjbWEY+PYPJdrq0r5Da48u0QbGlHUjIGiRMUxppDG0rjvtmWFjlxREItrPrwkXsIoRmlNvrLEcPE0yfbdJOMTUrggbZItnUa5VgEyDQNMJY2g886qhH/2+wRp6vIKNdnKWZLpuY0oG1uJYBEEpNOzotQ99k2UDhi76nqK9VV0HKPDiGz5rMxFY6myAf0TR2hfcTVBFJOtLmNNRTI1J/cOJfmBphJBsDLOqtchnpim7HWcF0cW/GzpDDaMaM5uw7rPYyuxyBVFfS+ylWXxpvS6cl1xgqkK8S5aK4rMcEjYaGCGAwZnpLhK/9hhGjv3MFg4Tjw5U3vAREgtRfktS5Tz6BTraxTrazR3iCLVP3lM8rPcxhikDVFqlSJbWyYen5KNd/suBqdPOo+ZoVjvEI1Pka8soqNEKn0WOTqM6J88RmvPfhFMhwPCKMZqJTZlI/fLWguV3MPe8SM0t+1ARbGEKI9NyNwyFcOlMzS27RTvKtA/eYyxK68BJZVPdRhiqoogTrBVIU3ITx13RoY5hktnxIhkxUtoTQVBKIaHqgSUeGlHzggsxlQoJRVVgyStQ4Hlmkusteg4Zbh4imowoLVrL6Yq6R56jPYVV9M7foTW7n30T52Qwj8KyiwjTBKGp0+Sbt+JKUVwN0WJ1or+qRO0du3BlJUYi+KE7pEDdah199C3ae29kt6xwzR370MHkTPzilDTO36Est8lndsu14oFq+gfO0gyu42g2UJZS7a8SFUUNOa2k6+vimfQKddFd410bod4wCtD78QRmSdas37wWxuh4lFEe8+VoGB4dpHG7DbQgXgsG016J44wduV1DBZP09y2g2LYR2stxWyqiqKzQr66THvf1aA1VS5FQ8r1jssxjVBRxPqhx0hn5uvCOsPlRRoz827sB1TDIdnS6Xo/HL/2OfRPHKHsdUm37UJHoUQOKEX3yAH5LUGA0kGtKNmiIGi2wFp6x4/I/A5DbJ4xOHWc5o7dZGsrRO0xiaDIMqJWm7LXJVtboTG3Tfa6KEbHsewpV1yD0loqY07NEMYJnce+SdQeJ5mV9+swpFhbIZ6acVEM8ygVYIpM/nt6FqUCymxAmDboHPibLe0CdJLS3ncVtiqpcim9HzaaDE6fpLX3StYfl4JG49fcKFV9y1K8t1FMtrxI0GwRupB4YwxBFIs3qtcl3b5L1u5Noaq4Z4SqZLBwkmR+ByrQ2KKUENiJSbKVZaw1pNOzbv+XHKai26HsrtPYvpMqz8BYKZYTBJg8J0gSspWzBGlK2GjLurm8RDq/A0yFNYZs5SyNue2AxVQSiaCVAh3QPXwAayrGr76R9YOPumIybRrbdlD0esSTk+Kl1iEq0PSOHqK1dz9Bmsr6rQNQokQEUSLVR5cXMWVJ2GqTzsyTVaouJHW5orVivCEFqFBK5JW1ZYkmCSJsVUjKiNaYbEgQp5iycLKPpSpywjim8/i3aO+7Wtb8skRrDSipIj05TbG6TNhsoZO0jjoRI16FKQvi5hgWF6Y6ujhn3BgsLsgzOKpCbSXawxjD4NQxyu46Y/uvQUUxVTYkW16UNWI4qMPTo8lpgvYk698hR/bZYHq69ZR7Cf5AlFv/8Ic/zB/90R/xb/7Nv+Ghhx5CKcVb3vIW8vzyy5o11qKdh8GUJcXaMusHHgUjkzEan5RQPoBNYVXJzKyERoAIVEqsBjjFQaNQga5DH5TSWFw4WRSKgGQtZb9Ha9c+KrcAp3PbXYVAhY5i8pWz2EoSHZOZecp+z1nVY7fxW7G8zszR2LEbsAxPnyKanJHNq7uOyYa0r7gGW+by28ApVUp6R81tk40YizWyybR27pFwNRABPElRrmdT3umQTs9KtUNX9c9aQzw1TdlbR+HWnEFPQiIBHUWY0QKsA7cwaWxZErXa8juMoRj0SGfm5bfhysobgw6lzL1SzvOnFKYoMKWMiQjSKbohVd7a+69BVFkl3q1mm7g9QdBsimXVhWrGE1NgjeRobS7Va0el902tgIrjTsKMbFlhlcJqTTUcym9A1aGROG8RMupyHUoEY0CqSaJQFlQcSa5M0tiIxdeuyEmga8XHWouKE/EKjHIP4pRocopkYlI2cR1QZQPi8QmiVpsqz1BaU2V9+iePMlg4QTozh1IBQRyjrMXkGdVwSDw1KyGtlXgaO49/i6LfI52apez3Mc7r19wt90rFCbYyrB/8NunsPMV6Bx1KuGZrtygF64cfo1jvEE/OUBUZxpQU/XVpMq2kiAJaUeUZ8dg4JhuIB1lrqmzI+uPfouh1aczMSyEF5Rp5WyQUB5n/psgJU1FiTVmI8LOyjNahU2aVE0BiMUyUJa29Yn1N5ualAl2zjdKSOzZqv0AQUHRWURjpLXbsEMMzp0jnd4jyaypRuqMIHSUEaYN8ZWmjxUBlJPTXGUSSmTkXBqIkbM5aqUDabMnz1Wiho5jWnisgkDUpTFKs1tg8lyqSgeShKaXqIjLNbTvIOmvYopDKoojhQrm8q/6Jo7LpLhynvf9qeWZNhcKSry27/n1sbMRhRDI9XxtvMAYdx+TrHXmGi0LmQxDVVS2NtaIwDnpUg0FtUBicPkk0PimVM3tdysEAHadgKorOKo1tO+RZKgvCZtt59BJZG/deiSkzsBClKdYieapWEQShCJhhiClyGtt3ydyoCnSckK8tE09MEbXHKTqrhOOT5KvL4mFWAWgxzFinoJeuF148MYUtS8puF5sPiSenxdhWlqwf/Db52op4Nw8/RtRsUw0HDM6cJEgSkuk5CcsrZM9o7b4CayrJb9skoLT3SEGj9ce/RTozR95Zw+QZycwc/YXjJNNzFJ01mtt20D16kChtoYLINUVXDBfPiFKllIR8Jykmy8QybQ352grZ8hIYQ9hqS95oZUgnZ8BauocfI0gbW5SqZNsObJFLk/X2uChCqayXwzOnaO7YS5Xn4o3prGGLnKKzik5T8rVVMYyMS+iT1gH9k8dIZuYYnDlFY257nVMcpg36p47TP3mUdGaWwcIJlNIMzy5SDYe0r7iasreOddceOWUSa0nntkvIZnuMbGWJcGxcIjym5lBKU+VDbGWI2hMoFP3TJ8VbPhyc04OttfcqquGA3tFDhGmDfHWFKs9o7NpHvryErUqS+R2yvztPqY5jBgsnJA/TFTIqe110ELB++DExjM5LiDbGYJXMMRUGYoQFhktnnNKnKLvr9I4fIhobZ/3QAcreOsnEFOuHHtsIhT9+SEK45+YlNKzfE+OGtQwXT6OjiPVDB+p9oxr26R4+QDI7T7G+Jk28Dx8gnZmjHA7IVpbByPowPLtIvrqMrUra+68lW1mSPOIoJp3bRu/EUeLxCfrHj8oz0pM1vrVLQrDNcOgiWtxyGcZkS6fpHTskBtxsSL68ROfAoyTaXPbl8CfaUv1Z6ZEor0gmZ9Bh7FI/IqyTHcNG0+XZR6JUB4GsF0VBa/cVTqlyxlPXazSZnBEDSrOFihKy5SWnkIlyFsSJKFWmcgYhLfGWVkLUy16X5vwOMcQ6gwsKiQRBUfX7Eu4cxWRLZ+i5AliDhRPi2R8OqIYDhgsnGBw9wFjz8iijf9krVnme89GPfpRf/MVf5KUvfSnXX3899957L6dPn+bzn//8xb68p02rEWCwrrR6RdFZQ8qnh5Su8hxKS6gDMDi9IAttWWKNxSqJTFbGyGKlAywKOyo2NRLQYSOp0VXlGz0oVZ6JkOgs5EVvXRSNskTHCYOFExLi5ywOAEqL50VKREeS51WWYKwIGbNzZGsrouiEkXhxTkrxhlHcvoTEieBpqtIFous6/tzWStushMcoTdhokkxN1cKp9ABKRZEYZScYgw1ClAtfFGu2Rgcbi9Eov0OFkRPmREiOXFilThvOuxWg4whbyHfhEkSVkn45YVtyktwXE0QJZiQYK7Bl5XJTtLPgb9pc3W9HaTCVhPEpjbEuft4Vw2AkwLqNUilZWOUaNEorqjyvf1PYbEEYuntIbc0febfQAbISGglvU1qUOmuxOpDz6MDNOSWvaY3WmmhsXLw2o6kUhtJU2VrKbIhOYlEEwsgt2rH0NSoKCWkMQhFqraEc9MlWVyTMMYrEWzmyep0+CcZIbpzzNmKtKNhO6QuTBv1Tx0RorioJ7zQVOpaE23x1BZPnpLPzcrlGgsGDOKFY70jvtyBEhzFBkjI4fQoVBJTZsPaaADR37ZUqaFo8WCOFosqHEjc+HNQeXeVCUIrOKsnUNKV7DWwd7lZ2uwQNEUCtU8IAEidQF931OvxVAVU2oOh1KXvr4iGNIoIoroWnwDWxBgklylaWxYpdlc6SGWKVohr2CcJI1gf3fBNo4inJ4SAIQWvKLIO6LL+uvZz9k0eddy5A6XAj4liLUBq1xsQgE27OmVSUw77c6yhCOwu4KD0BvZNHSabnRJkuClBBbf3HSksCjMEGcjwem5DwwmxQCxDSUE+81OWgT5g2GS4vopSmv3DCeRKk9Hv/1HGi9hgg5eST6TnytVVskTvltiWFYRot8RIq0GEiIZlKidfQPWfyXEjeT5VloiiVJVWWyVreXScanwIkHCoZn8aUYr2vb56R9blwxXvS+R1kq2dBawYLJ2rh3lYV2dJp53mdJVs6TZg2KQcyphhDORzUYcllv+uWOTHibC4OFI1NSAj4wvG6qlo0MUk56GGLQvIqp2YImk2GZ06RuKI/Vb9HNehhypJofMLNUSXzq6ooB13Q8uyO7qOOIkyW1eNZDgcSBmllbdxMMjGzcR9m5uR5dV5Pa6FYX60NSEEU0V84XvdiNHkm49Zqu/WzkFDgOKlD6IeuUJMpcspuR8KbnIKugoCyJ9erlEQ5lL0eUXtC9ibr1m2l0FEiSs/kDINTJ6RlSaDrvVZphQ5D8Q7PbZO8Q71V9Eqm58BU9E+J8ldlQ2xVEqZNzHAgezDIfHdJZWHawJYVZb/LqBl8f+GkGBtXlsWo0R53Bgtqgw6BBjRVkdfGg6LXBWvEc+VCYLGGdGZOWodYKx7MlaVaDrCVoXKe33xtRa632ao/G09MyzO2cELWCaVEiV04KXlhri1MdvYMOk7Ilk4TpA0nI4ToIKgrlI4U4mR2niobSN/EVpt8bUUMo1FSz/k6lw6J2smWz1NcxRr6J4/SSC5fETgMZT8YGVzFrm2oi5q5fqg6CsUAuMnwjlaSK+kMIToVI+poX5WqigFo5cIoUxRW9nIFYaNR22WKXoeqlCqzGENVSuST1hodx7IcKyWesFBSFqJWm2rQQ0UR0dgkGCNe17ThDKvntvsweUbVXSN8il6ji8mlf4VPwqOPPkqv1+OFL3xhfWx8fJwbb7yRRx555CJe2TMjQEJXbFVSdiUZPZ6YklLh/V5d6U9r0dyLzsqG5dEJFdZUTnAfbVQuPNC54CXi2YjFylTgPFcjxaLorNa9lawLjwJko3HW2Hhc+ieN3MKmLAmaY5i8oMoGdRhFbRO1YPNMrCTt8Q3BCSSR1il9cjKDCiKxrGGd9VrLpuDC+lBaenwFG8pYPDZe9/1SLhcoSBvykLqNaBQKKRXkxJs3Um6UVi6sRB6LkeCPGYUWiMKlUKgodEK/rhVaeZ1ayRgtcKaqXBn2tVro1GFYb4biNdNbSt+PxkQphR4tcoy+H+p4PLNp7DF10+doXOKmawFKXCpslEGXOYJyYQROuayFfh2AsvVvZNM4jARrO1IKjXFjolxFQrlOU+Qo6yqsFYXkYLkFNu/Ihhm22vU8lZDXSu77SNlzCt+o2IEOI6o8wxQSKhNNSr6CrUQpEa/fNGW3g0JygEToM3VBFR3FIsgHgeQElCXR2Lj033Jjr5SS5OeRN9P9HrnOFJeCL/lobl7aqqrDZEaewWrQRydpnYej46Q+vzyTBp3EG+GOSlENh4w8XzqKRTgsCrGAZ0NX+nyjrH/YGnPCHhRd8dDKf0s+XtRqu7GWcBBrJTxSJ03JL4kidBBQFSUYCcEjdEVurFSQEuOBqueX5Dfm9aau3HOl3FwrOmvOg7bJeCAZzPIcIAaBeHJarOzr6xKuiDxDOojI3SaugkBCUq11+UQW7cL6ZKrJ/AviqFb+bFmAshsGnrKsBfMgSUVwLYuNOe1+V9hoEjabdeESUYDFIxdPTIjHdWTMMPJcK+etQ+nakBUkCQpFsbZaP1+S02pcHoEILVF7zPUeVM44VDgDzshT7MIty8IpIv3agDQSOsNmS/Jq2mMUnVW3lFpZ+7JMFIUnCPJqk3AStsek0EpRkEzPUqytSJPktFGH3Sit61DlUbEEU2QEjTYKyRuyRQ4jRdMaFBIBMJrnKgiwxorXWweuL14q3rvGRk4M4LyOdsPTai2EkczdPCMaG5e+alUpId4uHBCg7PUYRWoorQnCgM3d68NW272viw4j97xKAZC8syaKxqjlQBBS9nsS9ZHEoOQ5KLrrxBNTztCAU4h17b0CUa5V4NbLQMZLKemTVnbXXWEVIRqfqPfEUTTGqKegyYayDoWhCLpWellKiG8pvSjdMxhEEbbaWOui9phEkzgPm63Keh5qHWCKAh1F4s0oRWEMG81NxX8SyYGSQajXnMjNNRXIOaQY0mr9WRXK/j0a+2RqWtYE50WOJ6aosiFVNnCGCTE2jJTRsDVWhxiP1tzKFX7KO/Lby36PsNGqw/NNVcoeX2PPbXa/ibLfI7yMJeAkDqTCHyCLpnKFe9x/u7ULl5tNZev9TFkrVUGtcYaA0D3rIisqNdr3qOWyctBz88wpX+55VUFYP29YQxBK9Iu1Fh3GLpLKGQ0DTbEuRdmGS6dJp+cIGs3agCLe/LXv+JuL1bPE0aXvZbyMp5WwsLAAwI4dO7Ycn5+f59SpU+f7yFMiDPVF+SfpGqOqRVsn0IYgW43cT7WFThY/eVCqIq9zhiwWyqoWeKwTlkxRusREt+FYSzFwmzYKkw0YaQkmKxhVcaqvZYsGgVS8CsTToTbeJIthWyzXRXddrKNP+Gw5lO+ydqQIqvq7bWUk3MNZCGtl0dgt12+qsg7z21C+3He4+1Z0O27dcPdBsSleV9ULiPw6SzXYZDWxzr1tRtex4aUxw767XF3/bkbeFmMkdMrKGCmtpPjH6JyjaxwtYJuvZzNq45Ad9cpxnq2NhVRJnpATMOp8u7rsvluC679H9xmnV7n8O4soYNXIkm43xt+dz258TMZw0JfF2n23hMUp8Rxt2uwsyPu2Htly38RaNQpUOc99cH8MFk9LPsnonmyeeGKaQyme0JfpnBMx8oYCUvhk03tGlsAt7x/dD3eF1hknrBVd1LqqdOVgsDEn2Pxx43q+yb0NRsoWYEY1vDfHkW+6RfUm6q5787UqIFtdkRDN+nvdfTRG3u7WF2UsKgw2ngNwFy/XNzLcMDqOGE/qaTj66i3za8vlkJ1ddKGqo3Vr63tGXvKNezj6bW7kleSIRWOTAJTZUJTDqtr0/e43lcWm3zw6uHHTRl6KLRc4un5k4J6ofAzOnHKheNPka6vSbmHzzLWqflzkUdpYS3UUiTGhkLA4aWkhv8NkAwn5NRU6HlXUqv+f5NY44f+J11v1+5ue9/NTdNYIG01RRp3xJkgatYcWIJ6cOe/5R6/byjjvkoSFbqxVG78/X1slbLWcl7IeNRnByjivhHLvlQqYtipFiCuLeq0YGaQkVDSsr8NWzrs/eo+pZF0eDusql/KNm1cTVd+DaGJKQiCthPaGrTb5uihO5+c73FM3tjoM67dkZxeJZ+brt1Tumd98FlsWElqtnVFs03UOlxdJZrZtWRu3XImpXOGZnHxtVVqDWLBl5dpVbNzXaGz8Ccuk3TrVN51z4wLlKov1zoby+pTYum7W//PENXK0Bo88R+71rSNleeJlyjyZrpWB5Jx5Opr+m9fHJ/ztwvKf6u+5WLLehf7Tmw25bkzrtRYlMtIW+cbU6QXWWidDbSprvil6ZmOubA1X3dLG4nyTrNa22MipqjeY0TRxa5lLMbH1fv3dVrWN8yt1ccbs6XDZVwUcOOE3jreW6E6ShLW176z5fje0VkxNtS742p4JVS5hCWFrDDU2Tra8SL62zPjs9eJidxb/ctAhTFMac9spB33ppdRsSZUwXYl1II7dQjNaxiz5+hrJ1LRLNjebFlVL4ELx4skpBgsnwYWYVZls5mGrLcUY4sSV7t5eV/YpOmt1yXCjJQ8kaLSk1OzcdqzzeJS9ruSsBEFd+W+4cILo6us3FmdNff1lr4t2FcussnVOlDUVYZqy9tg3Gb/2OZJX1G7XgqHJxTJX9NYlCd4awmZLkoyjGBXGoEQhCJst8UDYkaIiFvF4ShLGZeMw7hpE+agGA5c7IgKIeIIMKPe3U0KskiRNTUEyOU3Z65JMz8lG7FzuEuo4EkDVRoER6xbKShZEW214D0fKgFZqY590ni0Zjw7R5LSMWVlIiKNW4kGJY+flKVEqFIXW4v7XOm+nE6Rq5c3l0bj/qyszuu+tBZfOKg3X6DRMU0ahBoHrlwEWFcVEE5MuAborTWn7PWehlebXoyaEEtoqXs6i26kTo21Vud5gR0nnd7kQWYXSAdnKMo35bW7OpfRPHiN2pcuHZ07J9aQNScZOReAs1jtS2vz0SWyZo0K5xuHyppC2JMFkGeVwiAo0VZ4TuDmsklC8H6i6oAnWEKSpyzGblPwGl+QuITkS1lvlQ6m8iGxoo4pJCrESmjwjnprBGoNOJUQxSBtyvcMBRbdD6vqPRc1WXUDCWqkeOjh9kmpyGh0lden0IE0ZnjlFY347+XqHoNl0Pe7Eq1X01kmnRXA0VSUWOGtdnpUIxTpJqcrcWTudJ8tNm3h8UiqWuflokFDDIE6IJybFKz6UJH4VhKjxiS2eUwkvk3A0CQvdyA8dbczx+JTMJxcabcoSFYimM/J4RK123W5gtN5Vw0EtXFdFLs9hEFAM+sTOYppMTpOvnHVFO66QCo+jtcJZegkCJxS458FaMHKfLLjywbNkZ88QjU+JcmOt5DXkmQvD1VCV0uogjNCjnEJjaOzYXeft6dCFZQ56NLQ8s9G43Meit040PuEKDkxJrum+q8lWz5JOz0lhoeVF4olpgkbs7t0kZb9LNdo75proOGG4vEhr515MVTnDFaTbdkoRkzghnpBiLKM8L5MNUXEq91hrl/erQIshLRmflDk+HKDDkLA9Jo2gd+ymKqVReTw+Sd5ZxRpLa9c+ukcPub6NovQ2d+7FWku2uEAyu92t15ao3RZvX5qKt8yt0VGrzcBU4slwvReVC1Huuuqy1lrCtkQ4RGMT5CtnKdblORqclv5++eoyJh8SNlqyx66uuLw5KYDQO/I4Y1deJ1M2EA+cCqO66mCQNly7C3kGonEp4BI0mlSDPr1jB2ls2yVFcaxFh5HseYO+lJ7ftY+is+bChK0o2854JfnDXWxVEqQNeQaqqg5jjCamyJbOUKyvoWPJtTSuX2GZZS7VoJS1SAdSzMW1Mij7PcL2GGV3XdZId71VJvl92dkzcq9cM3EVRhQ9uXdlvydrTG9dPGXOw5GvnJXCHIVUl81XV2juvqL2aNqqkj1hbVWEbBdqbrQmGptwz2xL8g7Hp8iPHaSxfZdUVJ3bJoaAMCTvdYniRPYsl8v8nQhbY4RxxFTz8hWDyyxze7WGyhJE6UYEgVLyPI4MTjrADPpo56W3Tucpu11pj6E0KKkqO+pJuWHDsXWubLZ6dlOet8WYkjBK65SNKssI0lTkiMqIDKUl7BNjXMSSIWyNSTjmtl1E4xMMECNoOj1Xe0yfSDI9R9pu0Pw+39cL5bKvCvi5z32Ot73tbXzjG98gTdP6+C/90i+R5zkf+chHnvY5q8rQ6Zwb4/lsoLWiFYtyYMuSfOUs+doKrT37JX6+0ZR4/1wUhLrilrX0TxyluWc/WEOxuizW/EBJ/kPt0TAMV2TDlTC/UCrDRFJda3BmgcbcNnonjpDMbhPBfCC9kXQYiLs/adA9dojxa26gGg7pHT0IyObS2nOlhHNlQyJXOGFw+mSd17B+8DGSmVlJqs5zukcOgLWMXXWd9J9CHlYxwiiJw1USqyvFOMS9Hzab4s0aDshWl2m5RrdSDjxzIT6KygmRVZ5LqeClMxLfj8uFcQIiI6UGi1US3lMN+qCUWF6ryvVvGVWBG1XAEUvQSPCocqmyU1tvnTJijYRqDZdOu837FK2dezCmck1+E6f6smF9qoxLMh4dkoIauAa4ykJZ5ASuImFtMS0koVu7e1D2uk4Ykb4gIwVN6ZEg7HJsUGhrpTCBtbXPiHo0cOdgdKUbr5uKwelTNLbtkDm0baeEW5YlOnWVhFwuzSg8Mzt7RpJbd+11v1/OXGYZJuuTzG5UkALoHn4MFUS0r5DeYqbIGSycoLX7CoJWW8LTsgG9Y4cYu+p6yn7PKWRrUjCk0ZK5qhTNXfsYVVmUqlaiIA+cx6q150qwRiqC7b1SNqKqoHv0IEoHjF91vQgxUVSHougolr+DQKoyTs9K6FTaIGqPk60uk0zNYJX0oKqyTPodaS3tBpwAVfa76LiBDgN5j2Ijt04HlN2OjK21DE4dFyFsz36XlxAyOHtGjBlugy3WViT8I3Lz0s23srdeC1DxxJTMHRd+Y4qcst+XxrjOczQKaZJ5GWHzoVSLu+IaKZYDLi8SMIb1Q98mSBrSJ86VZpYwEiPXXWQ0t+8RhTXPpFpa0iTvrNSVSIdnz0i59u46YbNJtrxEY247VZ7J+ueqaNpq9BzFtQldPIgSDqqUJjsrSfqDxQXae/bLs1fkVHleW8kHi6dozEi1x+Hi6Tr0qbF9F0HSkKqaZYEOI+do2fD6KqWkYIYLExxZgPsLx9FhRDIzV7czyEdV3BpNRjmvIhwXtWepHHQJ2xNop8yaPKd/4gjp3PY6jKx75CDWGsb2XUX36CFau/YyOHMKUxQ0d+5Bpw1MNpRCHf0eybadUt1TS0VKBRS9rhQxKXK6Rw8ytv9a8s6qzFVjGJ4+STK3TfIjlHxna/cVgJWqifuuEoPdzCy23DD+mCKvQ017xw7Jc7d9NyqKxICQpIw89d1jB0VYU5ITWg36oLWEubqKqdVw4PrqKClAsW0HRbcrOWPZkCASpSaZkUIbwzOnpKLi1CxgGZw+RTIpIexhQxTkwcIJGtt31mPd2n0F2fKS5Jj11qmyjPa+Kym7XTEiGiPCupUiOdH4BPH0HFprhqtniVtjdA8/TvvKayVHyBlJcXttf+EEjfkdrB/69oaHQGl0FDK2/1opXnHyKK1d++qKvNIu4gDp3Da5biWeq2J9lXhimv7xI7SuuFLW11LagETjk/SOSXPw9r6rpDpwVW4YwdJmvb73TknFXasUZjBwVQj3S3ntQNPctY/ukYPoMKS9/xq6hx6TpuK79knxkiAgbLXRQUC+tkoyM0/v6EHCsXEXUWDpH5eqrNVQwmD7J47Q3n8ttiqohkPKQZ/mtp3SFqOqaGzfSTg2gXHhniNjbPf4Ecb2Xsng9AnJzXVyR9ho1euI5BArqrKUyogrSww3FUXBrUPtq66jl9lznO2XE+1m6CJTAPe/piwIYlFqrakgkkIW2hmFJQzeKZMKcFFBOk0lpBU2jO7u+RxVK807qwxPn2Ts6hvE0KW1yxhwERhh5ELHlfMyl/X6hhVDVhDF5OurxK0x1g9+G2sqxq6+gWJtheHiAq09+xkunaEabA3jDNIG6e4r6WcXp+z6+HjjKVcFvOwVq7/+67/mVa96FZ///OfZu3dvffznf/7nuf7663n3u9/9tM95Mcutg3Rjb6ZOCLYWM8zIV5ZI5rfXVmM9KguttViujIRN5GvLBGmLoOE21LIgaI5JzP7I2mtEIQkaTUYhYrKxi5Iwyi0yhfQw0pEkHIobWYlAiZJy69OSVDw8e6Yux57Oba/D7aSCXCC5DliiRotsZYmq36exaw8KRXZ2kXLYl0auLt56k3+7rjgD2ln3TO3RwCkKpasuMyomULuglVNQlHLN6sTTMFJkRs05GSlJIJac0WNRVeT9Hkl7XCqFYRn12hzpqm6kGJV1t2wOxYJa/HKen1FxA7QWAbmqRGGp81Q2qS6bwsAsuLhoxBqElUZ7xognzV3LaN6MFGegzuUyo/CLqsIGAXVmjPNsKsA4z4AL9JB3WDm+MSqjy9pYPpS1FIMBYaMhm3eSupw+8QDW+TlYtAowpqQaSEnVZG6bzDO7yVNnbF1x0VqDslYqRlkrBQ5cz6xs5axUL0pisKLE5stL8h5rxDtXFqI4htIYu3IVz+oQz9GcQgROW1WuB5tsJmGzJRu2NWTLSxigOSvzXGlVW+a0lt8FSkr9hhGVK1muwxhjXCiUa+5sjKmTrcXaHIneXhYb5ZCN3I/RnAHEI+a8imW/R9FZIZ3fKUniuMp+jbSOALV5IY2gR/k81qIDXTeQttZsvOZGV5lKFJi0URsQcK0JxFMka0nh8riscoq53GmwhmxtBawhHpuSpPnRJm0lTLjo90gmpupqgqLYaaq8QKepzLsiR0eRrC+uuE5Y5//IeKsgckUN7CZP5+jxs3W+VNlbJ0ybFP3ehjLpvJ86aaCsIe+uO4VHyr/ny4uyvk5MSS7RKE9xc2jcpvVg9CyMnjuUeIqzlSWCOCWennXKdH/DU6BAqWDjPFbmUzWQtSJoNl0IriE7u0jYHhcLsjHknRUpCDEzT9HvSk+jXEp8qzAidaWObeWei7ntovwBeWfZGY1C8QC6+R1Pz4oHyBWiqAY9bGUJJybRWLlHrTEUlmxlWXLflOsVNPI8WgumEoNgIhXFqjwjaLalyqCxRC4aAGudd0WKoZQ9KcgQjE04hamDjmLxCjlrfJUNXSip5MaaSp7fqsgI0xamlBYgIF43pTTVoCffE0ZEk1LVVQx1LarhkHz1LMn0rJxLyRwusiHp1OxGGL2V6AtlDJlTLETR1SLYa03WWSGemKmV4rroi1KUwwFhIs1Zy34PHUbi7VEhUSBGqryzKvt5ZxWw0hR4fU1yu2bmXHi55MXpIJT3t9pSVMJUooxErihPt0Myv8O1zthY7zYMdJIGEMQJyhWLEoPFBMV6p869G12LVIhcdR6+eawVwTxMXe5dVRFEMcX6KioIa09btrzk1lwxnsq9nqvXPlPmhM02+eqK5MiGsXgIq5JseRGdpOJR7q0TtcclP9ZstAkJ0sZGpAij5tHOo50PpaJdWRC2x4gnZ+j0K6rqshZ/UQpp0GslskbsWk5uUsr1vjQo7XKolEKPlKtRhVpnCKsqCT91DVgA93m3J2hGRY5y2XNn5hmVtZfH2NYFM6wxIi9s2itG67Fx+ZfGlGgdkK8sUfZ6UhSqlLFOJqclF3t1GbBEk7OotEV3UF40RfjplFu/7BWrPM950YtexD333MOrXvUqADqdDi95yUt473vfyx133PG0z3mxFasRzWZEGmtM5XJ+KktRGqIoQCnJTxht4NZaTAWFkaREkb0VUSheCWMgjKTE6shDgTUYpDjCRiyt29ktGBRlIeEgURyglRN6VYCyogyUpcFYRRjIA51XisGgkHCgKCCKXFlv5bqoVyKgawzGwjCraDUiFIbKKAZZSbsVb7Tbcsoe7qE2TnkZ6V8u8oZAgTEGq8QiXofIKdk4RvlmYlCW5E1GCtgof4tRNaGRNLoRA26tkQp5ThGr7yHuApw3baSgjJSf+r9HuE1FNmhFWRmCQBG43DQ7ulduDEebQ716jQQW9/qGu37z+I2GcTSOojRvdDBzoQN2pGbJ2GwIhxvfP9qoNt+TUaPXTYO0ReHCVFilMc56Peq6bkfC+Wjzc/dHWchLQ15YklgRBEoUJEb3U+7PSHE0laE0FmOQRFYFprIUUtSOKNL14l66dJwglPtiRmESVj5fGkMUyPMkQym/JIoCBkPJP4pCmS+VVRhjCQLAWPISlFbEoZtTbi5YNzcUEgZqLBLSpaU4SKBsvaGNiqfU3g/r5jB2yxiMzl2NNsfRdLCymZrKUBlpnBxHAWE4UpZ1ff8BjLVUxqKsGqW21EM80hO02rjXouRaKks9R0HVisvo81TyfKj6u9wJLWJJB7LcEIWB6FfuN1h3/ry0aIVUfHIXY50ip0fCAC7nDVVv4mLrUU8IXbGuoKiSdWD0DDpFtKoqrNWUZYUKFJHWbkq7exsAlczPspBmu8ZY8sKS5ZJ7EIaadjNCKde6wimMLk1ti541WiesEUV6WEBRlCSxCNIWS2lkDdOBQo9+l1uTTCnzXaFcIS+5D4VLKwwDeXNZWcrSusKeyg2D3FtrLc00RIqJWvLCkMSh/FZjKSroDwqCQJPGUuG0MnIdQTgqViP7D0oTRqJEj/z8WKgsVKVBB4ow0G4+OUOPkd9oSkNpLXm+YXWOI00SB0RRQFFWVKWpjT1lZSkrQ5qEhFr2pKoyBIF23yE3vKzke0crUlWN1g2ZTnlpKQtDoxG6Y5ZhbigKQ5rInKzXJQt54e6j88RaK4UAIq1AWYxx+68CZQylle8MI+3ui6Iq5dkPQ11fh3V70ejZtKaistDfJDDGcUAaB7InWk1Vyh5srCXQsq/lhan3V80ondcpfYFCByJlW7fOGyP3IA5VvT7KNm/rogMYMAqq0rqtS557W7nQ1tE+656tSGwhFBW0WzGDQV6vI6P7hnFrFu7ZxlIZWUuCQO5ZaSyh2wONEXOhcvJBf1ChFDTSEK1knppKxiYIArSSfN/KfZfSGh1AMPr+TfudcmvNIKvINs2/HwTCUDPWcjmVUK/39fpsRgatkSwhCrxyxag2ZBkDKqCOnnFnqcUYJztZ90znJYSh259H7x3JTls2FjbJQaPjoMxGukRZQVFWpEmAslAYVRdHy0tLVV3cMfuhUqwA7r33Xv7oj/6I9773vezatYvf/M3f5Pjx43zmM585J/fqqXCpKFZhqJmaarGy0rusuk57/Nhdzvixuzzx43b54sfu8sWP3eWJH7enx9NRrC7frL1NvO1tb6MsS971rncxHA553vOexwMPPPCMlCqPx+PxeDwej8fjebr8QChWQRDwjne8g3e84x0X+1I8Ho/H4/F4PB7PDyGXfR8rj8fj8Xg8Ho/H47nYeMXK4/F4PB6Px+PxeC4Qr1h5PB6Px+PxeDwezwXiFSuPx+PxeDwej8fjuUC8YuXxeDwej8fj8Xg8F4hXrDwej8fj8Xg8Ho/nAvGKlcfj8Xg8Ho/H4/FcIF6x8ng8Ho/H4/F4PJ4LxCtWHo/H4/F4PB6Px3OBeMXK4/F4PB6Px+PxeC4Qr1h5PB6Px+PxeDwezwXiFSuPx+PxeDwej8fjuUC8YuXxeDwej8fj8Xg8F4hXrDwej8fj8Xg8Ho/nAvGKlcfj8Xg8Ho/H4/FcIF6x8ng8Ho/H4/F4PJ4LxCtWHo/H4/F4PB6Px3OBeMXK4/F4PB6Px+PxeC4Qr1h5PB6Px+PxeDwezwWirLX2Yl/EpYa1FmMujdsSBJqqMhf7MjzPAD92ly9+7C5P/Lhdvvixu3zxY3d54sftqaO1Qin1lN7rFSuPx+PxeDwej8fjuUB8KKDH4/F4PB6Px+PxXCBesfJ4PB6Px+PxeDyeC8QrVh6Px+PxeDwej8dzgXjFyuPxeDwej8fj8XguEK9YeTwej8fj8Xg8Hs8F4hUrj8fj8Xg8Ho/H47lAvGLl8Xg8Ho/H4/F4PBeIV6w8Ho/H4/F4PB6P5wLxipXH4/F4PB6Px+PxXCBesfJ4PB6Px+PxeDyeC8QrVh6Px+PxeDwej8dzgXjFyuPxeDwej8fj8XguEK9YXaIYY/it3/otXvKSl3DzzTfz5je/mSNHjlzsy/qhY3V1lV/7tV/jJ3/yJ/nRH/1Rfv7nf56vfvWr9et/8zd/w+te9zpuueUWbrvtNh544IEtn38q4/hk5/BcGIcOHeLWW2/lU5/6VH3Mj9ulzac//Wn+7t/9u9x0003ccccd/Omf/mn9mh+7S5eiKLj33nu57bbbuPXWW3nNa17DX/7lX9av+7G79Pjwhz/M61//+i3Hno1x8jLOhXO+sfviF7/IP/gH/4Bbb72V22+/nd/4jd9gOBzWr/uxexawnkuSD33oQ/ZFL3qR/e///b/bv/mbv7FvfvOb7ctf/nKbZdnFvrQfKt70pjfZV77ylfaRRx6xjz/+uP31X/91+9znPtceOHDALi8v2xe84AX2ne98pz1w4ID9xCc+YW+66Sb7iU98ov78k43jUzmH55mT57n92Z/9WXvttdfaT37yk9bap3bP/bhdPD796U/bG264wX7sYx+zhw8ftvfdd5+9/vrr7V/+5V/6sbvE+Y//8T/aF7/4xfZ//s//aQ8fPmzf+c532h/90R+1CwsLfuwuQR588EF73XXX2de97nX1sWdrnLyMc2Gcb+weeeQRe8MNN9jf/d3ftYcPH7Z//ud/bl/60pfae+65p36PH7vvP16xugTJsszeeuut9uMf/3h9bG1tzT73uc+1//W//teLeGU/XBw+fNhee+219mtf+1p9zBhjX/7yl9sPfvCD9nd+53fsS17yElsURf36+9//fvt3/s7fsdY+tXF8snN4Loz3v//99vWvf/0WxcqP26WLMca+7GUvs//+3//7Lcff/OY329/5nd/xY3eJ88pXvtL+u3/37+r/Xl9ft9dee639sz/7Mz92lxALCwv2zjvvtLfccov96Z/+6S3C+bMxTl7GeeZ8t7H7lV/5FfumN71py/s//elP2xtvvNFmWebH7lnChwJegjz66KP0ej1e+MIX1sfGx8e58cYbeeSRRy7ilf1wMTU1xe/93u/xIz/yI/UxpRTWWtbW1vjqV7/K8573PMIwrF9/4QtfyKFDhzh79uxTGscnO4fnmfPII4/w0EMP8Ru/8Rtbjvtxu3Q5ePAgJ06c4BWveMWW4w888AD/5J/8Ez92lziTk5N86Utf4vjx41RVxUMPPUQcx9xwww1+7C4h/t//+39MTEzwx3/8x9x8881bXns2xsnLOM+c7zZ2b37zm7nrrrvO+UxZlnS7XT92zxJesboEWVhYAGDHjh1bjs/Pz3Pq1KmLcUk/lIyPj/PSl76UOI7rY3/6p3/K0aNH+Ymf+AkWFhbYvn37ls/Mz88DcPLkyac0jk92Ds8zo9PpcNddd/Gud73rnPvvx+3S5fDhwwD0+33uvPNOXvSiF/GqV72KL37xi4Afu0udd77znYRhyE/91E9x0003ce+99/LBD36QvXv3+rG7hLj99tt5//vfz549e8557dkYJy/jPHO+29jdeOONXH/99fV/53nOgw8+yHOe8xymp6f92D1LeMXqEmQwGABsEegBkiQhy7KLcUke4Gtf+xq/+qu/yk/91E9x++23MxwOzztGAFmWPaVxfLJzeJ4Z73nPe7jlllvO8XzAk99zP24Xj263C8Ddd9/N3/t7f4+PfvSjvPjFL+atb30rDz/8sB+7S5zHH3+c8fFxfvu3f5uHHnqIn/3Zn+Xuu+/m0Ucf9WN3mfBsjJOXcb7/lGXJXXfdxYEDB3j3u98NPDXZ0o/dhRM++Vs8zzZpmgJibRj9DTKpG43GxbqsH2q+8IUv8C//5b/k5ptv5gMf+AAg45Tn+Zb3jRaWZrP5lMbxyc7hefp8+tOf5qtf/Sqf+cxnzvu6H7dLlyiKALjzzjv5mZ/5GQBuuOEGvvnNb/Lggw/6sbuEOXHiBO94xzv42Mc+xo//+I8DcNNNN3HgwAE+9KEP+bG7THg2xsnLON9fut0ub3/72/nKV77Cb/3Wb9Uhg37snh28x+oSZORiPXPmzJbjZ86cOcdF6/n+8/u///v84i/+Ij/5kz/J/fffXy8m27dvP+8YAWzbtu0pjeOTncPz9PnkJz/J2bNn65LPt956KwDvfve7ueOOO/y4XcKM7u+111675fjVV1/N8ePH/dhdwvz1X/81RVFw0003bTl+8803c/jwYT92lwnPxjh5Gef7x5kzZ3jta1/L17/+de6//35uv/32+jU/ds8OXrG6BLn++utpt9t85StfqY91Oh2++c1v1pZAz7PDxz/+cX7913+d1772tXzwgx/c4v5+3vOex9e+9jWqqqqPPfzww+zfv5+ZmZmnNI5Pdg7P0+d973sff/Inf8KnP/3p+h/A2972Nn7v937Pj9slzI033kir1eIb3/jGluPf/va32bt3rx+7S5iRwPWtb31ry/Fvf/vb7Nu3z4/dZcKzMU5exvn+sLa2xhve8AaWl5f5+Mc/vqXABDw12dKP3feAi12W0HN+PvCBD9jnP//59gtf+ELdJ+Bv/+2/7fsEPIscPHjQPuc5z7H//J//c3vmzJkt/zqdjl1aWrLPe97z7N13320fe+wx+8lPftLedNNN9lOf+lR9jicbx6dyDs+Fs7ncuh+3S5vf/u3ftrfeeqv9zGc+Y48cOWI//OEP2+uvv97+n//zf/zYXcJUVWVf85rX2J/+6Z+2Dz/8sD106JC999577Q033GC//vWv+7G7RLn77ru3lOx+tsbJyzgXzhPH7u6777bPec5z7MMPP3yOzFKWpbXWj92zgVesLlHKsrT/4T/8B/vCF77Q3nLLLfYtb3mLPXbs2MW+rB8qPvKRj9hrr732vP/uvvtua6213/jGN+yrX/1q+yM/8iP2ZS97mf3P//k/bznHUxnHJzuH58LZrFhZ68ftUuejH/2ovf322+1znvMc+8pXvtJ+/vOfr1/zY3fpsrq6at/znvfY2267zd566632537u5+xXvvKV+nU/dpceTxTOrX12xsnLOBfO5rGrqsredNNN31FmGd1bP3bff5S11l5sr5nH4/F4PB6Px+PxXM74HCuPx+PxeDwej8fjuUC8YuXxeDwej8fj8Xg8F4hXrDwej8fj8Xg8Ho/nAvGKlcfj8Xg8Ho/H4/FcIF6x8ng8Ho/H4/F4PJ4LxCtWHo/H4/F4PB6Px3OBeMXK4/F4PB6Px+PxeC4Qr1h5PB6Px/MM8a0gPR6PxzPCK1Yej8fjuWy55557uP3227/rez71qU9x3XXXcfz48e/pd3/kIx/hgQceeFqfOX78ONdddx2f+tSnvuv7br/9du65554LuTyPx+PxPMt4xcrj8Xg8P9DcdtttPPTQQ8zPz39Pz/vBD36QwWDwtD4zPz/PQw89xG233fY9vRaPx+PxXHzCi30BHo/H4/F8P5menmZ6evpiXwYAcRxzyy23XOzL8Hg8Hs/3Ae+x8ng8Hs8lS1VV/MEf/AGveMUreO5zn8ttt93G+973PrIs2/K+kRfouc99Lm94wxv45je/Wb92vlDAr371q7zuda/j5ptv5vnPfz533303y8vLW8559OhR3va2t/H85z+f5z3vebzlLW/hscceA+C6664D4L777qv/fiqcLxTw0Ucf5U1vehO33norL3vZy/jjP/7jp36DPB6Px3PJ4BUrj8fj8Vyy/Nqv/Rrvfe97uf322/nIRz7Ca1/7Wn7/93+ft771rXXhiIWFBT70oQ/x9re/nQ984AOsra3xC7/wC+coSiMeeeQR3vjGN5KmKR/84Af51V/9Vf7iL/6CX/iFX2A4HAJw5swZXvWqV3Hw4EHe/e538773vY+1tTXe+MY3sry8zEMPPQTAP/yH/7D++5lw+vRpXve617G2tsZv/uZv8ku/9Eu8733v4/Tp08/4nB6Px+O5OPhQQI/H4/Fckhw4cIBPfOITvP3tb+ef/bN/BsCLX/xi5ufnueuuu/gf/+N/AOLVuu++++oQu5tvvpm/9bf+Fh/72Mf45V/+5XPO+/73v5/9+/fzu7/7uwRBUH/mjjvu4JOf/CSvfe1refDBBxkOhzz44IPMzc0BcMMNN/BzP/dz/NVf/VVdMGP79u0XFNr3sY99jLIsuf/++5mZmQFg//79vPrVr37G5/R4PB7PxcF7rDwej8dzSfIXf/EXALziFa/YcvyOO+4gCAK+8pWvALBz584tys3c3By33HILX/7yl88552Aw4Bvf+AYvfelLsdZSliVlWbJnzx6uuuoq/vf//t8AfO1rX+OWW26plSqQwhNf+tKXnrQK4dNh9D0jpQpEydu5c+f37Ds8Ho/H8+zgPVYej8fjuSRZW1sD2KLcAIRhyNTUFOvr6wDMzs6e89mZmRlOnTp1zvFOp4Mxhvvvv5/777//nNeTJAFgdXWV3bt3X/BveDLW1tbO+z1P/M0ej8fjufTxipXH4/F4LkkmJiYAWFxc3KJ8FEXBysoKU1NTnDlzhk6nc85nFxcXz1sJsNVqoZTijW98I3fcccc5rzcaDQDGxsbOm6P18MMPs3v3bvbs2fOMf9dmpqamWFpaOuf46urq9+T8Ho/H43n28KGAHo/H47kkef7znw/AZz7zmS3HP/vZz1JVFT/2Yz8GwJEjRzhy5Ej9+qlTp/j617/OC17wgnPO2W63ufHGGzl48CA33XRT/e+aa67hvvvuq8MLf/zHf5y/+qu/4uzZs/Vnl5eXectb3sJ/+2//DQCtL3wLfeELX8jXv/71LcUqDhw4wLFjxy743B6Px+N5dvGKlcfj8XguSa6++mp+5md+hvvuu497772XL3/5yzzwwAP863/9r3nBC17AS17yEkDC99761rfyhS98gc997nPceeedTE5O8oY3vOG85/3lX/5l/tf/+l/8yq/8Cn/+53/OF7/4Rf7RP/pHfPnLX+Y5z3kOAG984xtJkoQ777yTP/uzP+NLX/oSb33rW5mfn+fv//2/D8D4+Dhf//rXeeSRR+oKhU+XN7zhDUxMTHDnnXfyuc99jj/5kz/hrW99K1EUPaPzeTwej+fi4RUrj8fj8Vyy/Nt/+2/5F//iX/DZz36Wf/yP/zF/8Ad/wOtf/3ruv//+2mN03XXX8epXv5r3vOc93HXXXezdu5ePf/zj37Ep8E/8xE/wwAMPsLCwwNve9jbuuusugiDgwQcfrItg7Nixg49//ONs376df/Wv/hX33HMPc3Nz/Kf/9J+YnJwE4J/+03/K//2//5e3vOUt583neipMTU3xh3/4h+zevZt77rmH9773vbzmNa/h+uuvf0bn83g8Hs/FQ9lnambzeDwej+cy4A//8A95z3vew8MPP/wdlS2Px+PxeC4UX7zC4/F4PD+QWGv5zGc+w2c/+1nGx8frYhjfD6qqetJwQKVU3TfL4/F4PD94eMXK4/F4PD+QnDx5kl//9V8nTVPe9a53fV+Vmpe//OWcOHHiu75n165dfPGLX/y+XYPH4/F4Li4+FNDj8Xg8ngvkW9/6Fnmef9f3xHHMdddd9yxdkcfj8Xiebbxi5fF4PB6Px+PxeDwXiK8K6PF4PB6Px+PxeDwXiFesPB6Px+PxeDwej+cC8YqVx+PxeDwej8fj8VwgXrHyeDwej8fj8Xg8ngvEK1Yej8fj8Xg8Ho/Hc4F4xcrj8Xg8Ho/H4/F4LhCvWHk8Ho/H4/F4PB7PBeIVK4/H4/F4PB6Px+O5QP4/9PCDs31SSTUAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.scatterplot(data=df, x='object_id', y='num_occurences', hue='num_differing_object_texts')"
]
},
{
"cell_type": "code",
"execution_count": 266,
"metadata": {},
"outputs": [],
"source": [
"if SAVE_FIGS:\n",
" fig.savefig('ObjektID-HObjektText_scatter.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 267,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of IDs with multiple associated object texts 404\n"
]
},
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" object_id | \n",
" num_occurences | \n",
" num_differing_object_texts | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" 0 | \n",
" 484 | \n",
" 303 | \n",
"
\n",
" \n",
" | 207 | \n",
" 249 | \n",
" 11 | \n",
" 5 | \n",
"
\n",
" \n",
" | 209 | \n",
" 251 | \n",
" 10 | \n",
" 5 | \n",
"
\n",
" \n",
" | 152 | \n",
" 186 | \n",
" 24 | \n",
" 4 | \n",
"
\n",
" \n",
" | 189 | \n",
" 231 | \n",
" 17 | \n",
" 4 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" object_id num_occurences num_differing_object_texts\n",
"0 0 484 303\n",
"207 249 11 5\n",
"209 251 10 5\n",
"152 186 24 4\n",
"189 231 17 4"
]
},
"execution_count": 267,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# only IDs which have multiple associated object texts\n",
"df_multiple = df.loc[df['num_differing_object_texts'] > 1, :]\n",
"print(f'Number of IDs with multiple associated object texts {len(df_multiple)}')\n",
"df.head()\n"
]
},
{
"cell_type": "code",
"execution_count": 268,
"metadata": {},
"outputs": [],
"source": [
"dupl_matches = dict()\n",
"dupl_matches_props = dict()\n",
"dupl_matches_collection = list()\n",
"# collection of information for dates\n",
"# [VorgangsID, num_matching_props, date_range]\n",
"data_date_range = list()\n",
"\n",
"data = data_rem_dupl.copy()\n",
"\n",
"for ident in unique_ids:\n",
" temp = data.loc[data['ObjektID']==ident,:]\n",
" \n",
" filt = ~(data.columns == 'ObjektID')\n",
" \n",
" # check every index combination\n",
" combi = list(combinations(range(len(temp)), 2))\n",
" \n",
" dict_entry = list()\n",
" dict_entry_props = list()\n",
" total_num_dupl_matches = 0\n",
" max_date_range = 0\n",
" for (idx1, idx2) in combi:\n",
" # number of matches without VorgangsID (duplicates)\n",
" temp_dupl_matches = (temp.iloc[idx1,filt] == temp.iloc[idx2,filt])\n",
" dupl_matches_collection.append(temp_dupl_matches.tolist())\n",
" num_dupl_matches = temp_dupl_matches.sum()\n",
" matching_props = temp.columns[1:][temp_dupl_matches]\n",
" non_matching_props = temp.columns[1:][~temp_dupl_matches]\n",
" total_num_dupl_matches += num_dupl_matches\n",
" \n",
" # date ranges\n",
" date_range = temp.iloc[idx1,4] - temp.iloc[idx2,4]\n",
" date_range = abs(date_range.days)\n",
" if date_range > max_date_range:\n",
" max_date_range = date_range\n",
" \n",
" dict_entry.append([(idx1, idx2), num_dupl_matches, (date_range)])\n",
" dict_entry_props.append([(idx1, idx2), (matching_props, non_matching_props)])\n",
" data_date_range.append([vorgang_id, num_dupl_matches, date_range])\n",
" \n",
" dict_entry.append([total_num_dupl_matches, max_date_range])\n",
" dupl_matches[ident] = dict_entry\n",
" dupl_matches_props[ident] = dict_entry_props\n",
" \n",
"df_objectid = pd.DataFrame(data=dupl_matches_collection, columns=data.columns[filt])\n",
"df_date_objectid = pd.DataFrame(data=data_date_range, columns=['ObjektID', 'num_matching_props', 'date_range'])"
]
},
{
"cell_type": "code",
"execution_count": 269,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" VorgangsID | \n",
" HObjektText | \n",
" VorgangsTypID | \n",
" VorgangsDatum | \n",
" VorgangsStatusId | \n",
" VorgangsPrioritaet | \n",
" VorgangsBeschreibung | \n",
" VorgangsOrt | \n",
" VorgangsArtText | \n",
" ErledigungsDatum | \n",
" ErledigungsArtText | \n",
" ErledigungsBeschreibung | \n",
" MPMelderArbeitsplatz | \n",
" MPAbteilungBezeichnung | \n",
" Arbeitsbeginn | \n",
" ErstellungsDatum | \n",
"
\n",
" \n",
" \n",
" \n",
" | 0 | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" | 1 | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" | 2 | \n",
" False | \n",
" False | \n",
" True | \n",
" True | \n",
" True | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
"
\n",
" \n",
" | 3 | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
" | 4 | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" True | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
" False | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VorgangsID HObjektText VorgangsTypID VorgangsDatum VorgangsStatusId \\\n",
"0 False False True False True \n",
"1 False False True False True \n",
"2 False False True True True \n",
"3 False False True False False \n",
"4 False False True False False \n",
"\n",
" VorgangsPrioritaet VorgangsBeschreibung VorgangsOrt VorgangsArtText \\\n",
"0 False False False False \n",
"1 True False False False \n",
"2 True False False False \n",
"3 True False False False \n",
"4 True False False False \n",
"\n",
" ErledigungsDatum ErledigungsArtText ErledigungsBeschreibung \\\n",
"0 False False False \n",
"1 False True False \n",
"2 False True False \n",
"3 False True False \n",
"4 False False False \n",
"\n",
" MPMelderArbeitsplatz MPAbteilungBezeichnung Arbeitsbeginn \\\n",
"0 False False False \n",
"1 False False False \n",
"2 False False False \n",
"3 False False False \n",
"4 False False False \n",
"\n",
" ErstellungsDatum \n",
"0 False \n",
"1 False \n",
"2 True \n",
"3 False \n",
"4 False "
]
},
"execution_count": 269,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_objectid.head()"
]
},
{
"cell_type": "code",
"execution_count": 270,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VorgangsPrioritaet 246375\n",
"VorgangsStatusId 203502\n",
"VorgangsTypID 196177\n",
"HObjektText 125040\n",
"MPAbteilungBezeichnung 121760\n",
"MPMelderArbeitsplatz 109429\n",
"ErledigungsArtText 99894\n",
"VorgangsArtText 58322\n",
"ErstellungsDatum 1329\n",
"VorgangsOrt 1147\n",
"ErledigungsDatum 1119\n",
"VorgangsDatum 1065\n",
"VorgangsBeschreibung 922\n",
"Arbeitsbeginn 802\n",
"ErledigungsBeschreibung 406\n",
"VorgangsID 275\n",
"dtype: int64"
]
},
"execution_count": 270,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_objectid.sum().sort_values(ascending=False)"
]
},
{
"cell_type": "code",
"execution_count": 271,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" ObjektID | \n",
" num_matching_props | \n",
" date_range | \n",
"
\n",
" \n",
" \n",
" \n",
" | 257165 | \n",
" 261775 | \n",
" 1 | \n",
" 1925 | \n",
"
\n",
" \n",
" | 257832 | \n",
" 261775 | \n",
" 1 | \n",
" 1880 | \n",
"
\n",
" \n",
" | 257833 | \n",
" 261775 | \n",
" 1 | \n",
" 1838 | \n",
"
\n",
" \n",
" | 257827 | \n",
" 261775 | \n",
" 1 | \n",
" 1796 | \n",
"
\n",
" \n",
" | 258531 | \n",
" 261775 | \n",
" 1 | \n",
" 1778 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" ObjektID num_matching_props date_range\n",
"257165 261775 1 1925\n",
"257832 261775 1 1880\n",
"257833 261775 1 1838\n",
"257827 261775 1 1796\n",
"258531 261775 1 1778"
]
},
"execution_count": 271,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_date_sorted = df_date_objectid.sort_values(by='date_range', ascending=False)\n",
"df_date_sorted.head()"
]
},
{
"cell_type": "code",
"execution_count": 272,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of entries: 261316\n"
]
}
],
"source": [
"print(f'Number of entries: {len(df_objectid)}')\n",
"dupl_count_abs = df_objectid.sum().sort_values(ascending=False)\n",
"dupl_count_rel = dupl_count_abs / len(df_objectid)"
]
},
{
"cell_type": "code",
"execution_count": 273,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"VorgangsPrioritaet 0.942824\n",
"VorgangsStatusId 0.778758\n",
"VorgangsTypID 0.750727\n",
"HObjektText 0.478501\n",
"MPAbteilungBezeichnung 0.465949\n",
"MPMelderArbeitsplatz 0.418761\n",
"ErledigungsArtText 0.382273\n",
"VorgangsArtText 0.223186\n",
"ErstellungsDatum 0.005086\n",
"VorgangsOrt 0.004389\n",
"ErledigungsDatum 0.004282\n",
"VorgangsDatum 0.004076\n",
"VorgangsBeschreibung 0.003528\n",
"Arbeitsbeginn 0.003069\n",
"ErledigungsBeschreibung 0.001554\n",
"VorgangsID 0.001052\n",
"dtype: float64"
]
},
"execution_count": 273,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dupl_count_rel"
]
},
{
"cell_type": "code",
"execution_count": 274,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'mean date_range [days]')"
]
},
"execution_count": 274,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAKsCAYAAADvIiygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABXhElEQVR4nO3deXxM9+L/8fdMIiKSSCiJVqlGiZRYKqT2pXTR9jZN1yuqtKi61BZUKKpov9RetcXSlVqqq3uv6kJbl6RKF1KlqC1CRGLLOvP7w8/czhVkchJnRl7Px8PjkZxzZvL+TBIz75zP+YzFbrfbBQAAAAAoNqvZAQAAAADA01GsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZ5mx3AXdntdtlsdrNjAAAAADCR1WqRxWK56nEUq8uw2ew6efKs2TEAAAAAmKhy5Yry8rp6sWIqIAAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIO8zQ6Aa8dqtchqtZgdo1A2m102m93sGAAAAECxUKzKCKvVosrBfrJY3fMkpd1m08mMc5QrAAAAeCSKVRlhtVpksVqVsf595WekmR3HiXdwNQV3flJWq4ViBQAAAI9EsSpj8jPSlH/iiNkxAAAAgOuKe84LAwAAAAAPQrECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABjkbXYAoKisVousVovZMQpls9lls9nNjgEAAACTUKzgEaxWi4KDK8hq9TI7SqFstgJlZJynXAEAAJRRFCt4hAtnq7y0d8NUZZ86ZHYcJ75BNRTWaZisVgvFCgAAoIyiWMGjZJ86pHMn9podAwAAAHDC4hUAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAY5G12AE9htVpktVrMjlEom80um81udgwAAACgzKJYFYHValHlYD9ZrO55gs9us+lkxjnKFQAAAGASilURWK0WWaxWZX3xrQoyssyO48QrOFCBd7WW1WqhWAEAAAAmoVi5oCAjS/knTpodAwAAAICbcc+5bQAAAADgQShWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGsdw6gDLFarXIarWYHeMSNpud96IDAMCDUawAlBlWq0VBwRXkZfUyO8olCmwFOpVxnnIFAICHolgBKDOsVou8rF56f8trSjt90Ow4DtUCbtaTLUbIarVQrAAA8FAUKwBlTtrpgzpyao/ZMQAAwHXELRavOHz4sOrVq3fJv5UrV0qSdu3apbi4ODVu3Fjt27dXYmKi0+1tNptmzZqlNm3aqFGjRurVq5cOHDhgxlAAAAAAlEFuccbqt99+U/ny5fXFF1/IYvnvReUBAQHKyMhQz549ddddd2n8+PHavn27xo8fr6CgIMXGxkqS5s6dq+XLl2vy5MkKCQnRlClT1Lt3b3366afy8fExa1gAAAAAygi3KFa7d+9W7dq1Va1atUv2LVu2TD4+Pho3bpy8vb0VFhamAwcOaOHChYqNjVVubq4WL16s+Ph4tWvXTpI0ffp0tWnTRuvXr1fXrl2v9XAAAAAAlDFuMRXwt99+U506dQrdl5ycrKioKHl7/7cDRkdHa9++fUpPT1dKSorOnj2r6Ohox/7AwEBFREQoKSmp1LMDAAAAgFsUq927dys9PV1///vf1bJlSz355JPatGmTJCk1NVWhoaFOx188s3XkyBGlpqZKkqpXr37JMUePHr0G6QEAAACUdaZPBczNzdX+/ftVoUIFDR8+XH5+fvr444/Vu3dvLVmyRNnZ2ZdcJ1W+fHlJUk5Ojs6fPy9JhR6TmZlpKJu394Xe6eXlFv3ziq6W0dPH4On54R7c/Xvk7vkAAMDlmV6sfHx8lJSUJG9vb0c5atCggfbu3avExET5+voqNzfX6TY5OTmSJD8/P/n6+kq6UNAufnzxmAoVKhQ7l9VqUXBwxWLf/loLDCz+WN2Fp4/B0/PDfPwMAQDguUwvVtKFgvS/6tatq2+//VahoaFKS0tz2nfx85CQEOXn5zu21axZ0+mY8PDwYmey2ezKyjon6cJfkd39BU9W1nkVFNguu9/Tx+Dp+eEe3P3niJ8hAADcT2BghSLNKjG9WKWkpOjJJ5/UwoUL1axZM8f2X375RXXq1FH9+vW1fPlyFRQUyMvLS5K0efNm1a5dW1WqVFFAQID8/f21ZcsWR7HKysrSzp07FRcXZyhbfr7nvMApKLB5VN7CePoYPD0/zMfPEAAAnsv0Cf1169bVbbfdpvHjxys5OVl79+7V5MmTtX37dj333HOKjY3VmTNnlJCQoD179mjNmjVatmyZ+vbtK+nCVMK4uDhNnTpVGzZsUEpKigYPHqzQ0FB17tzZ5NEBAAAAKAtMP2NltVo1b948TZ06VYMGDVJWVpYiIiK0ZMkS1atXT5K0aNEiTZw4UTExMapataqGDx+umJgYx30MHDhQ+fn5Gj16tLKzsxUVFaXExETeHBgAAADANWF6sZKkypUra9KkSZfdHxkZqRUrVlx2v5eXl+Lj4xUfH18a8QAAAADgikyfCggAAAAAno5iBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAY5G12AKAssVotslotZse4hM1ml81mNzsGAACAx6JYAdeI1WpRcHAFWa1eZke5hM1WoIyM85QrAACAYqJYAdfIhbNVXvrh6//T6cw/zY7jEFCppu5oP1xWq4ViBQAAUEwUK+AaO535pzLT95odAwAAACWIxSsAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGORtdgAAQNFZrRZZrRazYxTKZrPLZrObHQMAAFNQrADAQ1itFgUF+8nL6p6TDQpsNp3KOEe5AgCUSRQrAPAQVqtFXlar/i/5XR08fczsOE5uDgjR8GbdZLVaKFYAgDKJYgUAHubg6WPam3nY7BgAAOAv3HM+CQAAAAB4EIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAa5VbHat2+fmjRpojVr1ji27dq1S3FxcWrcuLHat2+vxMREp9vYbDbNmjVLbdq0UaNGjdSrVy8dOHDgWkcHAAAAUIa5TbHKy8vTsGHDdO7cOce2jIwM9ezZU7fccotWr16tAQMGaObMmVq9erXjmLlz52r58uV65ZVXtGLFClksFvXu3Vu5ublmDAMAAABAGeQ2xWr27NmqWLGi07YPPvhAPj4+GjdunMLCwhQbG6unn35aCxculCTl5uZq8eLFGjBggNq1a6fw8HBNnz5dx44d0/r1680YBgAAAIAyyC2KVVJSklasWKHXXnvNaXtycrKioqLk7e3t2BYdHa19+/YpPT1dKSkpOnv2rKKjox37AwMDFRERoaSkpGuWHwAAAEDZ5n31Q0pXVlaWhg8frtGjR6t69epO+1JTU1W3bl2nbdWqVZMkHTlyRKmpqZJ0ye2qVaumo0ePGs7m7X2hd3p5uUX/vKKrZfT0MXh6/qLsN5u75ysJ7j5GT/8ZkjwjIwAApcH0YjVu3Dg1btxYDzzwwCX7srOz5ePj47StfPnykqScnBydP39ekgo9JjMz01Auq9Wi4OCKVz/QTQQGVjA7gmGePgbyw6jr4XtwPYwBAIDiMLVYrV27VsnJyfrkk08K3e/r63vJIhQ5OTmSJD8/P/n6+kq6cK3VxY8vHlOhgrEnd5vNrqysCwtpeHlZ3f7FQlbWeRUU2C6739PH4On5Jfcfw9XyXw88/Xvg7vmlsvFzBAAoWwIDKxRpRoapxWr16tVKT09X+/btnbaPHTtWiYmJuvHGG5WWlua07+LnISEhys/Pd2yrWbOm0zHh4eGG8+Xne86Lg4ICm0flLYynj4H8MOp6+B5cD2MAAKA4TC1WU6dOVXZ2ttO2Ll26aODAgbrvvvv02Wefafny5SooKJCXl5ckafPmzapdu7aqVKmigIAA+fv7a8uWLY5ilZWVpZ07dyouLu6ajwcAAABA2WRqsQoJCSl0e5UqVXTTTTcpNjZWixYtUkJCgp599ln99NNPWrZsmcaPHy/pwrVVcXFxmjp1qipXrqybbrpJU6ZMUWhoqDp37nwthwIAAACgDDN98YorqVKlihYtWqSJEycqJiZGVatW1fDhwxUTE+M4ZuDAgcrPz9fo0aOVnZ2tqKgoJSYmXrKgBQAAAACUFrcrVr/99pvT55GRkVqxYsVlj/fy8lJ8fLzi4+NLOxoAAAAAFIo3HAEAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEHeRTmofv36xbpzi8WinTt3Fuu2AAAAAOApilSs7Ha7HnnkEYWGhhb5jo8ePao1a9YUOxgAAAAAeIoiFStJeuyxxxQZGVnkO96+fbtWr15drFAAAAAA4EmKdI3VkiVLFBYW5tId16lTR0uWLClWKAAAAADwJEU6Y3XnnXc6fX7w4EHl5OSoTp06yszM1IwZM3T06FHdc889euihhyRJ/v7+l9wOAAAAAK5HLq8KuHHjRt17772OaX7jxo3TBx98oGPHjunFF1/UypUrSzwkAAAAALgzl4vV3Llz1bp1a/Xv31+nT5/W+vXr1adPH3344Yfq06eP3nrrrdLICQAAAABuy+VilZKSoh49esjf31+bNm1SQUGB7r77bklSq1atdODAgRIPCQAAAADuzOViVb58eeXn50uSNm3apCpVqig8PFySdOLECQUGBpZsQgAAAABwc0Vebv2iO+64Q4sXL1ZmZqbWrVunhx9+WJL0yy+/aM6cOWratGmJhwQAAAAAd+byGasXX3xRx44d07Bhw1SjRg3169dPktS3b1/l5uZq2LBhJR4SAAAAANyZy2esbr75Zn322WdKT0/XDTfc4Nj+xhtvKCIiQj4+PiUaEAAAAADcnctnrHr06KFPPvlE/v7+TtsbN25MqQIAAABQJrlcrLy9vfXiiy+qdevWGjNmjH788cfSyAUAAAAAHsPlqYCJiYlKS0vTRx99pI8++kgrV65UrVq19PDDD+uhhx5SSEhIaeQEAAAAALfl8hkrSapWrZp69+6tTz/9VB988IE6duyo1atXq2PHjnr22Wf1xRdfyG63l3RWAAAAAHBLxSpWf5Wfn6/8/Hzl5eVJkjIyMjRo0CB17dpVv/32m+GAAAAAAODuXJ4KKEkHDx7URx99pI8//lgHDx7UzTffrMcff1wxMTEKCQnRsWPH1Lt3bw0bNkyffPJJSWcGAAAAALficrF64okntGPHDpUvX15dunTRK6+8oubNmzsdExISoi5dumjp0qUllRMAAAAA3JbLxSo/P19jx47V/ffff8mS63911113qU2bNobCAQAAAIAncLlYrVq16or77Xa7LBaLwsPDix0KAAAAADxJsa6x+uyzz7R161bl5eU5Vv+z2+06d+6ctm/fro0bN5ZoSAAAAABwZy4Xqzlz5mjOnDkKCAhQfn6+ypUrJ29vb508eVJWq1WPPvpoaeQEAAAAALfl8nLrH374oR588EFt3bpVTz/9tDp06KDvv/9eq1atUlBQkG677bbSyAkAAAAAbsvlYnXs2DH97W9/k8Vi0e23364ff/xRktSgQQM999xzWrlyZYmHBAAAAAB35nKx8vPzk8VikSTdcsstOnTokLKzsyVJ9evX16FDh0o2IQAAAAC4OZeLVcOGDfXhhx9KkmrWrCkvLy99//33kqS9e/fKx8enZBMCAAAAgJtzefGK5557Tj179tTp06c1b948Pfjggxo5cqRatGihb7/9VnfddVdp5AQAAAAAt+VysYqKitKqVav022+/SZJeeuklWa1Wbdu2Tffcc49GjhxZ4iEBAAAAwJ0V632swsPDHW8AXL58eU2YMKFEQwEAAACAJylSsUpKSnLpTqOioooVBgAAAAA8UZGKVffu3R0rAf4vu90uSU77d+3aVQLRAAAAAMAzFKlYvfXWW46Pjxw5ojFjxig2Nlb33nuvqlatqlOnTunLL7/U8uXL9fLLL5daWAAAAABwR0UqVs2bN3d83L17dz399NMaOnSo0zFNmzaVr6+vlixZovvuu69kUwIAAACAG3P5fax++ukn3XnnnYXua9KkiXbv3m04FAAAAAB4EpdXBQwNDdXXX3+tli1bXrLvn//8p2rWrFkiwQC4H6vVIqu18OstzWaz2WWz2c2OAQAAyiiXi1XPnj01btw4HT9+XB07dlTlypV14sQJ/fOf/9TXX3+tadOmlUZOACazWi0KDq4gq9XL7CiFstkKlJFxnnIFAABM4XKxeuKJJ5Sfn68333xT69atc2yvXr26pk6dqnvvvbdEAwJwDxfOVnlpw7ev6lTmQbPjOAmqdLM6tR4pq9VCsQIAAKYo1hsEx8XFKS4uTn/88YcyMzMVHBysW265pYSjAXBHpzIP6sTJPWbHAAAAcCtFWryiffv2SklJuWT7rbfeqiZNmhRaqnbt2qX27dsbzQcAAAAAbq9IZ6xSU1N1+PBhBQYGFvmODx8+rGPHjhU7GAAAAAB4iiJPBfzHP/7h0h3b7XZZLO65ehgAAAAAlKQiFavJkyeXdg4AAAAA8FhFKlYxMTGlnQMAAAAAPFaRFq8AAAAAAFwexQoAAAAADKJYAQAAAIBBFCsAAAAAMMhQsTp9+rT27t2r3NxcFRQUlFQmAAAAAPAoxSpWW7Zs0aOPPqrmzZvrgQce0O+//66hQ4fq1VdfLel8AAAAAOD2XC5Wmzdv1jPPPCNfX18NGzZMdrtdkhQREaG33npLS5YsKfGQAAAAAODOXC5WM2bMUKdOnfT222+rR48ejmLVp08fPfvss1q5cmWJhwQAAAAAd+Zysdq1a5diY2MlSRaLxWlfq1atdPjw4ZJJBgAAAAAewuViFRAQoOPHjxe67+jRowoICDAcCgAAAAA8icvFqlOnTpo+fbp+/vlnxzaLxaLU1FTNmzdP7du3L8l8AAAAAOD2vF29wdChQ7Vjxw499thjuuGGGyRJQ4YMUWpqqqpXr64hQ4aUeEgAAAAAcGcuF6tKlSpp5cqVWrt2rf7zn//o1KlTCggIUPfu3fXwww+rQoUKpZETAAAAANyWy8VKknx8fPTYY4/pscceK+k8AAAAAOBxXC5Wc+bMuew+q9UqPz8/1apVS61atZKPj4+hcAAAAADgCVwuVh9//LFSU1OVm5srb29vBQUF6dSpU8rPz5fFYnG8r1WdOnX01ltvqXLlyiUeGgAAAADcicurAr7wwgvy8fHRtGnTtGPHDn377bf6+eefNWfOHAUHB2vGjBn65JNPJEnTpk0r8cAAAAAA4G5cPmM1e/ZsDRo0SPfdd59jm8Vi0V133aUTJ05o5syZWrdunZ577jm99tprJRoWAAAAANyRy8Xq6NGjqlWrVqH7brrpJh0+fFiSFBoaqszMTGPpAADXFavVIqvVYnaMQtlsdtlsdrNjAAA8lMvFqk6dOlq5cqXatGlzyb5Vq1apdu3akqT9+/erWrVqxhMCAK4LVqtFQcF+8rK6PAv9miiw2XQq4xzlCgBQLC4XqwEDBqh///566KGHdPfdd6tKlSpKT0/X+vXr9dtvv2nWrFnauXOnpkyZotjY2NLIDADwQFarRV5Wq6Yk/UsHT2eYHcfJzQHBio+6W1arhWIFACgWl4tV+/btlZiYqNmzZ2vOnDkqKChQuXLl1LRpUy1btkzNmjXTl19+qa5du2rQoEGlEBkA4MkOns7Q3lPHzY4BAECJKtYbBEdHRys6Olq5ubnKzMxUlSpVZP3L1I6OHTuqY8eOJRYSAAAAANxZsYqV3W7Xrl27dO7cOdntdu3fv99pf1RUVElkAwAAAACP4HKx+umnn/TCCy8oNTXVsc1utzveHNhisWjXrl0lGhIAAAAA3JnLxWrSpEny9vbW5MmTFRoa6jQFEAAAAADKIpeL1c6dOzVt2jTdddddpZEHAAAAADyOy6eb/nehCgAAAAAo61xuSH//+9+1YMECnTt3rjTyAAAAAIDHcXkq4IEDB7R37161atVKt912m3x9fZ32WywWLVu2rMQCAgAAAIC7c/mM1YEDBxQeHq4GDRqofPnystvtTv9sNptL95eenq74+HhFR0erSZMm6tOnj/bs2ePYv2vXLsXFxalx48aONyf+K5vNplmzZqlNmzZq1KiRevXqpQMHDrg6LAAAAAAoNpfPWL399tslGqBfv36yWq1auHCh/Pz8NHPmTD399NNav369srOz1bNnT911110aP368tm/frvHjxysoKEixsbGSpLlz52r58uWaPHmyQkJCNGXKFPXu3VuffvqpfHx8SjQrAAAAABSmRFehOHfunDZu3Fjk4zMyMlSjRg1NmDBBDRs2VFhYmJ5//nkdP35cv//+uz744AP5+Pho3LhxCgsLU2xsrJ5++mktXLhQkpSbm6vFixdrwIABateuncLDwzV9+nQdO3ZM69evL8mhAQAAAMBluXzG6vDhw3rppZeUlJSkvLy8Qo8p6hsEBwcHa9q0aY7PT5w4ocTERIWGhqpOnTqaPXu2oqKi5O3935jR0dGaP3++0tPTdfjwYZ09e1bR0dGO/YGBgYqIiFBSUpK6du3q6vAAAAAAwGUuF6vJkyfrxx9/1GOPPaZt27apQoUKaty4sb777jvt3r1bs2fPLlaQMWPGOM5Qvfnmm/Lz81Nqaqrq1q3rdFy1atUkSUeOHFFqaqokqXr16pccc/To0WLl+Ctv7wsn9Ly83H95+atl9PQxeHr+ouw3m6fnlzx/DJ6eX7r+f48BALgcl4tVUlKSBg0apKeeekrvvvuuvvjiC8XHx2vIkCHq1auXNmzYoE6dOrkcpEePHnr88cf1/vvvq3///nrvvfeUnZ19yXVS5cuXlyTl5OTo/PnzklToMZmZmS5n+Cur1aLg4IqG7uNaCgysYHYEwzx9DOQ3n6ePwdPzS54/Bk/PDwAwj8vF6uzZs6pfv74kKSwszHGGysvLS926ddOrr75arCB16tSRJE2YMEHbt2/XO++8I19fX+Xm5jodl5OTI0ny8/NzLPWem5vrtOx7Tk6OKlQw9uRos9mVlXXhvbq8vKxu/2SblXVeBQWXX5HR08fg6fkl9x+Dp+eXPH8Mnp5fuv5/jwEAZU9gYIUizWhwuVhVq1ZNx48flyTVqlVLmZmZSktLU7Vq1VSpUiWlp6cX+b7S09O1efNm3XvvvfLy8pIkWa1WhYWFKS0tTaGhoUpLS3O6zcXPQ0JClJ+f79hWs2ZNp2PCw8NdHdol8vM958m1oMDmUXkL4+ljIL/5PH0Mnp5f8vwxeHp+AIB5XJ5M3q5dO82cOVPbtm1T9erVFRoaqsWLF+vMmTNavXq1QkJCinxfaWlpGjp0qLZu3erYlpeXp507dyosLExRUVH64YcfVFBQ4Ni/efNm1a5dW1WqVFF4eLj8/f21ZcsWx/6srCzt3LlTzZo1c3VoAAAAAFAsLhergQMHKjAwULNmzZIkDR48WG+99ZaioqL0ySefqGfPnkW+r/DwcLVu3Vrjx49XcnKydu/erREjRigrK0tPP/20YmNjdebMGSUkJGjPnj1as2aNli1bpr59+0q6cG1VXFycpk6dqg0bNiglJUWDBw9WaGioOnfu7OrQAAAAAKBYXJ4KWKlSJa1cudIxJe/BBx/UjTfeqO3btysyMlLNmzcv8n1ZLBbNmDFDr7/+ugYNGqTTp0+rWbNmevfdd3XjjTdKkhYtWqSJEycqJiZGVatW1fDhwxUTE+O4j4EDByo/P1+jR49Wdna2oqKilJiYyJsDAwAAALhmXC5WjzzyiPr37++08l+zZs2KPfUuICBA48aN07hx4wrdHxkZqRUrVlz29l5eXoqPj1d8fHyxvj4AAAAAGOXyVMCDBw/K39+/NLIAAAAAgEdyuVh17dpV8+fP18GDB0sjDwAAAAB4HJenAu7fv1/Jycnq0qWLfH19VblyZaf9FotFX3zxRYkFBAAAAAB353Kxql69uh544IHSyAIAAAAAHsnlYjV58uQiH7t27Vp16NBBlSpVcvXLAAAAAIDHcPkaq6IqKCjQiy++qEOHDpXWlwAAAAAAt1BqxUqS7HZ7ad49AAAAALiFUi1WAAAAAFAWuHyNFQAAZZnVapHVajE7RqFsNrtsNmaLAIAZKFYAABSR1WpRULCfvKzuOeGjwGbTqYxzlCsAMAHFCgCAIrJaLfKyWjV1y3c6eDrT7DhObg6opGEtWslqtVCsAMAEFCsAAFx08HSm9p7KMDsGAMCNuOdcBgAAAADwIBQrAAAAADDIULE6ffq09u7dq9zcXBUUFDjt8/Ly0uTJk1WjRg1DAQEAAADA3RXrGqstW7Zo6tSp+uWXX2SxWLRy5UotXLhQoaGhGjlypOO4mJiYEgsKAAAAAO7K5TNWmzdv1jPPPCNfX18NGzZMdvuFlYciIiL01ltvacmSJSUeEgAAAADcmcvFasaMGerUqZPefvtt9ejRw1Gs+vTpo2effVYrV64s8ZAAAAAA4M5cLla7du1SbGysJMlicX7n+VatWunw4cMlkwwAAAAAPITLxSogIEDHjx8vdN/Ro0cVEBBgOBQAAAAAeBKXi1WnTp00ffp0/fzzz45tFotFqampmjdvntq3b1+S+QAAAADA7bm8KuDQoUO1Y8cOPfbYY7rhhhskSUOGDFFqaqqqV6+uIUOGlHhIAAAAAHBnLherSpUqaeXKlVq7dq3+85//6NSpUwoICFD37t318MMPq0KFCqWREwAAAADclsvFKikpSREREXrsscf02GOPOe3LysrSl19+qa5du5ZYQAAAAABwdy5fY/XUU09p7969he7buXOnXnzxRcOhAAAAAMCTFOmM1YgRI3T06FFJkt1u17hx4+Tv73/Jcfv373dcdwUAAAAAZUWRzljdfffdstvtjjcDluT4/OI/q9Wqxo0ba/LkyaUWFgAAAADcUZHOWHXs2FEdO3aUJHXv3l3jxo1TWFhYqQYDAAAAAE/h8jVWb7/99hVL1eWuvwIAAACA65XLqwJmZmbq9ddfV1JSkvLy8hzTA+12u86dO6fMzEzt2rWrxIMCAAAAgLty+YzVpEmTtHr1at1yyy3y8vJSQECAGjZsqLy8PGVlZenll18ujZwAAAAA4LZcLlabNm3SP/7xD7355pt64oknFBoaqhkzZuif//yn6tWrpz179pRGTgAAAABwWy4Xq6ysLN1xxx2SpNtuu02//PKLJKlixYrq1auXvv766xINCAAAAADuzuViFRwcrNOnT0uSatWqpfT0dGVkZEiSQkJCdOzYsZJNCAAAAABuzuVideedd2revHk6dOiQatSooaCgIK1Zs0aS9NVXXyk4OLjEQwIAAACAO3O5WL3wwgtKT0/XyJEjZbFY1KdPH02ZMkXNmzfX0qVLFRsbWxo5AQAAAMBtubzc+k033aTPP/9c+/fvlyT17NlTN9xwg7Zt26bIyEjFxMSUdEYAAAAAcGsuFytJ8vX1VXh4uOPzBx54QA888ECJhQIAAAAAT1KkYjVnzhyX7vQf//hHscIAAAAAgCcqVrGyWCyy2+3y8vJScHCwMjMzlZeXp3LlyqlSpUoUKwAAAABlSpGKVUpKiuPjzZs3a8iQIRozZozuvvtueXl5SZI2btyohIQEjRw5snSSAgAAAICbcnlVwJdfflkvvPCC7rvvPkepkqS2bdtq0KBBmj59eokGBAAAAAB353KxOnr0qKpXr17ovsqVKys9Pd1wKAAAAADwJC4Xq/DwcL3zzjvKy8tz2p6Tk6NFixYpMjKyxMIBAAAAgCdwebn1IUOG6JlnnlHnzp3Vpk0bVa5cWSdOnNA333yj8+fP65133imNnAAAAADgtlwuVs2bN9fy5cs1f/58ffXVVzp16pSCg4PVsmVL9e/fX7Vq1SqNnAAAAADgtor1BsG33367Zs2aVdJZAAAAAMAjuXyNFQAAAADAGcUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABhVrVcDvvvtOX331lc6fPy+bzea0z2KxaNKkSSUSDgAAAAA8gcvFatGiRZo6darKly+vypUry2KxOO3/388BAAAA4HrncrF699139cADD2jixIny8fEpjUwAAAAA4FFcvsYqPT1djzzyCKUKAAAAAP4/l4tVRESEfv/999LIAgAAAAAeyeWpgKNGjdKgQYPk5+enRo0aqUKFCpccc+ONN5ZIOAAAAADwBC4XqyeffFI2m02jRo267EIVu3btMhwMAAAAADyFy8XqlVdeKY0cAAAAAOCxXC5WMTExpZEDAAAAADxWsd4gODU1Vdu2bVNubq5jm81m0/nz55WcnKzp06eXWEAAAAAAcHcuF6t169YpPj5e+fn5jmus7Ha74+Nbb721ZBMCAAAAgJtzebn1+fPnKyIiQmvWrNHDDz+sBx98UJ999pni4+Pl7e2tUaNGlUZOAAAAAHBbLp+x2rdvn6ZOnaqIiAjdeeedWrRokcLCwhQWFqb09HTNmzdPrVq1Ko2sAAAAAOCWXD5jZbVaFRQUJEm65ZZb9Mcff8hms0mS2rRpoz179pRoQAAAAABwdy4Xq1tvvVU//PCDpAvFKi8vz/G+VVlZWU4LWgAAAABAWeDyVMAnnnhCY8eO1blz5zRkyBC1aNFCo0aN0iOPPKJ33nlHt99+e2nkBAAAAAC35fIZq0cffVQJCQnKy8uTJL388svKycnRxIkTlZ+fr4SEhBIPCQAAAADurFjvY9WtWzfHxzVr1tS6deuUkZGhypUrl1gwAAAAAPAUxSpWkrR371599913SktLU/fu3XXw4EH5+PjI39+/JPMBAAAAgNtzuVgVFBRo7NixWr16teONge+991698cYb+vPPP/Xuu+8qNDS0NLICAAAAgFty+RqrN998U5988oleeeUVfffdd7Lb7ZKkESNGyG63a/r06SUeEgAAAADcmcvFavXq1Ro4cKBiY2Md72clSeHh4Ro4cKC+++67kswHAAAAAG7P5WJ14sQJ1a9fv9B9ISEhysrKMhwKAAAAADyJy8WqVq1a+uabbwrdt3XrVtWqVctwKAAAAADwJC4vXtGjRw+99NJLysvLU4cOHWSxWHTgwAFt2bJFixcv1siRI0sjJwAAAAC4LZeL1aOPPqqTJ09q3rx5ev/992W32zVkyBCVK1dOzz77rJ588snSyAkAAAAAbqtY72PVt29fdevWTdu2bVNmZqYCAwPVqFEjp8UsAAAAAKCsKPYbBPv7+6tt27YlmQUAAAAAPJLLxSozM1OzZs3Stm3bCl0B0GKx6IsvviiRcAAAAADgCVwuVmPGjNGGDRvUpk0bhYeHl0YmAAAAAPAoLher77//XsOHD1ePHj1KIw8AAAAAeByX38eqYsWKql27dmlkAQAAAACP5HKx6tatm5YsWaKzZ8+WRh4AAAAA8DguTwWMi4vThx9+qHbt2unWW2+Vr6+v036LxaJly5aVWEAAAAAAcHcun7F66aWXtG/fPlWtWlXly5eX3W53+mez2UojJwAAAAC4LZfPWH355ZcaMmSI+vTpUxp5AAAAAMDjuHzGysfHRw0bNiyNLAAAAADgkVwuVg899JDef/99pvwBAAAAwP/n8lRAf39/ff/99+rYsaMiIyNVsWJFp/0Wi0WTJk0qsYAAAAAA4O5cLlZr1qxRYGCgJOmXX365ZL/FYjGeCgAAAAA8SLEWrwAAAAAA/JfL11iVtFOnTumll15S27Zt1bRpUz355JNKTk527N+1a5fi4uLUuHFjtW/fXomJiU63t9lsmjVrltq0aaNGjRqpV69eOnDgwLUeBgAAAIAyzPRiNWTIEO3YsUPTpk3TqlWrdPvtt+uZZ57R3r17lZGRoZ49e+qWW27R6tWrNWDAAM2cOVOrV6923H7u3Llavny5XnnlFa1YsUIWi0W9e/dWbm6uiaMCAAAAUJa4PBWwJB04cEDfffed3n//fTVt2lSSlJCQoI0bN+rTTz+Vr6+vfHx8NG7cOHl7eyssLEwHDhzQwoULFRsbq9zcXC1evFjx8fFq166dJGn69Olq06aN1q9fr65du5o5PAAAAABlhKlnrIKDg7VgwQI1aNDAsc1ischutyszM1PJycmKioqSt/d/+190dLT27dun9PR0paSk6OzZs4qOjnbsDwwMVEREhJKSkq7pWAAAAACUXaYWq8DAQLVr104+Pj6ObevWrdOff/6p1q1bKzU1VaGhoU63qVatmiTpyJEjSk1NlSRVr179kmOOHj1ayukBAAAA4AJTpwL+rx9++EGjRo1Sp06d1LFjR02ePNmpdElS+fLlJUk5OTk6f/68JBV6TGZmpuE83t4XeqeXl+mXol3V1TJ6+hg8PX9R9pvN0/NLnj8GT88v8XvsDjwhIwBcj9ymWH3xxRcaNmyYGjVqpGnTpkmSfH19L1mEIicnR5Lk5+cnX19fSVJubq7j44vHVKhQwVAeq9Wi4OCKVz/QTQQGGhuvO/D0MZDffJ4+Bk/PL3n+GDw9v3R9jAEAPJFbFKt33nlHEydOVOfOnTV16lTHGajQ0FClpaU5HXvx85CQEOXn5zu21axZ0+mY8PBwQ5lsNruyss5JuvDXP3d/osrKOq+CAttl93v6GDw9v+T+Y/D0/JLnj8HT80v8HruDq40BAOCawMAKRZoNYHqxeu+99zRhwgR1795do0aNktX639BRUVFavny5CgoK5OXlJUnavHmzateurSpVqiggIED+/v7asmWLo1hlZWVp586diouLM5wtP99znpgKCmwelbcwnj4G8pvP08fg6fklzx+Dp+eXro8xAIAnMnUi9r59+zRp0iR17txZffv2VXp6uo4fP67jx4/r9OnTio2N1ZkzZ5SQkKA9e/ZozZo1WrZsmfr27SvpwrVVcXFxmjp1qjZs2KCUlBQNHjxYoaGh6ty5s5lDAwAAAFCGmHrG6l//+pfy8vK0fv16rV+/3mlfTEyMXn31VS1atEgTJ05UTEyMqlatquHDhysmJsZx3MCBA5Wfn6/Ro0crOztbUVFRSkxMvGRBCwAAAAAoLaYWq+eee07PPffcFY+JjIzUihUrLrvfy8tL8fHxio+PL+l4AAAAAFAkrMkKAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQd5mBwAAANeO1WqR1WoxO0ahbDa7bDa72TEAoFgoVgAAlBFWq0VBwX7ysrrnhJUCm02nMs5RrgB4JIoVAABlhNVqkZfVqmlbdujg6TNmx3Fyc4C/hrRoJKvVQrEC4JEoVgAAlDEHT5/RH6eyzI4BANcV95wLAAAAAAAehGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAILcrVnPnzlX37t2dtu3atUtxcXFq3Lix2rdvr8TERKf9NptNs2bNUps2bdSoUSP16tVLBw4cuJaxAQAAAJRhblWsli5dqlmzZjlty8jIUM+ePXXLLbdo9erVGjBggGbOnKnVq1c7jpk7d66WL1+uV155RStWrJDFYlHv3r2Vm5t7rYcAAAAAoAzyNjuAJB07dkwJCQn64YcfVLt2bad9H3zwgXx8fDRu3Dh5e3srLCxMBw4c0MKFCxUbG6vc3FwtXrxY8fHxateunSRp+vTpatOmjdavX6+uXbuaMSQAAAAAZYhbnLH69ddfValSJX388cdq1KiR077k5GRFRUXJ2/u/HTA6Olr79u1Tenq6UlJSdPbsWUVHRzv2BwYGKiIiQklJSddsDAAAAADKLrc4Y9WxY0d17Nix0H2pqamqW7eu07Zq1apJko4cOaLU1FRJUvXq1S855ujRo4ZyeXtf6J1eXm7RP6/oahk9fQyenr8o+83m6fklzx+Dp+eX+D12B9f79wAA3JVbFKsryc7Olo+Pj9O28uXLS5JycnJ0/vx5SSr0mMzMzGJ/XavVouDgisW+/bUWGFjB7AiGefoYyG8+Tx+Dp+eXPH8Mnp5f8vwxeHp+AGWX2xcrX1/fSxahyMnJkST5+fnJ19dXkpSbm+v4+OIxFSoU/z9nm82urKxzki789czd/6PPyjqvggLbZfd7+hg8Pb/k/mPw9PyS54/B0/NL/B67g+v9ewAA11pgYIUinU13+2IVGhqqtLQ0p20XPw8JCVF+fr5jW82aNZ2OCQ8PN/S18/M95z/2ggKbR+UtjKePgfzm8/QxeHp+yfPH4On5Jc8fg6fnB1B2uf1E5qioKP3www8qKChwbNu8ebNq166tKlWqKDw8XP7+/tqyZYtjf1ZWlnbu3KlmzZqZERkAAABAGeP2xSo2NlZnzpxRQkKC9uzZozVr1mjZsmXq27evpAvXVsXFxWnq1KnasGGDUlJSNHjwYIWGhqpz584mpwcAAABQFrj9VMAqVapo0aJFmjhxomJiYlS1alUNHz5cMTExjmMGDhyo/Px8jR49WtnZ2YqKilJiYuIlC1oAAAAAQGlwu2L16quvXrItMjJSK1asuOxtvLy8FB8fr/j4+NKMBgAAAACFcvupgAAAAADg7ihWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADDI2+wAAAAArrBaLbJaLWbHKJTNZpfNZjc7BgATUKwAAIDHsFotCgquKC83LVYFNrtOZZylXAFlEMUKAAB4DKvVIi+rRTO37tOh09lmx3FSI8BXLzSvLavVQrECyiCKFQAA8DiHTmdr36nzZscAAAcWrwAAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwCCKFQAAAAAYRLECAAAAAIMoVgAAAABgEMUKAAAAAAyiWAEAAACAQRQrAAAAADCIYgUAAAAABlGsAAAAAMAgihUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMOi6KFY2m02zZs1SmzZt1KhRI/Xq1UsHDhwwOxYAAACAMuK6KFZz587V8uXL9corr2jFihWyWCzq3bu3cnNzzY4GAAAAoAzw+GKVm5urxYsXa8CAAWrXrp3Cw8M1ffp0HTt2TOvXrzc7HgAAAIAywNvsAEalpKTo7Nmzio6OdmwLDAxURESEkpKS1LVrVxPTAQAAACXParXIarWYHeMSNptdNpvd7BimsNjtdo8e+b///W8NGDBAO3bskK+vr2P7Cy+8oOzsbM2fP79Y92u3//eHwmKRrFarbOeyZbfZSiR3SbFYrbL6+cpms+lK38mLYyg4d0ayFVy7gEVh9ZKXn/8Vx3Axf975U7Lb8q9tvquwWL1VrkJQkb8HOedPyeZGY7BavVXehfzns90rv3RhDBV8iz6GM9mnVOBGY/Cyesvfhfynck4r381+j72tXgoqH1Ck3+NT2eeUb3ev/0u9LVYF+foV/XuQna18N3s+8LZaFeR75eeD/+bPUYGbvfDxsloU5Fu+yN+DzOw85bvZSxhvi0WVfMtddQzShXG4I1ceUnccg6fnl4o+BqvVIosbDuKvr6Gvxg3jS7r0e1DUx9rjz1idP39ekuTj4+O0vXz58srMzCz2/VosFnl5OT+AVj/fyxxtPqu1aLM6vfz8SzlJ8RVlDOUqBJV+kGIq6vegvJuOoaj5K/gGlW4QA4o6Bn83HUNR8weVDyjlJMVXlDEE+fpdgyTFU+Tvga9nPx8E+Za/BkmKp6jfg0q+5Uo5SfEVdQzA9aiw19Blhcf/5l88S/W/C1Xk5OSoQoUKZkQCAAAAUMZ4fLGqXr26JCktLc1pe1pamkJDQ82IBAAAAKCM8fhiFR4eLn9/f23ZssWxLSsrSzt37lSzZs1MTAYAAACgrPD4a6x8fHwUFxenqVOnqnLlyrrppps0ZcoUhYaGqnPnzmbHAwAAAFAGeHyxkqSBAwcqPz9fo0ePVnZ2tqKiopSYmHjJghYAAAAAUBo8frl1AAAAADCbx19jBQAAAABmo1gBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAAAADAIIoVAAAAABhEsbqGbDabZs2apTZt2qhRo0bq1auXDhw4YHasYps7d666d+9udgyXnDp1Si+99JLatm2rpk2b6sknn1RycrLZsYosPT1d8fHxio6OVpMmTdSnTx/t2bPH7FjFtm/fPjVp0kRr1qwxO0qRHT58WPXq1bvk38qVK82O5pK1a9fqvvvuU8OGDdW1a1etW7fO7EhFsmXLlkIf/3r16qlTp05mxyuyvLw8TZ8+Xe3bt1eTJk3097//Xdu2bTM7VpGdPXtWEyZMULt27XTHHXfo+eef159//ml2rCIp7Llr165diouLU+PGjdW+fXslJiaalK5oLvf8u2/fPjVu3FiHDh0yIVXRFZb/yy+/VGxsrJo0aaKOHTvqtddeU3Z2tkkJr66wMXz22Wd64IEHFBkZqbvuuksLFiyQu76r0dVew40ePVodO3a8holcV9gYXnzxxUueG9q2bXvtQtlxzcyePdt+55132r/++mv7rl277L169bJ37tzZnpOTY3Y0ly1ZssRer149e1xcnNlRXNKzZ0/7gw8+aE9KSrLv3bvXPmHCBHtkZKR9z549ZkcrkkcffdT++OOP23/66Sf7nj177AMGDLC3atXKfu7cObOjuSw3N9f+8MMP2+vWrWtfvXq12XGKbMOGDfaGDRvajx07Zk9LS3P8O3/+vNnRimzt2rX2+vXr25cuXWrfv3+/fc6cOfbw8HD7tm3bzI52VTk5OU6Pe1pamv3bb7+1R0RE2D/44AOz4xXZzJkz7a1atbJv2rTJvn//fntCQoK9adOm9tTUVLOjFcmzzz5rb9Omjf3LL7+079mzxz569Gh7y5Yt7SdPnjQ72hUV9tx18uRJe4sWLewJCQn2PXv22FetWmVv2LChfdWqVSYmvbzLPf+mpKTY27VrZ69bt6794MGDJqW7usLyJyUl2evXr2+fP3++ff/+/fZvvvnG3q5dO/vIkSNNTHp5hY3h66+/tkdERNjfeecd+59//mn/17/+ZW/cuLF9yZIl5gW9jKu9hlu/fr29bt269g4dOlzjZEV3uTHExMTYp02b5vQckZ6efs1yccbqGsnNzdXixYs1YMAAtWvXTuHh4Zo+fbqOHTum9evXmx2vyI4dO6Znn31WM2fOVO3atc2O45IDBw7ou+++09ixY9WsWTPdeuutSkhIUEhIiD799FOz411VRkaGatSooQkTJqhhw4YKCwvT888/r+PHj+v33383O57LZs+erYoVK5odw2W7d+9W7dq1Va1aNVWtWtXxz9fX1+xoRWK32zVz5kz16NFDPXr0UK1atdS/f3+1bNlSW7duNTveVfn4+Dg97kFBQZo8ebK6dOmiRx991Ox4RbZhwwbdf//9at26tWrVqqWRI0fqzJkz2r59u9nRriolJUUbN27UhAkT1KFDB4WFhWn8+PHy9/fXe++9Z3a8Ql3pueuDDz6Qj4+Pxo0bp7CwMMXGxurpp5/WwoULTUpbuCuN4c0339Rjjz2mypUrm5Tu6q6Uf/ny5YqOjlafPn1Uq1YttW3bVoMHD9bHH3+s3NxckxJf6kpjOH78uHr37q1u3brp5ptvVpcuXdSyZUt9//33JqW9VFFew6WlpWnMmDFq3rz5NU5XNFcaQ0FBgfbs2aOGDRs6PU9cy98LitU1kpKSorNnzyo6OtqxLTAwUBEREUpKSjIxmWt+/fVXVapUSR9//LEaNWpkdhyXBAcHa8GCBWrQoIFjm8Vikd1uV2ZmponJiiY4OFjTpk3TbbfdJkk6ceKEEhMTFRoaqjp16piczjVJSUlasWKFXnvtNbOjuOy3337zuMf7r/744w8dPnxYDzzwgNP2xMRE9e3b16RUxffuu+/q6NGjevHFF82O4pKgoCB99dVXOnTokAoKCrRixQr5+Piofv36Zke7qn379kmSmjVr5thmtVoVHh7uts9nV3ruSk5OVlRUlLy9vR3boqOjtW/fPqWnp1/rqJd1pTFs2rRJU6ZM0YgRI0xKd3VXyt+rVy8NHz78ktvk5+frzJkz1yriVV1pDI888ogGDRok6cIL/I0bN2rr1q1q1aqVCUkLd7XXcHa7XSNHjtTf/vY3ty1WVxrD/v37lZOTo7CwMJPSSd5XPwQlITU1VZJUvXp1p+3VqlXT0aNHzYhULB07dnT7ObeXExgYqHbt2jltW7dunf7880+1bt3apFTFM2bMGMdfWd988035+fmZHanIsrKyNHz4cI0ePfqS3wdPsHv3blWtWlV///vftX//ftWqVUvPP/+82rRpY3a0Itm/f78k6dy5c3rmmWe0c+dO1ahRQ/369fO43+2cnBzNmzdPPXr0ULVq1cyO45KEhAQNHjxYnTp1kpeXl6xWq2bOnKmaNWuaHe2qqlatKunC89pfX8AcPnxYOTk5ZsW6ois9d6Wmpqpu3bpO2y7+PB05ckRVqlQp9XxFcaUxXDxTuGXLlmsZySVXyh8REeH0eW5urpYsWaLbb7/drc7CFeU10JEjR3TXXXepoKBArVu31pNPPnmN0l3d1fIvXbpUx48f17x58zR//vxrmKzorjSG3bt3y2KxaNmyZdq4caOsVqvatWunQYMGKSAg4Jrk44zVNXL+/HlJF6ax/FX58uXd9onoevfDDz9o1KhR6tSpk8e9oOzRo4dWr16tBx98UP3799evv/5qdqQiGzdunBo3bnzJGRNPkJubq/379+vMmTMaNGiQFixYoIYNG6p3797avHmz2fGK5OJff0eMGKH7779fixcvVqtWrfT88897zBgu+uijj5STk+Nxi+hI0t69exUYGKg33nhDK1as0MMPP6wRI0YoJSXF7GhX1ahRI4WFhWns2LE6evSocnNztXTpUu3atcutpm0VVXZ2dqHPzZJ4fjZBfn6+hg8frj179mjs2LFmx3FZYGCgVq1apZkzZ+q3334r9EycO0pJSdGcOXM0ZcqUS34fPMXvv/8uq9Wqm266SfPmzdOIESP0zTff6Pnnn5fNZrsmGThjdY1cvP4iNzfX6VqMnJwcVahQwaxYZdYXX3yhYcOGqVGjRpo2bZrZcVx2cSrahAkTtH37dr3zzjuaPHmyyamubu3atUpOTtYnn3xidpRi8fHxUVJSkry9vR1PPA0aNNDevXuVmJioO++80+SEV1euXDlJ0jPPPKOYmBhJUv369bVz504tWbLEI8Zw0dq1a9WlSxcFBwebHcUlhw8fVnx8vJYuXeqYTtewYUPt2bNHs2fP1htvvGFywisrV66c3njjDY0cOVLt27eXt7e32rdvr0ceeUS//PKL2fFc5uvre0khvFioPGk2wPXg4h+ttmzZolmzZnncJQeS5O/vr4iICEVERMhms2nw4MGKj4/XTTfdZHa0y8rJydGwYcPUr18/hYeHmx2n2AYMGKCnn35agYGBkqS6deuqatWqevzxx/Xzzz9fk58nzlhdIxenPKWlpTltT0tLU2hoqBmRyqx33nlHAwYMUNu2bbVw4UKPWXQgPT1dn376qQoKChzbrFarwsLCLvm5clerV69Wenq6Y4npJk2aSJLGjh2rrl27mpyuaPz8/C75a17dunV17NgxkxK55uL/N/879alOnTpuv0TzX508eVI//vij7rvvPrOjuOynn35SXl6eGjZs6LS9UaNGjqma7q527dpasWKFtm7dqs2bN+uNN97QqVOndMstt5gdzWWhoaGFPjdLUkhIiBmRyqS0tDR169ZNP/74oxYuXOhxM0mSk5P1888/O227eE20uz9H79ixQ7///rvmzJnjeG6eP3++jhw5oiZNmujjjz82O2KRWCwWR6m66OJz3cVLckobxeoaCQ8Pl7+/v9P856ysLO3cudPpAmCUrvfee08TJkxQt27dNGPGDI863Z2WlqahQ4c6rdyWl5ennTt3mnqhpiumTp2qzz//XGvXrnX8k6SBAwdqwYIF5oYrgpSUFDVp0uSS9z775ZdfPGZBi4iICFWsWFE7duxw2r57926PuL7nom3btslisbjtBdZXcvEPbb/99pvT9t27d6tWrVpmRHLJmTNnFBcXp19++UWVKlVSYGCgTp8+re+//95jrjX8q6ioKP3www9Of7TavHmzateu7TbXV13vMjMz1aNHD508eVLvvfee00JfnmLx4sWXzBzZsWOHvL293f4PDpGRkfr3v/+tjz76yPHc/MQTT6hatWpau3atx5TcoUOH6plnnnHadrHsXqvnaKYCXiM+Pj6Ki4vT1KlTVblyZd10002aMmWKQkND1blzZ7PjlQn79u3TpEmT1LlzZ/Xt29dptSdfX99rdmFjcYWHh6t169YaP368XnnlFQUGBmrevHnKysrS008/bXa8IrncX3+rVKni1tMkLqpbt65uu+02jR8/XmPHjlVwcLA++OADbd++XatWrTI7XpH4+vrq2Wef1RtvvKGQkBBFRkbqs88+03fffaelS5eaHa/IUlJSdPPNN3vkVOrIyEg1a9ZMI0aM0NixYxUaGqq1a9dq8+bNbrtc+V/5+/vLYrFo0qRJGjt2rOx2uyZMmKAbb7xR999/v9nxXBYbG6tFixYpISFBzz77rH766SctW7ZM48ePNztamTF58mQdPHhQixYtUuXKlXX8+HHHvsqVK8vLy8vEdEXTq1cvPfXUU5o1a5b+9re/6ddff9WUKVP01FNPuf10ZV9f30v+qFOpUiV5e3t7xB97Lrr//vvVr18/vfnmm+ratav27dunl19+Wffff/81+wM0xeoaGjhwoPLz8zV69GhlZ2crKipKiYmJHnXWxJP961//Ul5entavX3/Je4fFxMTo1VdfNSlZ0VgsFs2YMUOvv/66Bg0apNOnT6tZs2Z69913deONN5odr0ywWq2aN2+epk6dqkGDBikrK0sRERFasmSJ6tWrZ3a8Inv++edVoUIFx3vphYWFafbs2WrRooXZ0YrsxIkTCgoKMjtGsVitVs2dO1czZszQiy++qMzMTNWtW1dLly5V48aNzY5XJK+//rpeeeUVxcXFyWq1qkOHDho+fLjTkuWeokqVKlq0aJEmTpyomJgYVa1aVcOHD3dcg4jSZbPZ9PnnnysvL089evS4ZP+GDRtUo0YNE5K5plmzZpo/f75mzJihxMREVa5cWb169VLv3r3NjlZmdOjQQTNnztS8efM0b948BQQE6IEHHnAsg38tWOx2u/2afTUAAAAAuA5xjRUAAAAAGESxAgAAAACDKFYAAAAAYBDFCgAAAAAMolgBAAAAgEEUKwAAAAAwiGIFAAAAAAZRrAAA1z3eshEAUNooVgCA69qePXv05JNPunSb7t27q3v37lc8Zvbs2apXr56RaACA64i32QEAAChN69at048//lji9/voo4+qTZs2JX6/AADPRLECAKAYQkNDFRoaanYMAICbYCogAFznOnbsqFmzZum1115Ty5YtFRkZqWeeeUb79u2TJI0cOVIdO3Z0us2hQ4dUr149rVmzRpK0ZcsW1atXT5s3b1b37t0VGRmp9u3ba+XKlUpLS9M//vEPNWnSRO3atdPSpUuLlXHOnDmaPHmyWrRooSZNmmjo0KE6e/asFixYoLZt2+qOO+7QgAEDlJGR4bhddna2Xn/9dXXp0kUNGjRQ06ZN1bNnT+3atUvShel6c+bMkSTVq1dPs2fPliTl5eXpjTfe0F133aXIyEh17dpVq1evdspkt9u1cOFCtW/fXpGRkXr88cf1888/O/b/71TA7t27KyEhQQsWLFD79u3VsGFDPfHEE9qxY4fT/X799dd6+OGHFRkZqbvvvluffvqpOnfu7MjmymM2ffp0TZ48Wc2bN1fz5s0VHx/v9PiMHDlSPXr00NixY9WsWTPFxMQoPz9fOTk5euONN3TPPfeoYcOG6tKlixYsWCCbzeY0npEjR2r+/Plq1aqVmjZtqn79+ungwYOOY3JycjR+/Hi1bdtWDRo00D333KPFixe7NA4AuF5wxgoAyoC33npLd9xxhyZPnqzMzExNnDhRI0eO1IoVK1y6nyFDhqhPnz7q16+fFixYoLFjx6pmzZq677779Pjjj+v999/X5MmT1bRpU0VGRrp030uWLFHLli01ffp0/fzzz5o2bZp+/fVXhYSEaMKECdq3b5/+7//+TzfccIPGjh0rSRo+fLiSkpI0dOhQ1axZU/v379fMmTM1ePBgrVu3To8++qhSU1O1atUqrVixwnGGacSIEdqwYYP69eunRo0aadOmTRo1apS8vLz00EMPSZJ++OEH5ebmasyYMcrNzdVrr72m5557Tt988428vQt/+vzXv/6lsLAwjR49Wna7Xa+99poGDhyoL7/8Ul5eXvrPf/6j559/Xh06dNALL7ygAwcOaOzYscrJyXHpsbrovffeU61atTRp0iSdPHlSr7/+uv744w+tXLlSVuuFv50mJyfLYrFo9uzZOnv2rLy8vNS7d29t375d/fv3V/369bVlyxbNmDFDBw8e1IQJExz3v2HDBgUHByshIUE2m02vv/66nnrqKX322Wfy8/PTxIkT9e2332rEiBG64YYbtHHjRr322msKCgrSww8/XKwxAYCnolgBQBkQGBiouXPnysvLS5L0559/avbs2U5nN4oiNjZWPXv2lCT5+fnp8ccfV2RkpAYOHChJatCggTZs2KBt27a5XKwqVqyo6dOny9vbWy1bttSHH36otLQ0rVy5UgEBAWrXrp3+85//aNu2bZKk3NxcnT17VmPGjNF9990nSWrevLnOnj2rV199VcePH3earte4cWNJ0u+//67PPvtMCQkJeuqppyRJd955p44cOaItW7Y4ipWPj48WLFigoKAgSdKZM2c0evRo7dmzR+Hh4YWOIT8/X4mJifL395cknT17ViNGjNCuXbvUoEEDzZ49W3Xq1NGcOXNksVgkSVWqVNGQIUNceqwuslgsWrJkiQICAiRJlStXVv/+/bVx40a1b9/ekWn8+PGqVauWJOmbb77R999/rylTpujBBx+UJLVq1Uq+vr6aOXOmevTooTp16kiSzp07p9WrV6tmzZqSpFtvvVUxMTH68MMP1a1bN23dulUtW7ZU165dJUktWrSQn5+fgoODizUeAPBkFCsAKAMaNmzoKFWSHGXj/PnzLt1PkyZNHB/fcMMNkqRGjRo5tl18QX369GmXM0ZGRjqdCapatar8/f0dpUGSgoKCtHv3bkkXik9iYqIkKS0tTQcOHNAff/yhr776StKF6X6FSU5OliR17tzZafuMGTOcPq9Tp46jVElSjRo1rjq2OnXqOEqVJIWEhEi68Djn5ubqxx9/VP/+/R2lSpLuvvvuy54Bu5oOHTo4PT4dO3ZUuXLllJyc7ChWvr6+jmIkSVu3bpWXl5ejjF704IMPaubMmdqyZYujWDVp0sTpthEREbr55puVnJysbt26qUWLFlq+fLmOHTumDh06qF27durfv3+xxgIAno5iBQBlQIUKFZw+vzhN7K/X1BTFX0vD5e67uIpz35s2bdKkSZP0xx9/qGLFiqpXr54qVqwo6fLvXXXq1ClJF84UXYmfn5/T50V5zK70OJ86dUoFBQWXfF1vb+9in+GpVq3aJV8vKChIWVlZjm1VqlRxKnKZmZkKDg6+pMxVrVpVknNx/N/7v3h/F+8/ISFBoaGh+vjjjzV+/HhJF8rYSy+9pIiIiGKNCQA8FYtXAEAZZ7FYVFBQ4LTt3LlzJqUpuj///FP9+/dXeHi41q9fr23btun9999Xhw4drni7wMBASdLJkyedtv/xxx+Os1mloUqVKipXrpzS09OdtttsNpenZF50sSReVFBQoIyMDFWuXPmyt6lUqZIyMjKUn5/vtD0tLU2SnEre/96/JJ04ccJx/z4+PurXr5/WrVunr776Si+99JIOHjyooUOHFms8AODJKFYAUMZVrFhRGRkZTgsoXLyOyZ398ssvysnJUd++fZ2mq23atEnSf89YXTxrdNEdd9whSfriiy+ctk+fPt1p4YaS5uXlpaZNm17ydb/88stLSk5Rbdq0Sbm5uY7PN2zYoPz8fN15552XvU3z5s1VUFCgzz//3Gn7xx9/LOm/j48k/fjjj04F9Ndff9WhQ4d05513Kjs7W3fffbdjFcAbb7xR3bp1U9euXZWamlqs8QCAJ2MqIACUcR06dNDbb7+tUaNG6dFHH9Xvv/+uxYsXO12T5Y5uv/12eXt7a8qUKerVq5dyc3O1Zs0aff3115L+e9bt4hmqTz/9VI0aNVJ4eLjuueceTZ06VdnZ2br99tv17bffav369ZdcZ1XSBg4cqO7du2vgwIF65JFHdOTIEc2cOVOSnKbrFVVqaqr69eunp556SkePHtW0adPUunVrtWjR4rK3adu2rVq0aKGxY8cqLS1NERER2rp1qxYuXKiYmBjH9VXShWvDevfurX79+uns2bOaPn266tatq/vvv18+Pj66/fbbNWfOHJUrV0716tXTvn379OGHH+ruu+92/cEBAA9HsQKAMq5Vq1YaMWKE3n77bf373/92vFh+4oknzI52RbVq1dLrr7+uOXPmqF+/fqpUqZIaN26st99+W927d1dycrLq1aunLl266KOPPtLIkSP1yCOPaNy4cZoyZYrmzJmjt99+WxkZGapdu7ZmzJihe+65p1QzN2vWTLNnz9bMmTP1/PPP66abbtKYMWM0ePBgx7VhrujatasCAwM1aNAg+fn5KSYmRoMHD77ibSwWi+bPn69Zs2bprbfe0smTJ1WjRg0NHjzYseLjX/NGR0crISFB0oXFMYYPHy4fHx9J0ssvv6wZM2Zo8eLFOn78uKpUqaJHHnlEL7zwgstjAQBPZ7Ff7upeAABQojZs2KDQ0FDdfvvtjm2///677r//fs2dO1edOnUq8n117NhRzZs316uvvloaUdW9e3dJ0ttvv10q9w8A1xvOWAEASoXNZivSqoPFXWrcE3377bf6/PPPNWzYMNWuXVupqal68803deutt6p169Y8ZgDgwfifGQBQKkaNGqUPP/zwqsdt2LDB8R5R17sRI0bI19dXb775ptLS0hQUFKQ2bdpo6NChKl++vEaOHFnkxwwA4F6YCggAKBWHDh0q0jLi9erVc1yzU9bxmAGA56JYAQAAAIBBvI8VAAAAABhEsQIAAAAAgyhWAAAAAGAQxQoAAAAADKJYAQAAAIBBFCsAAAAAMIhiBQAAAAAGUawAAAAAwKD/B3gL3E943H6cAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.barplot(data=df_date_sorted, x='num_matching_props', y='date_range', errorbar=None)\n",
"axes.set_ylabel('mean date_range [days]')"
]
},
{
"cell_type": "code",
"execution_count": 275,
"metadata": {},
"outputs": [],
"source": [
"if SAVE_FIGS:\n",
" fig.savefig('ObjektID-duplicates.svg', bbox_inches='tight')"
]
},
{
"cell_type": "code",
"execution_count": 276,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'date_range [days]')"
]
},
"execution_count": 276,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAKsCAYAAAATNwdqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsoklEQVR4nOzde3xU5Z0/8M9zztzOZHJnCC6rEZAEEIKsRLGKWoqXekGBqlvFu6ggVdsudlvdKq2oW21dXYxYoEgvlotcjLS1FbcW6bpWLRBRSbho+qtICSQkkMyZmXPO8/sjZHCYyQ2SOeckn/fr1a0zz2T2m2M6M595nuf7CCmlBBEREREREfUqxe4CiIiIiIiI+gOGLyIiIiIiogxg+CIiIiIiIsoAhi8iIiIiIqIMYPgiIiIiIiLKAIYvIiIiIiKiDGD4IiIiIiIiygCGLyIiIiIiogxg+CIiIiIiIsoAj90FuJWUEpYl7S4DAKAowjG19Ce87vbgdbcHr7s9eN3twetuD153e/C6nzhFERBCdOmxtoevgwcP4ic/+QnefPNNHD58GKWlpfj2t7+N8ePHAwA+/vhjzJ8/H9u2bUNeXh5uvPFG3H777YmftywLCxYswKpVq9DU1IQzzzwTDz/8MIqLixOP6ew5jodlSdTXN5/Qc/QEj0dBfn4WmppaYBiW3eX0G7zu9uB1twevuz143e3B624PXnd78Lr3jIKCLKhq18KX7csOv/Wtb2Hr1q34yU9+gpdffhmnn346br/9duzatQsNDQ249dZbceqpp2L16tX4xje+gWeeeQarV69O/HxFRQWWL1+ORx99FCtWrIAQAjNnzkQsFgOALj0HERERERFRb7N15qu2thZ//vOf8etf/xr/8i//AgB48MEHsXHjRqxfvx6BQAA+nw+PPPIIPB4Phg0bhtraWixatAjTp09HLBbDz372M8ydOxcXXHABAODpp5/GxIkT8frrr+Pyyy/HypUrO3wOIiIiIiKiTLB15is/Px8//elPMXr06MR9QghIKdHY2Ij33nsP5eXl8HiOZsQJEybgk08+wYEDB7B9+3Y0NzdjwoQJifGcnByMGjUK7777LgB0+hxERERERESZYOvMV05OTmLGqs3vfvc7/O1vf8N5552Hp59+GiUlJUnjAwcOBADs2bMHe/fuBQCcdNJJKY/5/PPPAQB79+7t8DkKCwuPu36Px/ZVm1BVJem/KTN43e3B624PXnd78Lrbg9fdHrzu9uB1zzzbG2580fvvv4/vfe97+MpXvoJJkybh8ccfh8/nS3qM3+8HAESjUUQiEQBI+5jGxkYAgK7rHT7H8VIUgfz8rOP++Z6Wk6PZXUK/xOtuD153e/C624PX3R687vbgdbcHr3vmOCZ8bdiwAf/2b/+GsWPH4ic/+QkAIBAIJBpntGkLTMFgEIFAAAAQi8US/9z2GE3TuvQcx8uyJJqaWo7753uKqirIydHQ1BSBabJLTabwutuD190evO724HW3B6+7PXjd7cHr3jNycrQuzx46Inz98pe/xPz583HRRRfhqaeeSsxUDRo0CPv27Ut6bNvtoqIiGIaRuO+UU05JesyIESO69BwnwkktOU3TclQ9/QWvuz143e3B624PXnd78Lrbg9fdHrzumWP7As+XXnoJP/zhD3HDDTfgv/7rv5KWCJaXl+P999+HaZqJ+95++20MGTIEhYWFGDFiBEKhEN55553EeFNTEz766KPEOWGdPQcREREREVEm2Bq+PvnkEzz22GO46KKLcNddd+HAgQOoq6tDXV0dDh06hOnTp+Pw4cN48MEHsXPnTqxZswbLli3DXXfdBaB1r9eMGTPw1FNP4Y033sD27dvxzW9+E4MGDcJFF10EAJ0+BxERERERUSbYuuzw97//PeLxOF5//XW8/vrrSWNTp07FE088gcWLF2P+/PmYOnUqwuEwHnjgAUydOjXxuHvvvReGYeChhx6CrusoLy/HkiVLEjNohYWFnT4HERERERFRbxNSSml3EW5kmhbq65vtLgMej4L8/Cw0NDRzrW4G8brbg9fdHrzu9uB1twevuz143e3B694zCgqyutxww/Y9X0RERERERP0BwxcREREREVEGMHwRERERERFlAMMXERERERFRBjB8ERERERERZQDDFxERERERUQYwfBEREREREWUAwxcREREREVEGMHwRERERERFlAMMXERERERFRBjB8ERERERERZQDDF9lCCoEWw8L+wzG0GBakEHaXRERERETUqzx2F0D9jykEKlZXYXNNXeK+caVhzJ5WBlVKGysjIiIiIuo9nPmijJJpghcAbK6uQ8WaKs6AEREREVGfxfBFGRWJmynBq83m6jpE4maGKyIiIiIiygyGL8qoFt04oXEiIiIiIrdi+KKMCgY63mbY2TgRERERkVsxfFFGaV4V40rDacfGlYahedUMV0RERERElBkMX5RRQkrMnlaWEsDauh0KdjskIiIioj6Ka7wo41QpMWdaGSJxEy26gWDAA82rMngRERERUZ/G8EW2EFIi6FEQDPla72DwIiIiIqI+jssOiYiIiIiIMoDhi4iIiIiIKAMYvoiIiIiIiDKA4YtsIYVAi2Fh/+EYWgwLUgi7SyIiIiIi6lVsuEEZZwqBitVV2FxTl7ivrdW8ysYbRERERNRHceaLMkqmCV4AsLm6DhVrqjgDRkRERER9FsMXZVQkbqYErzabq+sQiZsZroiIiIiIKDMYviijWnTjhMaJiIiIiNyK4YsyKhjoeJthZ+NERERERG7F8EUZpXlVjCsNpx0bVxqG5lUzXBERERERUWYwfFFGCSkxe1pZSgBr63Yo2O2QiIiIiPoorvGijFOlxJxpZYjETbToBoIBDzSvyuBFRERERH0awxfZQkiJoEdBMORrvYPBi4iIiIj6OC47JCIiIiIiygCGLyIiIiIiogxg+CJbSCHQYljYfziGFsOCFMLukoiIiIiIehX3fFHGmUKgYnUVNtfUJe5r63aocu8XEREREfVRnPmijJJpghcAbK6uQ8WaKs6AEREREVGfxfBFGRWJmynBq83m6jpE4maGKyIiIiIiygyGL8qoFt04oXEiIiIiIrdi+KKMCgY63mbY2TgRERERkVsxfFFGaV4V40rDacfGlYahedUMV0RERERElBkMX5RRQkrMnlaWEsDauh0KdjskIiIioj6Ka7wo41QpMWdaGSJxEy26gWDAA82rMngRERERUZ/G8EW2EFIi6FEQDPla72DwIiIiIqI+jssOiYiIiIiIMoDhi4iIiIiIKAMYvsgWUgi0GBb2H46hxbAghbC7JCIiIiKiXsU9X5RxphCoWF2FzTV1ifvauh2q3PtFRERERH0UZ74oo2Sa4AUAm6vrULGmijNgRERERNRnMXxRRkXiZkrwarO5ug6RuJnhioiIiIiIMoPhizKqRTdOaJyIiIiIyK0YviijgoGOtxl2Nk5ERERE5Fb8pEsZpXlVnH16EYpPysWI4nzE4hZ8XgXbaxtQ+3kjNK/KA5eJiIiIqE9i+KKMElLi9imj8dzLVVi5oSZx/9jhYdzztTIIBi8iIiIi6qMYviijpBBY8so2lBbn46rzhybNfC2p3IY7p4xmACMiIiKiPonhizJKN0xc+qUh2H8wknR/OE/DyFMLoBsmNJVbEYmIiIio72H4ogwT8HtVbNq6B1t3HG05P3Z4GNdNLgHAc76IiIiIqG9i+KKMUhWB9Zt248qJQ3HLFaPQohvICniwv1HH+k27cdNlI+0ukYiIiIioVzhufVdFRQVuvPHGxO0bb7wRpaWlaf+zbt06AMBnn32WdnzVqlWJ5/n4448xY8YMnHHGGbjwwguxZMmSTP9qBCBumrjhqyPQ0KSjoUnHoeYY6o/88w1fHYG4yUOWiYiIiKhvctTM14svvohnn30W5eXlifv++7//G/F4POlxDz30EP72t79h8uTJAIDq6mr4/X5s2LABQhxdtpadnQ0AaGhowK233orJkydj3rx52LJlC+bNm4e8vDxMnz49A78ZtfF5PDjQqKdddjg4HEJhbgAAG24QERERUd/jiPD1j3/8Aw8++CDef/99DBkyJGksLy8v6fb69euxadMmrFmzBqFQCABQU1ODIUOGYODAgWmff+XKlfD5fHjkkUfg8XgwbNgw1NbWYtGiRQxfGSalxIoNNUnBC0Di9qxpY7jti4iIiIj6JEcsO/zwww+Rm5uLyspKjB07tt3HtbS04Ec/+hFuvvlmlJaWJu6vrq7Gaaed1u7PvffeeygvL4fHczRrTpgwAZ988gkOHDjQM78EdYkeN1OCV5utO+oQjXPZIRERERH1TY6Y+Zo0aRImTZrU6eOWL1+O5uZmzJo1K+n+mpoahMNhXH/99fj0009RXFyM2bNnY+LEiQCAvXv3oqSkJOln2mbJ9uzZg8LCwh76TagzerTjcKVHTWT71AxVQ0RERESUOY4IX11hmiZ+8Ytf4Prrr0/s5QKAWCyGTz/9FJqm4YEHHkAwGERlZSVmzpyJpUuX4pxzzoGu6/D5fEnP5/f7AQDRaPS4a/J47J84VI+ciaW65GyskOZFwKdiyvnDMKI4P+mQ5cqNu5CleR1xXTtiSuBQ1MS+2npofg+CPhUql0pmhNv+3vsKXnd78Lrbg9fdHrzu9uB1zzzXhK+//OUv2LNnD6699tqk+30+H9599114PJ5EwBo9ejR27dqFJUuW4JxzzkEgEEAsFkv6ubbQFQwGj6seRRHIz886rp/tDTk5mt0ldImnJYbv3z4BKzbUYOWGmsT9Y4eH8f3bJ6AgN4DsoK+DZ7BX3cEI/nvVZmyuPrp0clxpGN+4dhzCee74d9AXuOXvva/hdbcHr7s9eN3twetuD173zHFN+NqwYQPKyspw8sknp4ylC1AlJSXYtGkTAGDQoEHYt29f0njb7aKiouOqx7Ikmppajutne5KqKsjJ0dDUFIFpWnaX0ylTAqveSN9wQ1GAe782FkY03s5P28uUwAtrP8Dwk/Nx5XlDk2btXlizFXdfPYYzYL3MbX/vfQWvuz143e3B624PXnd78Lr3jJwcrcuzh64JX++//35iD9cXbd++HV//+texaNEijB8/PnH/tm3bEk04ysvLsXz5cpimCVVt3U/09ttvY8iQISe038swnPNHapqWo+ppT4thYXNN+oYbm6vr0Bw1EHTossOIaeHiCaei8q3dKbN2UyYORUvMgMZp+4xwy997X8Prbg9ed3vwutuD190evO6Z44pPiqZpYufOnSlNM4DWGa7hw4dj3rx5eO+997Br1y48/vjj2LJlC+6++24AwPTp03H48GE8+OCD2LlzJ9asWYNly5bhrrvuyvSv0u+16MYJjdtJSoHKt3annbWrfGs3pOS0FxERERG1zxXh6+DBg4jH4ylnfgGAoihYuHAhxowZg/vvvx9Tp07F1q1bsXTp0kQ7+sLCQixevBiffPIJpk6digULFuCBBx7A1KlTM/ybUDDQ8WRrZ+N2sqTssE2+JXk4NBERERG1z3GfdJ944omU+woLC1FdXd3uzxQUFOCxxx7r8HnLysqwYsWKE66PTozmVTGuNJzUsKLNuNIwNK8KODTE6FGjw06NetRAyOvcZiFEREREZC/HhS/q24SUmD2tDBVrqlI6Bs6eVgbh0OAFAFmaB3NnjE+752vujPHI0vg/JyIiIiJqHz8tUsapUmLOtDJE4iZadAPBgAeaV3V08AIAv9eD197+FKXF+bjq/ORuh6+9/SnumjoGsLhZlYiIiIjSY/giWwgpEfQoCIaOLNNzePACgGjcwKXntN/tMBpnt0MiIiIiah8/KRJ1EbsdEhEREdGJYPgiW1iKgsNxC/9oiqI5bsFSnP+nyG6HRERERHQiuOyQMs4QAs+t2poUZMYOD+Oer5XB4+AAw26HRERERHQiGL4ooyxFSQleQOvM0XMvV+Eb14yF4tCmFVmaB9+9+Sx4vQKa34sW3UBWwIMzSgbg9CGF7HZIRERERB3ip0XKqJao0eHSvZaogZDXmUsQNa8H4XwFL6z9IGXW7q6pYxDwKOx2SERERETtcuanXOqzmiPxDsdbIkaGKuk+Q8qU4AW0hsYX1n4Aw8FLJomIiIjIfgxflFFZmrfD8aCDl+7pMbPDWTs9Zma4IiIiIiJyE4Yvyqig34Oxw8Npx8YODyPod274cvOsHRERERHZj+GLMkqxLNzztbKUANbW7dCpzTYAd8/aEREREZH9+GmRMs4jJb5xzVi0RA20RAwENQ+Cfo+jgxdwdNYu3dLDxKydw38HIiIiIrIPwxfZQrEshLzK0XOxXBBaFMvCnK+VYcuO/SjMDSTO+TrQqOOM4QMcHx6JiIiIyF5cdkjUDQKAEMfcJ1rvJyIiIiLqCGe+yBZSCETiJlp0A8GAB5pXhXB6q3YhsO+gjre27Ek55+ufBoQwKC8AOP13ICIiIiLbMHxRxplCoGJ1FTbXHA0w40rDmD2tDKqDw0vMklixoSbtOV8AMGvaGPg4BUZERERE7eCyQ8oomSZ4AcDm6jpUrKmCPHZNn4NE4x2f8xWN85wvIiIiImofZ74ooyJxMyV4tdlcXYdI3ETQ48zvBPSoiYBPxZTzh2FEcX6i4cb22gZUbtwFPWoi26faXSYRERERORTDF2VUi250GGBadAPBkM/uMtMKBb2YO2M8Kt/ajZUbahL3jx0extwZ4xEKdnwOGBERERH1bwxflFFZmqfDAJPl4IOK/V4VlW/tbnfP1zeuGeuKlvlEREREZA9nru+iPsvv9bQbYCrf2g2/17nhS48ZHe750mNGhisiIiIiIjdh+KKMcnOAadE7rq2zcSIiIiLq3xi+KKPcHGCCgY5n5TobJyIiIqL+jeGLMsrNAUbzqhhXGk47Nq40DM3LTodERERE1D7nftKlPknzqjj79CIUn5Sb0u2w9vPG1gDj0IOWhZSYPa0MFWuqsLk69YBo4dC6iYiIiMgZGL4oo4SUuH3KaDz3clVKt8N7vub8AKNKiTnTyhCJW9BjBgI+DzSv4vi6iYiIiMh+DF+UUVIILHllG0qL83HV+UOTZr6WVG7DnVNGOz7ICCmRE1BRfFIOGhqaYRhsL09EREREnWP4oozSDRMXTzg17TlfUyYOhW6Y0FRuRSQiIiKivoefcimjpBQdnvMlpbCpMiIiIiKi3sXwRRllSdnhOV+Ww5ccEhEREREdL4Yvyig92vE5Xp2NExERERG5FcMXZZSbz/kiIiIiIjoRDF+UUTyomIiIiIj6K4Yvyqi2g4qPDWA8qJiIiIiI+jqu8aKMU6XEPdPHoiVqoDkSR0jzQvN7oFg8L4uIiIiI+i6GL8o4Qwg8t2prUtfDscPDuOdrZfBw5ouIiIiI+iguO6SMshQFz71clfacr+deroKl8E+SiIiIiPomftKljGqJGh2e89XCVvNERERE1EcxfFFGNUfiHY63RBi+iIiIiKhv4p4vyqgszdvheFBz/p+kFAJNuol9tfXQ/B4EPAq7NBIRERFRp5z/SZf6lKDfg/KRRRgyOBcjivMRi1vweRVsr23AJ581Iuj3AA7uemgKgYrVVdhcc3TpZFubfJUBjIiIiIg6wGWHlFGKZeHOq0cjnKcl3R/O03Dn1aMd3W5epgleALC5ug4Va6oghbCpMiIiIiJyA858UWYJgbqDOjZt3ZPSan5wOIRBeQHAoTNIkbiJjz+tx7WTS1Jm7So37kIkbiLocfb3GVIIROImWnQDwYAHmlflkkkiIiKiDGH4ooyKWRIrNtSkbTUPALOmjYHPoRNIkaiBuTPGo/Kt3Vi5oSZx/9jhYcydMR6RqIGgx2djhR3jkkkiIiIiezn7a3rqc6Jxs8NW89G4meGKui476EPlW7vTBsfKt3YjO+jc4MUlk0RERET2Y/iijNKjHYerzsbtZJiyw+BomM6dPYrEzZTg1WZzdR0iDg69RERERH0FwxdlVGet5jsbt1OL3skZZZ2M26lF7/j8tM7GiYiIiOjEMXxRRmleBeNKw2nHxpWGoXmd+ycZDHS8RbKzcTu5uXYiIiKivoKfuCijhJSYPa0MFWuqsLk6tfGDkzvvaV4V40rDSXW3aQ2OqmM7NWpeFWefXoTik1LPV6v9vNHRtRMRERH1FQxflHGqlJgzrcx1Lc/dHByFlLh9ymg893JVSqfGe77m7NqJiIiI+gqGL7KFkBJBj4Jg6EiHQJd8+D8aHC3oMQMBnweaV3F8eJFC4PnVVWk7NT6/pgpzHB4eiYiIiPoChi+ibhJSIiegovikHDQ0NMMwLLtL6lRfOCCaiIiIyO0YvsgWUgjXLTt0M7cfEE1ERETUF/Crbso4Swhs3rkf+xoiqG+KYl9DBJt37ofFg357jZsPiCYiIiLqKxi+KLOEwP5GPWWLl5TA/kYdYADrFW4+IJqIiIior+CyQ8qouJSwJLBp656kMDB2eBjXTS5BXEo495hl9+rKAdGJ5idERERE1CsYviijLAms2FCTdvkbANw9bQzAya8eFwx4EPCpmHL+sLQNN3jIMhEREVHv4ycuyqhY3Oxw+VssbsLvUzNcVd8X9Kr4/u0TsGJDTUrDje/fPgFBHrJMRERE1Ou454sySo+aJzROx0cCWPVG+hnHVf9TA8YuIiIiot7H8EUZlaV1vKOrs3EnkEKgSTdRXVuPQ1ET0gVNQiJxE5tr0s84bq6uQyTO0EtERETU2xy37LCiogJvv/02fvGLXyTu++53v4s1a9YkPa6oqAgbN24EAFiWhQULFmDVqlVoamrCmWeeiYcffhjFxcWJx3/88ceYP38+tm3bhry8PNx44424/fbbM/NLUYLmVTCuNIzN1alBYFxpGJpXcfTyN1MIVKyuSgoy40rDmD2tDKqD627RjU7H2XCDiIiIqHc5aubrxRdfxLPPPptyf3V1Ne6++25s2rQp8Z9169YlxisqKrB8+XI8+uijWLFiBYQQmDlzJmKxGACgoaEBt956K0499VSsXr0a3/jGN/DMM89g9erVmfrV6AghJWZPK8O40nDS/W0BxskHLcs0wQtonTmqWFPl6BmwzhpqsOEGERERUe9zxCeuf/zjH3jwwQfx/vvvY8iQIUljpmli586dmD17NsLhcMrPxmIx/OxnP8PcuXNxwQUXAACefvppTJw4Ea+//jouv/xyrFy5Ej6fD4888gg8Hg+GDRuG2tpaLFq0CNOnT8/I70hHqVJizrQyROJm64xLwAPNqzo6eAFdW7oX9Djq+4wEzat2MuPIhhtEREREvc0RnxQ//PBD5ObmorKyEmPHjk0a+/TTTxGNRjFs2LC0P7t9+3Y0NzdjwoQJiftycnIwatQovPvuuwCA9957D+Xl5fB4jmbNCRMm4JNPPsGBAwd64TeizggpEfQoGBDyIehRHB+8gK4t3XMqN884EhEREfUVjpj5mjRpEiZNmpR2rKamBkIILFu2DBs3boSiKLjgggtw//33Izs7G3v37gUAnHTSSUk/N3DgQHz++ecAgL1796KkpCRlHAD27NmDwsLCnv6VqA9y+1lZbp1xJCIiIuornP1pEcCOHTugKAoGDx6MhQsXora2Fv/5n/+JmpoaLFu2DJFIBADg8yU3C/D7/WhsbAQA6LqedhwAotHocdfmccASM1VVkv6bek+WqnR4VlaW3wPVudu+EryqBzlJQdEFRR/Bv3d78Lrbg9fdHrzu9uB1tweve+Y5Pnx94xvfwC233IKcnBwAQElJCcLhMK677jp88MEHCAQCAFr3frX9M9AaqjRNAwAEAoFE840vjgNAMBg8rroURSA/P+u4frY35ORodpfQ5x1qiWHVG1vTnpWlKMDcGeORHXR2x8BDLTE0Ho6iORJHluZFbsjv+JrT4d+7PXjd7cHrbg9ed3vwutuD1z1zHB++hBCJ4NWmbQnh3r17E8sN9+3bh1NOOSXxmH379mHEiBEAgEGDBmHfvn1Jz9F2u6io6LjqsiyJpqaW4/rZnqSqCnJyNDQ1RWCalt3l9GlNescNN+obdRjReIar6rqoKdttk+93w5Qd+PduF153e/C624PX3R687vbgde8ZOTlal2cPHR++vv3tb+PgwYNYsmRJ4r4PPvgAAHDaaafh5JNPRigUwjvvvJMIX01NTfjoo48wY8YMAEB5eTmWL18O0zShqioA4O2338aQIUNOaL+XYTjnj9Q0LUfV0xe16PEO93y16HEEPc4MMZ21yZ/jsqYb/Hu3B6+7PXjd7cHrbg9ed3vwumeO48PXFVdcgVmzZuH555/H5Zdfjk8++QQ/+MEPcMUVVyQ6IM6YMQNPPfUUCgoKMHjwYDz55JMYNGgQLrroIgDA9OnTsXjxYjz44IO44447UFVVhWXLlmHevHl2/mr9mhTCdY0fsjQP5s4Yj8q3dqfs+Zo7YzyyNOf+z8nNbfKJiIiI+grnflo84stf/jKeeeYZLFy4EAsXLkR2djauvPJK3H///YnH3HvvvTAMAw899BB0XUd5eTmWLFmSaLJRWFiIxYsXY/78+Zg6dSrC4TAeeOABTJ061abfqn8z08zCtC1/Ux0cwPxeDyrf2p12zxcAfOOasYDlzG+NutImPxhy394vIiIiIjcRUjr4066DmaaF+vpmu8uAx6MgPz8LDQ3NrpgulkJgQZrlb0BrAHPy8rcWw8Kcp95sd3zBv13o2NkjN9f+RW77e+8reN3twetuD153e/C624PXvWcUFGT1nT1f1Le4efmbm2ePNK+Ks08vQvFJuSn71Wo/b4TmVQGHhl4iIiKivoLhizKqRTeQF/JhzrXjUJgbQItuICvgwf5GHQtWbnZ0gHHzIctCStw+ZTSee7kqZb/aPV9z7mwjERERUV/CZYfHicsOj49uWbCkwKJ125L2To0dHsbMq0dDERIBxZkzXxACew/qWLGhJqX26yaXYFBewLGzR1II/PSVbSj+p/QzX3dOGe2KAOa2v/e+gtfdHrzu9uB1twevuz143XsGlx2SY/k8Hvz3qvQHFS9at83RTSskgFf+tBOlxfm46vyhSQHmlY07WwOM3UW2QzdMXDzh1LSdGqdMHArdMKHxdHsiIiKiXsXwRRnVEjVQXVuPayeXpD8rK2og5HVmCNANE9MvHIb8vCAiUQPNkThCmhcnF2Wj4WCLowOMlKLDTo0zrxptR1lERERE/QrDF2VURI/juzefBa9XQPN7E3u+zigZgNOHFELXDYS8ztzz5VMF/Lka9h1sgeb3wpKAaUnUHWzBwFwNUjpzxg4ALClTglebrTvqYEkJOHbejoiIiKhvYPiijMrP9kMCiMZbg4oiAEURCGk++HMUR3/8VxQVMdPCZ/uaUZgbQCxuIRozcKBRR352AD5VdeySST3acadGPerc0EtERETUVzB8UUapQoGQEorfg8iRQCAABPweqJaEFAJw6AySJSUON0dRWpwPAGiOxJGleTEgT8Ph5ijysgNQba6xPZ11YnRyp0YiIiKivsKZG1SozxICgACObbIppQTEkXGnkhL5oUDaofyQczsdAq3nfI0rDacdG1cabj3ni4iIiIh6FcMX2cKyZIe3nUhVFCgANP/RWSJx5LZyZNyphJSYPa0sJYCNKw1j9jSe80VERESUCVxrRNQdovWMty8yTQuq4uQpu1aqlJgzrQyRuNl6mHXAA82rMngRERERZQjDl4tJIdCkm9hXWw/N70HAo7jmg7RyTFg59rZTmQA+2HUg0XAjEm1tuHHG8AGO3e9FRERERM7A8OVSphCoWF2FzTVH24e3LSFTHR7AJAA9ZqbczvKpju52aAE40KinHTvQqGNAnubodbxu/pshIiIi6guc/FmR2iHTfIgGgM3VdahYU9XaMdDBTAlU1zZg/8EIGg/HsP9gBNW1DTAd/vnftCx4PcDY4QMwIE9DbsiHcJ6GscMHwOtpHXcqt//NEBEREfUFnPlyoUjcTPkQ3WZzdR0icRNBjzNztQWgvin97FF9k7Nnj1QAuVkB7GuMJB2yvL8xgoG5mqO7HUbiJj7+tB7XTi7BiOJ8xOIWfF4F22sbULlxl6P/ZoiIiIj6CoYvF2rROz4wt0U3EAw588Bc07JgSWDT1j3YuuNogBw7PIzrJpfAtCzHhi+hKJCWhXBeEJGoAUUAqiIQzgsClgWhKI49ZDkSNTB3xnhUvrUbKzfUJO4fOzyMuTPGIxI1EPQ482+GiIiIqK9g+HIhNx+Ya0ngrS1/x+zpZYjGTTRH4ghpXvi8Ktb9aSemnD8MTt34JaSEJQS21NSlbbihOHjmKzvowy9fq04KvAASt2dNG2NHWURERET9ilMnGagDbj4wV8LENReelrbb4TUXngYJs52ftJ8lBBoP6xgzrDBpz9eYYYVoPKzDcvC+KcOUKcGrzdYddTCcvuGOiIiIqA9w7hQJtavtwNyKNVXYXJ3auc7J7eYDqrfDvVEB1evYpXuwLBSEAjCFAIyjNaqqgoJQAJZT6wbQoscR8KmYcv6wtHu+WvS4Y5eqEhEREfUVDF8udfTAXAt6zEDA54Hmdc85X26kKAosKVF3sCWp4UbdwRYMzNWgOHjPV5bm6XDPV5bGlwIiIiKi3sZlhy4mpEROQEVpcQFyAqqrgpc8ptZjbzuRRGudA3I1qIpINNwYkKtBSgkn/wZ+rweVb+1Ou+er8q3d8HsZvoiIiIh6G8MX2UIcsz/q2NtOJKSEKkTa2lUhHB1+9ZjR4Z4vPdZxB00iIiIiOnH8upuoq4To+CyvzsZt1KIbKCrQ8MBN5fCqCpojcWRpXsRNCz/6+buOPp6AiIiIqK/gzJeLSSHQpJuorq3HoagJ6YLZozamaXV4m3pWdpYHP7zzS4jGDJiWhCUBy5KIxgz88M4vITuL38MQERER9TZ+4nIpUwhUrK7C5prUboeqQ2dfvkhVlZSOgU6dNTpWuuCoKs4Ovn7VA92wsOL1HSmHW981dQwCHo9jm4UQERER9RUMXy4khcDiV7Zh+Cn5uHLi0KS24Ysrt+HOKaMdvf8IcGfDjTZuDI6GlFj66ocoLc7HVecn/80sffVDzLx6NF8MiIiIiHoZP2+5kG6YuHjCqWnbhk+ZOBS6YUJTnb2iNG3DDYcHGDeLxk1cff4wFOYFEDMsNEfiCGle/NOALBwYNgDRuAmPx9l/M0RERERux09bLiSl6LBtuJTOXgJHmedRgZMKtLRjJxVo8Kj8myEiIiLqbZz5ciFLyg7bhltSAuCH6d5gAthSU4fC3ABicQuRqIEDjTrOGD4Aqt3FdcCvemBKiQ92HUhbu19VueeLiIiIqJcxfLmQHu34TCY9aiDkZdvwnmYBaInqOKMkjEjUSCzdO7koGy16BFkBzbFTyRaAg4d0lBbnA0Ci1fyAPA0HD+nIz3Fu7URERER9BcOXCwUDHf9r62ycjo9iWcj2B2CmGcv2Bxw9cyQtCzmhACpWV6V0O5w9vQzSwbUTERER9RX8lO5CmlfFuNIwNlenLj0cVxqG5lUd37zCld0OlU66GiqKcwOYomDZqx/iyolDccsVo9CiG8gKeLC/Ucey33yEW6883bm1ExEREfURXGnkQkJKzJ5WhnGl4aT72875cnqbeaCdbofUa6JxAzd8dQQamnQ0NOk41BxD/ZF/vuGrIxCNd7yUlYiIiIhOHGe+XEqVEnOmlSESt6DHDAR8HmhexRXBy+3cOGvnVRU0NEXTjh06HEN+TgCA838PIiIiIjdj+HIxISVyAiqKT8pBQ0MzDIPLxqh9Xg8wdvgA6DEz0SzknweGcKhZB4MXERERUe9j+CLqJjceEK0CyM4K4LmXUxtu3PO1MigOr5+IiIioL2D4IuoHpKJg0doPUFqcj6vOH4pY3ILPq2B7bQMWrduGO6eOYcMNIiIiol7G8EXUD+gxA5edOwT7D0aS7g/naRh5agH0mIEsD/vvEBEREfUmhi+ibjJNK+W2qji7W6MA4Peq2LR1T8qyw+sml0DA2fUTERER9QX8qpuom1RV6fC2E3lUBSs21CQFLwDYuqMOKzbUwKMyfBERERH1Nud/aiSiExaNmynBq83WHXWIxs0MV0RERETU/zB8kS3SLd2j3qNHOw5XnY0TERER0Ylj+CJbuHHpXhs3BscszXtC40RERER04thwg6ibVFUBvnCgtaoqjj/nS/MqOG/sSbjwzFNQmBtAi24gK+DB/kYdb77/N2he5/8ORERERG7H8EXUDQaA51ZtTXtQsZP/xySkxM2XjcKWHfuhCCAWtxCNGWho0nHzZaMgGLyIiIiIep2TPy9SJyxFwcGIgT0NB5CleaD5PFB4UG6vMQGsfXMnZk8vQzRuojkSR0jzwudVsfbNnZj25eFQ7S6yHVJRUNcQSdtqfnA4hKJ8DYJ/O0RERES9iuHLpQwh2p+B4SxGrzAsA9dceBpMkdyWXVEErrnwNEQtA6pDt1HGTavdVvMAMGvaGPjYbZ6IiIioVzF8uZClKCnBC2j9IP3cy1X4xjVjOQPWC/yKB5aUqDvYAs3vhSUB02q9PTBXg1/xAA697nrcRHVtPa6dXIIRxfmIxS34vAq21zagcuMuROMmfD6nztsRERER9Q0MXy7UEjU6PLOpJWog5HXmDIybSQCKlAjnBRGJGlAEoCoC4bwgFMuCFAJOnTyKxUx89+az4PUKaH5vouHGGSUDcPqQQkRjJrIZvoiIiIh6FT+hu1BzJN7heEvEyFAl/YuQEhDtxCshHN20Ii/kx8ACDZ/ta0ZDk45DzTHUN+n4bF8zBhZoyAv57S6RiIiIqM/jzJcLdXYmU1Djv9ZeIQQgJeQxIStx+8i4Ewkh0NysY8ywQsQMK9Es5J8GZOFwSxS5Ic2xtRMRERH1FfyU7kJBvwflI4swZHBuyv6dTz5rRNDv3L1HbdIdVKwqTl20l0wcM/slHBy62ghpoSAUwLFzoooiUBAKwJLO/ntxO0tR0BI1EqFX87unM6kUAk26iX219dD8HgQ8iqNneYmIiJyM4cuFFMvCzKtH47mXq7ByQ03i/rZuh274UOfGg4rdTFFar69lJV9jy5KAIlrHHf5349YQYAmBfcc0adl3pEmL4vD6TSFQsboKm2uO7jEdVxrG7GllUB1eOxERkRNxz5cLSSHw/OqqtN0On19TBdneviQHaXfpHvUqVVU6vO1UUgjsa4wgblqIxi3EDQv7GiPO/1tXFFhSoiA7AFURiSYtBdkBWFICinOvv0wTvABgc3UdKlzyOkNEROQ0nPlyoUjcTPlA1GZzdR0icRNBj3M/1AHuXLpHNhECMUvi7/uaUZgbQCxuIRozcKBRR152AH7FwX87UkIVAnrcPHoXgJhhIcunOrdutL7OfLKnEQ/ddjYKcwOJDpn7G3UsWLnZFa8zUghE4iZadAPBgAeaV3XFbCkREfVdDF8u1KJ33M2wRTcQDPkyVA25iRv32pkAGg9F0441HoqiMDcAxzbJFwLCktD8HkSirf+7FQACfg/EkSWfTg1geszAY/eci4PHXPtgQMVj95yLlkgcQY9zX2e4ZJKIiJyI4cuFgoGO/7V1Nk79lxv32lmd1GdJ6dzwBcAUwJaausSsXSTaOmt3xvABjq47L8sPo51rrwiBvCy/Y/92pBB46ffbMeOykbj1ytPRHIkjS/Miblp46Q/bMePiEZwBIyIiW/BTugtpXhXjSsPYXJ269HBcaRia19nLmYi6QwJQFaC0OB8AEh+kB+RpiEbjcPJfugXgcETHGSVhRL7Q7fDkomwcbokgO6g5euOtABDSWme3FNHaHTOk+Rx7mHibmGXiuotHpOyNHTs8jFnTyxCzTPiFk688ERH1VQxfLiSkxOxpZahYU5UUwNqW1PAbXepLFAC5oQC27tyfMns09rQBgIPjl2JZyNUCiKVZ7pmrBRzdYVIAUCBwOBJLdGq0LImWaByaV3N0AFMVDxat+wClxfm46vyhScdxLHllG2ZePQbg8QpERGQDhi+XUqXEnGlliMQt6DEDAZ8HmtcdrbeJukNRFDQejmDs8AHQY2Zi9uifB4ZwqFlvPSDaqSHmSIv/dpd7OrnFvxCwpJV25suChCKcu2Q1GjdwxXlD4fUKaH5volnIGSUDcPqQQkTjBjwObxZCRER9E8OXiwkpkRNQUXxSDhoammEYDv0QR3QChGUhNyuAfY2RpLOy9jdGMDBXg3BqeHE7KeGFgJKmWYhqSUcfD6EIIJyv4YW1H6QsO7xr6hhH105ERH2b48JXRUUF3n77bfziF79I3Pc///M/eO6557B7927k5+fjkksuwX333YdAIAAA+OyzzzBp0qSU53r00UdxzTXXAAA+/vhjzJ8/H9u2bUNeXh5uvPFG3H777Zn5pXqJWw+dJeoWRYFiWQjnBRGJGomzssJ5QSiWBenk2SMXaz0Oop3XE+Hs4yG8HhW/em07brp8JLxqcsONFa9X44ZLRzi2diIi6tscFb5efPFFPPvssygvL0/c995772HOnDm4//77cckll6C2thbf//73cfDgQTz++OMAgOrqavj9fmzYsCHp/Kjs7GwAQENDA2699VZMnjwZ8+bNw5YtWzBv3jzk5eVh+vTpmf0lewjbKFN/IaRsPa8pevSIBQkgEjWQ5eO5TZQqbpq44ZIR2N8UgfKF/WrRmIEbLhmBuGnC4+ADromIqO9yRPj6xz/+gQcffBDvv/8+hgwZkjS2fPlyTJgwAXfeeScAoLi4GN/85jfxve99D/PmzYPP50NNTQ2GDBmCgQMHpn3+lStXwufz4ZFHHoHH48GwYcNQW1uLRYsWuTJ8SSGw+JVtGH5KPq6cmLyZfHHlNtw5ZTQ/kFLfceSsrIBPhR5rPaxYAPD7VAgJR5+VRfbwqypMKdPuV5OQ8KseNtwgIiJbOCJ8ffjhh8jNzUVlZSWee+45fPbZZ4mx2267DUqabygNw8Dhw4dRUFCA6upqnHbaae0+/3vvvYfy8nJ4PEd/3QkTJuCFF17AgQMHUFhY2LO/UC/TDRMXTzgVlW/txsoNNYn7xw4PY8rEodANE5rKb3WpD2lb5vbFuzpaFkf9mgAgIFBd25C2Q6bg3w0REdnEEeFr0qRJafdsAcCoUaOSbsdiMSxduhSnn346CgoKAAA1NTUIh8O4/vrr8emnn6K4uBizZ8/GxIkTAQB79+5FSUlJ0vO0zZLt2bPnuMOXXd2ypCFR+dbupI3kABK3Z1412rGdvLrSE4S197y+ULuZpl27qrQGMqfX3hHW3vNiFrD/YASbtu5JabgxOBzCwHwNXtXJzfJbqUe+RFP5ZVpG8brbg9fdHrzumeeI8NVVhmHggQcewM6dO/GrX/0KQGsY+/TTT6FpGh544AEEg0FUVlZi5syZWLp0Kc455xzoug6fz5f0XH6/HwAQjUaPqxZFEcjPzzqxX+g4NX7emBK82mzdUQcJaVttnak70NzpY1h7z+sLtbfbrh3Or70jrL3nfbbvENZv2o0rJw7FLVeMSrSa39+oY/2m3bjpspEoKsy2u8wuy8nR7C6hX+J1twevuz143TPHNeHr8OHDuP/++/HOO+/g2WefxdixYwEAPp8P7777LjweTyJgjR49Grt27cKSJUtwzjnnIBAIIBaLJT1fW+gKBoPHVY9lSTQ1tZzAb3T8IrrR6XhDQ+cfnJyKtduDtduDtfe8mGnihq+OwEe766EIIBa3EI0ZaGjSccNXRyBmmo6t/YtUVUFOjoampkjKzC/1Hl53e/C624PXvWfk5Ghdnj10Rfjat28fZs6cib///e9YtGgRJkyYkDSeLkCVlJRg06ZNAIBBgwZh3759Kc8JAEVFRcddl13nagUDHgR8KqacPwwjivOTGm5UbtyFYMDj3DO/utBhjLX3AtZuD9ZuC7/Hg4YmPe3YocMx5OcEHFt7OqZpuarevoLX3R687vbgdc8cx4evxsZG3HzzzTh8+DBeeukllJaWJo1v374dX//617Fo0SKMHz8+cf+2bdsSTTjKy8uxfPlymKYJVVUBAG+//TaGDBniumYbABD0qvj+7ROwYkNNSsON798+AUGvyu5vRNSPSVgSafd8XTe5BGzUQkREdnF8+Hr88cfx//7f/8PixYtRUFCAurqjb6QFBQUoKSnB8OHDMW/ePDz88MPIz8/HypUrsWXLFrz88ssAgOnTp2Px4sV48MEHcccdd6CqqgrLli3DvHnz7Pq1TogE8Ns/p9/P8Nv/3Y1bLxsF528lJyLqHZZEh3u+brxsJPgiSUREdnB0+LIsC7/97W8Rj8dx8803p4y/8cYb+Od//mcsXLgQTz31FO6//340NTVh1KhRWLp0aWKWrLCwEIsXL8b8+fMxdepUhMNhPPDAA5g6dWqmf6UeETVN/OslI7Bo3baUb3VnXj0aUdNEwOEHiMpjZuaOvU10LP7NUFcZpokZl43AwUPJDZWCARUzLhsBwzTh96g2VUdERP2ZkPwEc1xM00J9vT0btmNSYEnlNgwZnJuy5+uTzxpx+5TR8AmH/mtVWjvUmUIgEjXQHIkjpHkR8HugSgkIAVgOXXPM2u3B2u3h4toNCEhIROOt9TVH4sjSvAAAv1eBgIDHBUsPPR4F+flZaGho5l6MDOJ1twevuz143XtGQUFW32q4QcnipolLz2n/kOW4acLn0PN3iIh6myoASwocjsSg+b2wZGuH2pZoHJpXg8LzuYmIyCb8hO5GEu0eslz51m5AcjMDEfVjQsBsJ12ZODJrR0REZAPOfLmQBFD7eSMeuu1sFOYGkjaTL1i5GRIS3E1ORP1VZ6vppZR8hSQiIlswfLlQLG5g/uxz0x4gOn/2uYjoccDrs7tMIiLbCAAhrfV1UBGAogiENB9DFxER2YrLDl0oN8uPQ4djaccOHY4hN8uf4YqIiJxDAPBAJO19FQB8HgUeCAYwIiKyDWe+XMiSEooABg/Mgub3JpYdBvwqFNE6zibKRNQT3NjiXxzZ8/XBzgMozA0gFrcQiRo40KjjjOEDoArBg+iJiMgWDF8uFcry44W1H6Sc83XX1DE2VkVEfY04pjmFcEFwsQAcjug4oySc1Cb/5KJsHG6JIDuocdkHERHZgu8/LiSESAleQGu3wxfWfpDyYYmIqD9RLAvZWgB1B1tgWhKWBExLou5gC7K1ABSHnk9GRER9H2e+XEiPmSnBq83WHXXQYyZCXuZqIuqfpKIgZlhY8fqOtKsD/B4FggGMiIhswPDlQs2ROPJCPsy5dlzaVvMtEQMhdjskon7KlBK//N3HuHLiUNxyxaik18hf/u5j3HLFKMe/+Ukh0KSb2FdbD83vQcCjQDh8uScREXXO6e8/lEZ2lrfDVvNu2BBPRNRbYoaJ6y8dgUXrtqXMfM28ejRihgmP6tzVAaYQqFhdhc01R2sfVxrG7GllUPn6TkTkagxfLqR5PahviqC0OB9A60xYlubFgDwNLS0xFORoAJfUEFE/5VEU/P7/ajHnmrFJDTcCfg9+++dPcMmEU9F6XL3zSCGw7Dcf4fLzhuKmy5Nn7Zb99iPcetkozoAREblYl8LXd7/73eN6ciEEHnvsseP6WWqfZVnICQVQsboq5Vvd2dPLYFkWW80TUb8lhIUrv3QqYmbyl1Cm2Xp/XJpwar+pqGniXy9pf9YuapoIKM6snYiIOtel8LV27VoMGDAAPl/X9xHFYjEcOHCA4as3KAoqVm1N2+2wYnUV5lwzljNfRNRveRUPICVUVQGMo6+FqqoAUraOO/Q1UhEqXlhblfb1fdG6bZg1rQxOnbUjIqLOdXnZYUVFBcrKyrr8xFu2bMHXv/714yqKOhaJGh12O4xEDXY7pD7HjYf9EnVXzDBRXVuPayeXYERxPmJxCz6vgu21DajcuAsxw4SPr+9ERK7VpfB15ZVXIj8/v1tPXFhYiCuuuOK4iqKONUfinYyz2yH1PW487JeouyJ6HHNnjEflW7uxckNN4v6xw8OYO2M8dJ2v70REbtal8PXkk092OF5VVYW9e/diwoQJyMnJAQCcfPLJnf4cHZ8szYuAT8WU84el/WY0S2MfFSIiN8oN+fHSH2rSLjsEgFnTxthRFhER9ZBur12oq6vDTTfdhOeeew4A8POf/xzXXXcd7r33Xlx88cXYsWNHjxdJybL8HjxyxwSE87Sk+8N5Gh65YwKy/AxfRERuFDdlh8vK4yZne4mI3Kzb4etHP/oRdu/ejbKy1q56P/3pT/GlL30J69atw2mnnYYf//jHvVEnfYGQEqoClBbnY0CehtyQDwPyNJQW50NVwDbERERo7W7Y0W0niugdLyvvbJyIiJyt21MkmzZtwve+9z1MnDgRf/3rX7F//37Mnz8fI0aMwB133IF/+7d/64066QtMKTtsNW9KyVbzRNSvSQCxL3Q6bLvt9akQ7f6U/YKBjt+WOxsnIiJn6/areEtLCwYNGgQA+NOf/gSfz4cJEyYAAHw+HzuQZYKiYPHaD1BanI+rzh+atOdr8SvbcOfUMY5to0xElAlCAprfg0jUaL0NIOD3QFgSTk5fmlfF2acXofik3JQ9vbWfN0Lzqmw0Q0TkYt0OX6eeeiree+89jB07Fq+99hrOOuss+P1+AEBlZSVOPfXUnq6RjqHHDEyZOAy52a0dr5ojcWRpXpyXp2HM0AHQYwayPGxFTET9WHsBy8HBC2hdNn7HlNHYsmN/0v3hPA0XlZ/MZeVERC7X7fB11113Ye7cuVi8eDEikQi+//3vAwCuueYafPjhh3jqqad6vEhKpirAwAKt/WWHnPUiInInIVB3UMemrXtSXt8Hh0MYlBfgzBcRkYt1O3xddtllKCoqwvvvv4+zzjoLZ5xxBgBg/PjxuPfeezFx4sSerpGO4fV4sOL1atw5dTRMU6I5EkdI80JRBVa9UYPrLirlskMiIheKWRIrNnTcat7n8Nk7IiJqX7fD17p163DppZfizDPPTLr/O9/5To8VRR2LmwaumVyCipfTzHx9rQxx04AquOyQiPq3dN0OVcXZySUaNztsNR+Nm/D52FKJiMituv0J/Xvf+x7OPfdc/Md//Af++te/9kZN1Amv6kkJXkDrG3PFy1XwquyGRUSkHBO0jr3tRHrUPKFxIiJytm5/Sn/zzTexbt06vPLKK1i1ahWKi4sxffp0XHXVVSgqKuqNGukYkaiB2s8b8dBtZ6MwN4AW3UBWwIP9jToWrNyMSNRAyMuZLyLq34QQqbcdvl8qS/Oe0DgRETlbtz+hDxw4EHfeeSd+85vfYOXKlfjSl76EZcuWYdKkSbjjjjvw29/+FvE4D4HsTXo0jsfnnIuB+RpURUARrd/oDszX8Picc6Efaa1MRETuonkVjCsNpx0bVxqGxi/WiIhc7YTWp5WVlaGsrAzTpk3Dk08+iU2bNmHTpk3Iz8/HzTffjDvuuAMeD5fA9bTC7AAMCSypTN/tsDDb7/hvd4mIKJWQErOnlaFiTRU2Vx99fR9XGsbsaWVsNU9E5HLHnYz+/ve/o7KyEq+88gr+9re/4ZRTTsG3vvUtfPnLX8abb76J5557Drt378aPfvSjnqyXAFhC4KXXPsZNl4+EVz09cc5X3LTw0u+3Y8ZXR0LlGzQRkSupUmLOtDJE4hb0mIGAzwPNqzB4ERH1Ad0OX6tWrcIrr7yC999/H4FAAJdeeinmz5+P8ePHJx4zfPhw1NfXY/ny5T1aLLWKGQauv2QEqnbuR2FuALG4hUjUwIFGHddfMgIxw4CmcGkKEfVfEq37Y4+9neVTnX7OMoDWGbCcgIrik3LQ0NAMw+DxIUREfUG3w9d//Md/YOzYsZg3bx4uu+wyhEKhtI8rLS3Fddddd8IFUiqfqqKhScfggVnQ/N5Ew42AX0XjIR35ORog+UZNRP2XkIDm9yQCmAAQ8HsgLAlXpC8iIuqTuh2+1q9fj9NOO63Tx1199dXHUw91gZQS2SE/tu06kJj5isZaZ75GDyuEZPAiov6uvYDF4EVERDbqdvg67bTToOs6qqurEY/HIY+sQbcsC5FIBO+99x7+7d/+rccLpaOEEGhp0TF2+ADoMRPNkThCmhf/PDCEQ806crICbLhBREREROQw3Q5f//d//4f77rsPTU1NacezsrIYvnqZIiWyswJ47uXUbof3fK0MCoMXEREREZHjdDt8/dd//Rfy8vLw6KOPorKyEoqiYNq0adi4cSN+/etfY9GiRb1RJ32BpShY+Xo17pw6GqYpEzNfiiqwckMNrruoFKrFpYdERERERE7S7fBVXV2NH/7wh7joootw+PBhvPTSS7jgggtwwQUXIB6P4/nnn8dPf/rT3qiVjoibBq6dXIKtO1K7HV47uQRx04Aq2O2QiMitpBBo0k3sq62H5vcg4GGreSKivqDb4cuyLAwaNAgAMGTIEOzcuTMxdskll+A73/lOz1VHaflUD+obI2m7HR5s0lGQqwGc+SIiciVTCFSsrsLmmtRDlnmGIxGRu3V7euSUU05BdXU1AKC4uBiRSAS7du0CABiGgebm5p6tkFJYloWcbH/asZxsPywGLyIiV5JpghcAbK6uQ8WaKkjBdo1ERG7W7ZmvK6+8Ek899RQsy8KNN96I0aNH49FHH8WNN96IhQsXdqkNPZ0YRQiYlsRn+5pTWs3nZwegKILdDomIXCgSN/HJnkY8dNvZKMwNJFY27G/UsWDlZkTiJoIeLisnInKrboevO+64Aw0NDaiqqgIAPPzww5g5cyZmz56NUCiE559/vseLpGQSQENTFJu27knpdjg4HEI4L2BfcUREdNz0mIFHZ52LReu2pby+PzrrXOjROIIen40VEhHRieh2+FIUJWlf15gxY7Bhwwbs3r0bQ4cORSgU6tECKZVpSazftBtXThyKW64YlfTN6PpNu3HTZSOhcmUKEZHr5GT5sWjdNpQW5+Oq84ciFrfg8yrYXtuAZes/wsyrR3NlAxGRi3U7fKUTCoVQVlbWE09FXRAzTVx/6Yi034zOvHo04qYJn0e1sUIiIjoe0biJS885FZVv7cbKDTWJ+8cOD2PKxKGIxk14uOyQiMi1uhS+Jk2aBNGNTb5vvPHGcRdEnfOpHvz8tx+lnfl66bXtuOmyUWhdnEhERK4igcq3did9sQYgcfuOKaPtqIqIiHpIl8LXWWedlQhflmXhN7/5DbKzs3HBBRcgHA7j4MGD+POf/4z6+npcd911vVowAYZl4oavjsBHu+uhCCQabjQ06bjhqyNgWCZ8Kr8ZJSJyGwmkBK82W3fUQUIC4LpyIiK36lL4euKJJxL//NRTT2Hs2LFYvHgxNE1L3B+PxzFr1iy0tLT0fJWUxKsqaGiKph07dDiG/JwAOPNFROQ+etTodDzkZcMNIiK36vb0yKpVqzBz5syk4AUAXq8XN954I37729/2WHHUPkUAgwdmIT8ngOwsHwpyAhg8MAuKABi8iIjcKRjo+DvRzsaJiMjZjutVvL6+Pu39e/bsgd+f/vBf6lmhLD9eWPtBSsONu6aOsbEqIiI6EZpXxdmnF6H4pFyMKM5P6nZY+3kjNK/KbodERC7W7fA1adIk/PjHP8aAAQNw/vnnAwCklNiwYQP+67/+C1deeWWPF0nJhBBY+mr6VsRLX/2QrYiJiFxKSInbp4zGcy9XpXQ7vOdrZRB8bScicrVuh6/vfve72LlzJ+688054vV7k5eWhoaEBpmni3HPPxdy5c3ujTvoCtiImIuqbpBB4fnVV2m6Hz6+pwpxpDGBERG7W7fCVk5ODlStX4k9/+hPef/99NDY2Ij8/HxMmTMA555zTGzXSsSTw2tufpp35eu3tT4+0miciIreJxE1srknf7XBzdR0icRNBfrlGRORaXQpfzzzzDP71X/8VRUVFAFqXvV144YW48MIL2/2Zf/zjH1i+fDnuu+++HimUvkAAUyYOQ252a8er5kgcWZoX5+VpGDN0ACDYipiIyI1adAMBn4op5w9L2fNVuXEXWnQDwRC7HRIRuVWXwtfChQvx5S9/ORG+umLv3r1YuHAhw1cv8KgCRQUatu7cj8LcAGJxC5GogQONOsaeNgCmtOwukYiIjkOW5sHcGePTLiufO2M8sjR2OyQicrMuvYpLKfHII48gFAp1+YkPHz583EVRx7yqin0NEWzauiel2+HgcAgD8zXAYgAjInIbv9fT4bLyu6aO4es7EZGLdSl8lZeXA2gNYV2VlZWF8ePHH19V1CHDtLBiQ03aDdkAMGvaGPi46pCIyHWicQOXnTsE+w9Gku4P52kYeWoBonEDmso9X0REbtWl8PWLX/yit+ugbtDjZkrwarN1Rx30uAmfT81wVUREdOIE/F417cqG6yaXgPt5iYjcjYvHXUiPmigq0PDATeXwqkqi4UbctPCjn7+LaNQEGL6IiFxHVQTWvrkz7bLDtW/uxO1TTre7RCIiOgEMXy6UE/Lih3d+CfubIlD8XlgSsCyJaMzAD+/8Egw23CAicqWY0fE5jjHDhM/LL9eIiNyKC8ddKKCqsJB+/50FiYDKN2YiIjdShILKt3an3dNb+dZuKIJv20REbsZXcReyOml80tk4ERE5kyVlh3t6+fpORORuXHZIRETkEHq040OW9aiBkJeHLBMRudVxzXzFYjG89NJLmDNnDq677jrs2rULv/71r1FVVXXCBVVUVODGG29Muu/jjz/GjBkzcMYZZ+DCCy/EkiVLksYty8Kzzz6LiRMnYuzYsbjttttQW1vbredwGwEgpPmgKgKKABRFIKT52AeLiMjF2g5Zrq5twA+WvIMnfv4ufrDkHVTXNvCQZSKiPqDbr+L19fW4+eabsXv3bgwdOhQ7d+6Eruv405/+hCeeeAIvvvgixo0bd1zFvPjii3j22WcT54oBQENDA2699VZMnjwZ8+bNw5YtWzBv3jzk5eVh+vTpAFoD2/Lly/H444+jqKgITz75JGbOnIn169fD5/N16TncRBz5v0sqP0xpRTx7ehkDGBGRS/GQZSKivq3b4etHP/oRmpub8dvf/haDBw/G6NGjAQDPPPMMbr/9djz77LNYunRpt57zH//4Bx588EG8//77GDJkSNLYypUr4fP58Mgjj8Dj8WDYsGGora3FokWLMH36dMRiMfzsZz/D3LlzccEFFwAAnn76aUycOBGvv/46Lr/88k6fw20sIbB43Qdp35wXv7INd04dA5X7AoiIXCcaNzrsdshDlomI3K3br+B//OMfcd9996G4uBhCHJ1j8fv9uO222/Dhhx92u4gPP/wQubm5qKysxNixY5PG3nvvPZSXl8PjOZoTJ0yYgE8++QQHDhzA9u3b0dzcjAkTJiTGc3JyMGrUKLz77rtdeg630WMGLjt3CMJ5WtL94TwNl507BHrMsKkyIiI6EVKKDrsdSsm1DUREbtbtma9oNIq8vLy0Y6qqIh6Pd7uISZMmYdKkSWnH9u7di5KSkqT7Bg4cCADYs2cP9u7dCwA46aSTUh7z+eefd+k5CgsLu10zAHg89nz7KAwLoYCKwuJ8AEgcsjwgT0M0GoeAsK22zhhdWC3D2nsea7cHa7eHm2u34gZqP2/EQ7edjcLcAFp0A1kBD/Y36liwcjMsKeHx8DiR3qQemVlUOcOYUbzu9uB1z7xuh68xY8bgpZdeSizx+6JXX301sQyxp+i6Dp8vubOT3+8H0BoEI5EIAKR9TGNjY5ee43goikB+ftZx/eyJitYdQjAUgKkIRKKts1wCQMDvQcirwoS0rbbO1B1o7vQxrL3nsXZ7sHZ7uLr2Q/WYP/tcfLS7HooAYnEL0ZiBhiYd82efCz1qID8/1+4y+4WcHK3zB1GP43W3B6975nQ7fN1333245ZZbcNVVV+GCCy6AEALr16/Hf//3f2PTpk1YvHhxjxYYCAQQi8WS7msLTMFgEIFAAEBrB8a2f257jKZpXXqO42FZEk1NLcf1sydKVRSYUmJLTR0KcwOIxS1EogYONOo4Y/gAqEJBQ0PnHz6cirXbg7Xbg7X3HnnM3tcv3nZq7TlBP+oORrBp656UhkqDwyGE8zTH1t5XqKqCnBwNTU0RmCabm2QKr7s9eN17Rk6O1uXZw26Hr/Hjx2Pp0qX48Y9/jMWLF0NKiRdffBGjRo3CCy+8kLT3qicMGjQI+/btS7qv7XZRUREMw0jcd8oppyQ9ZsSIEV16juNldGVtSy+wFAWRmI4zSsKIRA00R+IIaV6cXJSNSDSCoF+zrbZOKZ3/YbL2XsDa7cHa7XGk9i/uS07cPhLAnFq7KYG1b+5M21Bp7Zs7cfuU02Gwn1JGmKbl2L+TvozX3R687plzXAeGlJeXY/ny5dB1HY2NjQiFQsjK6p0lHG3/v0zThKq2rnN/++23MWTIEBQWFiI7OxuhUAjvvPNOInw1NTXho48+wowZM7r0HG6jWBZCvgDMNGMhX4BtiImIXCpqmLjs3CHYfzCSdH84T8PIUwsQM0z4vNzzRUTkVt0OX3v27Em5r7GxEY2NjVAUBcFgEDk5OT1SHABMnz4dixcvxoMPPog77rgDVVVVWLZsGebNmwegda/XjBkz8NRTT6GgoACDBw/Gk08+iUGDBuGiiy7q0nO4jqIkvr1td5wBjIjIdVRFgd+rpl12eN3kEqhdmJEkIiLn6nb4mjRpUspSjmPl5ubipptuwuzZs4+7sDaFhYVYvHgx5s+fj6lTpyIcDuOBBx7A1KlTE4+59957YRgGHnroIei6jvLycixZsiTRZKMrz+FGHe1nICIi9/EoAis21KRtNQ8As6aNsaMsIiLqId0OX0888QS+//3v46yzzsIVV1yBAQMG4MCBA/j973+PN998E7Nnz0ZzczOef/555OXl4frrr+/28x+rrKwMK1asaPdnVFXF3LlzMXfu3HYf09lzuFFH+xmIiMh9onGzw1bz0bgJn4/LDomI3Krb4es3v/kNLr/8cjz++ONJ91911VV4+OGHsW3bNixcuBA5OTn49a9/3e3wRV13bFca07SgKjyAk4jIrWJxE4/OOheL1m1LWXb46KxzEdHjAMMXEZFrdTt8/eUvf0FFRUXasYsvvhj33HMPAODMM8/ECy+8cGLVUYdUVUk6TVRVO9kLRkREjpYbCuD1d2ox55qxSd1sA34P/vB/tbjo7GJAck8vEZFbdXvnbl5eHrZv3552bPv27QiFQgCAlpaWxDlbRERE1AXSwMVnn4ItNXXYfzCCxsMx1B2MYEtNHS4++xRAGnZXSEREJ6DbM19XXnklnn32WXg8Hlx66aUoKChAfX09/vCHP2DBggX413/9VzQ2NmLZsmUYO3Zsb9RMACwAdQdboPm9sCRgWhJ1B1swMFfrfqImIiJHUBQPGpoiKC3OBwA0R+LI0rwYkKfh4CEd+Tkau9kSEblYt8PX/fffjwMHDuCJJ55Iao6hKAqmT5+Ob37zm/j973+Pjz76CMuWLevRYqmVBKBIiXBeEJGoAUUAqiIQzgtCsSxIIcCdX0RE7iMtC/mhAFriqSc55ocCkAxeRESu1u3w5fF48Pjjj2PWrFl455130NDQgKKiIvzLv/wLTj75ZADA+eefj7feeivR6p16lpASECJ9q3khWseJiMh1VEUBLAnN70Ek2rrEUAAI+D1QLMlzHImIXK7b4avNKaecglNOOSXtWG5u7nEXRF1wpKW8ZSWHLMuSgCIS40RE5ELtLV3gkgYiItfrdviKRCJYuHAh/vjHPyISicA65hs4IQQ2bNjQYwUSERH1N24+SkQKgUjcRItuIBjwQPOqXJFBRHREt8PX/PnzsXr1apx11lkYOXIkFIXtHexgAag/pCc13Dh0SGfDDSKiPsCtR4mYQqBidRU21xw9o2xcaRizp5VBdUH9RES9rdvh6w9/+AO++c1v4s477+yNeqgL2HCDiIicRqYJXgCwuboOFWuqMGdaGWfAiKjf63b4MgwDZWVlvVELdVFbw430g2y4QUREmReJm/j403pcO7kEI4rzEYtb8HkVbK9tQOXGXYjETQQ9XJtBRP1bt8PXeeedh40bN2LChAm9UQ91xZGGGmm7HX5hnIiIKFMiUQNzZ4xH5Vu7sXJDTeL+scPDmDtjPCJRA0EPuyATUf/W7fB12WWX4eGHH0Z9fT3Gjh0LTdNSHnP11Vf3RG3UCXHM7Jdg6CIicj0LQN3BlqQ9vXUHWxy/pzc76MMvX6vG1h3Jyw7bbs+aNsaOsoiIHOW4DlkGgHXr1mHdunUp40IIhi8iIqLj4OY9vYYpUV3b/rJDw5TweZxaPRFRZnQ7fL3xxhu9UQcdBze3IiYiolRu3tMbicY7WXYY57JDIur3uh2+Bg8e3OH4sfuQqPe4tRUxERG1o7Pl4w5eXs5lh0REnet2+AKA3/zmN/jLX/6CeDyeCFtSSrS0tGDLli3YuHFjjxZJREREzmaYMiV4tdm6o47LDomIcBzha8GCBViwYAGys7NhGAa8Xi88Hg/q6+uhKAquueaa3qiTiIiIHKxFj3c6Hgxx2SER9W/dbpy0du1aTJkyBX/5y19wyy234Mtf/jL+93//Fy+//DLy8vIwfPjw3qiT0mi31TwREVGGBQMdf5/b2TgRUX/Q7fD1j3/8A1dddRWEEDj99NOxefNmAMDo0aNx9913Y9WqVT1eJKWXttU8ERGRDTSvinGl4bRj40rD0LxqhisiInKeboevYDCY+JB/6qmn4u9//zt0XQcAjBw5En//+997tkIiIiJyPCElZk8rSwlg40rDmD2tzNGdGomIMqXbawDGjBmDtWvX4ktf+hJOOeUUqKqK//3f/8WkSZOwa9cu+Hxcz01ERNQfqVJizrQyROImWnQDwYAHmldl8CIiOqLb4evuu+/GrbfeikOHDmHhwoWYMmUK/v3f/x1nn302Nm3ahMmTJ/dGnUREROQCQkoEPcrR5hoMXkRECd0OX+Xl5Xj55ZdRXV0NAPj+978PRVHw17/+FZdeein+/d//vceLJCIiIiIicrtuh6+FCxfiK1/5Cq666ioAgN/vxw9/+MMeL4w6x26HRERERETu0e2GG4sXL8bnn3/eG7VQN7HbIRERERGRe3Q7fJ166qnYsWNHb9RCRERERETUZ3V72eGFF16Ip59+Gn/84x8xfPhwFBYWJo0LIXDPPff0WIFERERERER9QbfD14IFCwAA7733Ht57772UcYYvIiIiIiKiVN0OX9u3b++NOoiIiIiIiPq0bu/56irTNDFy5Eh8+OGHvfX/goiIiIiIyDV6LXwBbH1ORERERETUplfDFxEREREREbVi+CIiIiIiIsoAhi8iIiIiIqIMYPgiIiJymGP3THMPNRFR38DwRURE5DBCiA5vO5kUAi2Ghf2HY2gxLEgX1U5E1Nu6fc4XERERUTqmEKhYXYXNNXWJ+8aVhjF7WhlUzt4RETF8ERER0YmTQmDxK9sw/JR8XDlxKGJxCz6vgu21DVhcuQ13ThkNwQBGRP1cr4UvIQTKy8uRlZXVW/8viIiIyCF0w8TFE05F5Vu7sXJDTeL+scPDmDJxKHTDhKZytwMR9W/HFb5isRhefvll/O///i/q6urw2GOP4S9/+QtOP/10lJWVAQAURcEvfvGLHi2WiIiInElKgdfe/hSlxfm46vzkma/X3v4UN18+yu4SiYhs1+3wVV9fj5tvvhm7d+/G0KFDsXPnTui6jj/96U944okn8OKLL2LcuHG9USsRERE5lITEpee0P/MlIQGw+QYR9W/dnv//0Y9+hObmZvz2t7/F2rVrE+1vn3nmGYwZMwbPPvtsjxdJqSSASNRIuc3V9EREZAcBgcq3dmPrjrqk+7fuqEPlW7shGLyIiLofvv74xz/ivvvuQ3FxcVLrW7/fj9tuuw0ffvhhjxZI6QkJaP6jE5cCrbcF0xcREdnAkjIleLXZuqMOFpttEBF1P3xFo1Hk5eWlHVNVFfF4/ERroq5o7wtEfrFIREQ20L+wGuN4xomI+oNu7/kaM2YMXnrpJVxwwQUpY6+++ipGjx7dI4URERGRewQDHgR8KqacPwwjivOTGm5UbtyFYICn2xARdXvm67777sOf//xnXHXVVXjmmWcghMD69etx991347XXXsM999zTG3XSMSwAdQdbYFoSlgRMS6LuYAssuwsjIqJ+KehV8cgdExDO05LuD+dpeOSOCQh6VZsqIyJyjm5/DTV+/HgsXboUP/7xj7F48WJIKfHiiy9i1KhReOGFFzBhwoTeqJO+QAJQpEQ4L4hI1IAiAFURCOcFoVgWpOC2ZiIiyjxLApu27kna+zV2eBjXTS6xsSoiIuc4rjUA5eXlWL58OXRdR2NjI0KhUOIwZcMw4PFwaUFvElICop14JUTrOBERUQbFLIm1b+5Me87X2jd34vYpp8PHbwaJqJ/r9rLDr3zlK9i+fTsAIBAIoKioKBG8qqqqcO655/ZshZSqveDV1XEiIqIeFjNMXHrOqaiubcAPlryDJ37+Ln6w5B1U1zbg0nNORcww7S6RiMh2XZqiWr9+PQyjtUvRZ599htdffz0RwL7o7bffZrdDIiKifkgRSrvnfAHAzKvYkIuIqEvha9u2bXjxxRcBAEIIPPfcc+0+9tZbb+2RwoiIiMg9unbOF1dmEFH/1qXw9a1vfQs33ngjpJSYPHkyFixYgJEjRyY9RlVVhEIhhEKhXimUiIiInEuPGsgL+TDn2nEozA2gRTeQFfBgf6OOBSs3Q48aCHl9dpfZISkEmnQT+2rrofk9CHgU7qMmoh7VpfDl8/kwePBgAMAbb7yBgQMHwuv19mphRERE5B6hoAePzjoXi9ZtS+l2+Oisc6EIZ4cYUwhUrK7C5pqjtY8rDWP2tDKoDGBE1EO63ZZw8ODB2LJlC/7yl78gHo9DHnlBklKipaUF77//PlauXNnjhRIREZFz+Twe/PeqrWn3fC1atw3fuGYsYDnzNEqZJngBwObqOlSsqcKcaWWcASOiHtHt8PWrX/0Kjz76aCJ0fZGiKDjvvPN6pDAiIiJyj5aogeraelw7uQQjivOTWs1XbtyFlqiBkLfbTZYzIhI3U4JXm83VdYjETQQ9zqydiNyl268kv/zlL3HeeefhnXfewe23345rr70WW7ZswTPPPAO/348pU6b0Rp1ERETkYBE9ju/cVI5wnpZ0fzhPw3duKoeuGzZV1rmWTmrrbJyIqKu6Hb7+/ve/Y8aMGcjNzcWYMWPw/vvvIxAI4JJLLsFdd92Fn//8571RJxERETlYXrYfmk9NO6b5VORmO7fZRjDQ8UKgzsaJiLqq2+HL6/UiEAgAAE499VTU1tYmzvb6l3/5F3z66ac9WiARERG5QWdt5J3bZl7zqhhXGk47Nq40DM2bPlQSEXVXt7/KGTlyJP74xz/i7LPPRnFxMSzLwpYtW1BeXo69e/f2Ro1ERETkcBISlgQ2bd2T0u3wusklkHBuwwohJWZPK0PFmipsrk7tdshmG0TUU7odvm699VbMmTMHjY2NePzxx/GVr3wFDzzwAC655BK8+uqrOPPMM3u0wHfeeQc33XRT2rF//ud/xhtvvIHvfve7WLNmTdJYUVERNm7cCACwLAsLFizAqlWr0NTUhDPPPBMPP/wwiouLe7RWIiKi/kpKYO2bO1FanI+rzh+a1HBj7Zs7cduU0508+QVVSsyZVoZI3IIeMxDweaB5ec4XEfWsboevyZMnY+HChdi1axcA4Ac/+AG+/e1vY/ny5RgzZgy+//3v92iB48aNw6ZNm5Luq6mpwZ133om7774bAFBdXY27774bM2bMSDxGVY8uEaioqMDy5cvx+OOPo6ioCE8++SRmzpyJ9evXw+dz7hp0IiIit4gbJi47dwj2H4wk3R/O0zDy1ALEDRN+hy/fE1IiJ6Ci+KQcNDQ0wzCc2RqfiNzruHaQXnjhhbjwwgsBAPn5+fjZz37WkzUl8fl8CIePrsOOx+N4/PHHcfHFF+Oaa66BaZrYuXMnZs+enfS4NrFYDD/72c8wd+5cXHDBBQCAp59+GhMnTsTrr7+Oyy+/vNdqJyIi6i9URYHfq7a77FBV2KqdiKhL4WvPnj3detJ/+qd/Oq5iuuJXv/oVPv/880Tg+/TTTxGNRjFs2LC0j9++fTuam5sxYcKExH05OTkYNWoU3n33XYYvIiKiHqAqosNlh7dPOd3uEomIbNel8DVp0iQI0fWF2h9//PFxF9SRaDSKhQsX4uabb8bAgQMBtC5BFEJg2bJl2LhxIxRFwQUXXID7778f2dnZiSYgJ510UtJzDRw4EJ9//nmv1ElERNTfxDpZdhgzTPgcvuyQiKi3dSl8PfbYY4nw1djYiKeeegrnnHMOvvrVryIcDuPgwYP4n//5H7z55pv493//914r9pVXXkE0GsWNN96YuG/Hjh1QFAWDBw/GwoULUVtbi//8z/9ETU0Nli1bhkik9U3g2L1dfr8fjY2NJ1SPx6bT7ruyBN2u2jrD2u3B2u3B2u3B2u2hmhJZfhX+gVnQ/F606AayAh4E/Co8QkBVFMfW/kWqqiT9N2UGr7s9eN0zr0vha9q0aYl/vueeezB16lT88Ic/THrMlVdeifnz5+N3v/sdrrvuup6t8oh169bh4osvRn5+fuK+b3zjG7jllluQk5MDACgpKUE4HMZ1112HDz74IHEmWSwWS/wz0DqLpmnacdeiKAL5+VnH/fMnou5Ac6ePsau2zrB2e7B2e7B2e7B2e+h1hxDK8uOFtR+k7Pm6a+oYeBTn1t7mUEsMjYej+LyhHlmaF7khP7KDbMyVSTk5x//ZjI4fr3vmdLvhxp///Gc899xzaccuvPBCrFy58oSLSqe+vh6bN2/GXXfdlXS/ECIRvNqUlJQAAPbu3ZtYbrhv3z6ccsopicfs27cPI0aMOO56LEuiqanluH++J8hj2t9+8XZDQ+dv4E7F2u3B2u3B2u3B2nuBEHhhbVVS8AKArTvq8MLaD3DP18qcWzuAqClRsboKm2tSz/nyqw7ukd9HqKqCnBwNTU0RmCa7TGYKr3vPyMnRujx72O3wlZ+fjy1btuDcc89NGfu///s/FBUVdfcpu+Svf/0rhBA466yzku7/9re/jYMHD2LJkiWJ+z744AMAwGmnnYaTTz4ZoVAI77zzTiJ8NTU14aOPPkpqTX88bGtB24WOUY5tj8va7cHa7cHa7cHabaHHLVTX1uPaySUYUZyf1HCjcuMu6DETHq8zlzZJIVKCFwBsrq5DxZoqzOFByxljmpZj/8b7Ml73zOl2+LrmmmtQUVGBSCSCSZMmoaCgAPv378drr72GX//61/je977XG3Vi+/btOPnkk1OWCl5xxRWYNWsWnn/+eVx++eX45JNP8IMf/ABXXHFFogPijBkz8NRTT6GgoACDBw/Gk08+iUGDBuGiiy7qlVozQQLQY2bK7Syf6uQzLImIqI+K6HHMnTEelW/txsoNNYn7xw4PY+6M8dB1AyGvM5fwReJmSvBqs7m6DpG4iaAL9qsRkfN1O3zNmjULhw4dwosvvpiYbZJSIhAI4L777sMNN9zQ40UCwP79+5GXl5dy/5e//GU888wzWLhwIRYuXIjs7GxceeWVuP/++xOPuffee2EYBh566CHouo7y8nIsWbLE1QcsCwkEfGoigAkAfp8KIY/cICIiyqDckB8v/aEm7bJDAJg1bYwdZXVJi250Oh4MufczAxE5R7fDlxAC3/nOdzB79mxs2bIFjY2NyM/Px7hx4xAMBnujRgDAI4880u7YJZdcgksuuaTdcVVVMXfuXMydO7cXKrOJaN139kWWJQGFyYuIiDIvbsqU4NVm6446xE0Jn8eZ71HBQMcfhzobJyLqquN+NcnOzsbEiRN7shbqJuWYoHXsbSIiokyJ6HHkhXyYc+04FOYGEq3m9zfqWLByMyJ6HFkOnT3SvCrGlYaxuTo1PI4rDUPzqgD3fBFRD+BXOS5lAdjfGIHm98KSgGlJ7G+MYGCuBq5KJyKiTAsFPXh01rlYtG5bSqv5R2edC0U4N7wIKTF7Whkq1lQlBbC2bodstkFEPYXhy4UkWvfZDcjVoMdMKAJQFYEBuRqklJBCcNsXERFllM/jwQtrP0BpcT6uOn9oUrfDZes/wl1TxwCWc7upqVJizrQyROIW9JiBgM8DzasweBFRj2L4ciEhJVQhYIrkiCWEgApwaQQREWVcJGbg0nNOTdvtcMrEoYjEDGQ5vGOgkBI5ARXFJ+WgoaGZrbeJqMcxfLmREB0HrM7GiYiIepoEXnv707QzX6+9/SluumyU3RUSEdmO4culJIBI1Ei5zXO+iIjIFgK44ryh8HoFNL830XDjjJIBOH1IIXgWChER2JvBrYQENP/R7CzQetvB+5mJiKgPUxWBokIt7VhRoQaVHXmJiDjz5VrtvYfxvY2IiGzgUxXETIkVr+9I6XZ419Qx8KkKl8QTUb/HmS8iIiI6YRaAF9Z+kHLQ8tYddXhh7Qdg6woiIs58ERERUQ/QYyaqa+tx7eQSjCjOT2q4UblxF/SYiZCX3/kSUf/GV0EXM02rw9tERESZEtHj+M5N5QjnJe/7Cudp+M5N5dB1o52fJCLqPzjz5WKqqgBfOINE5Xp6IiKySV62HwJR+AdmJXU7DPhVeIRAbrbP7hKJiGzHmS8iIiI6YQICOdn+tGM52X4IdoQiImL4cqv2zvnivBcREdlBEa2LLz7b14yGJh2HmmOob9Lx2b5mSNk6TkTU3zF8uVR7qwu56pCIiOwgATQeiqYdazwU5ZeDRETgni/XUtB6qHLb7JcAEPB7oFh8eyMiosyzpIQigMFp9nwponVctbtIIiKbMXy5FQ9ZJiIihwll+VPO+mo7ZJmIiLjs0NXkMWsMj71NRESUKUKIDg9ZFoLfDhIRcebLxaxjlhhaFnc0ExGRPfSYidrPG/HQbWejMDeQWHa4v1HHgpWbecgyERE48+VqyjFB69jbREREmaJH43jsnnMRDCTv7AoGVDx2z7mIRnnIMhERZ75c7NglHEIItjskIiJbFGQHEDMlVry+I+2er/xsP9+jiKjfY/hyMdO0Um6rnP0iIiIbWACWvvohSovzcdX5QxGLW/B5FWyvbcDSVz/EzKtHc7kNEfV7DF9ERER0wqJxE5edOwT7D0aS7g/naRh5agGicRMeD+MXEfVvDF8uZQGoP6RD83thScC0JA4d0jEwV+M3i0RElHECgN+rYtPWPSnLDq+bXALBs1CIiPg53Y0kAEiJcF4QqiKgCEBVBMJ5QUBKcEU9ERFlmkdVsGJDTdpW8ys21MCjMnwRETF8uZCQEkIIRL7QOUoCiEQNCCEguKGZiIgyLBo3U4JXm6076hCNmxmuiIjIebjs0I2EgLAkNL8nEcAEgIDfA9F21hcDGBERZZAeNRHwqZhy/jCMKM5ParhRuXEX9KiJbJ/a+RMREfVhnPlyKSmQduZLclUHERHZIBT04js3lSOcpyXdH87T8J2byhEKem2qjIjIOTjz5VYS8HkUxIzWdvMCgNejtKYwBjAiIsqwgFftsOFGwKsCltXBMxAR9X2c+XIpKVq7HZqWTHQ7rD+kc+aLiIhsETetDhtuxE0GLyIihi8XkgBMKRHSfIluh4oiENJ8MNntkIiIbMCGG0REneOyQzeSEh4IyDTLDj1gsw0iIso8PWqiqEDDAzeVw6sqaI7EkaV5ETct/Ojn77LhBhERGL5cSQgBCxL1Te0csiwYwIiIKLNyQl784M4voWrnfhTmBhCLW4hEDRxo1PGDO78ES3LZIRERw5cLSQBGO+HKkBJeIdhzg4iIMsqnqjjQGMHggVnQ/F606AayAh4E/CoaD+kozNXYcIOI+j2GLxeSUsKygBWv70jpKHXX1DGQQjJ8ERFRRpmWhVCWHy+s/SDte5NpWfzQQUT9Hl8HXcgC8OpbuzB7ehmicRPNkThCmhc+r4p1f9qJqReexk4qRESUWUJg6avbUFqcj6vOH5p0yPLSVz/EzKtHc0k8EfV7DF8uZEoT0y48DVt2pK6rn3bhaTCkCQ/jFxERZVA0buKK84bC6xVJyw7PKBmA04cUIho34fHwvYmI+jeGLxfyKh4cPBTBmGGFiBlWYubrnwZkofGwjrxsrqsnIqLMUgRQVKihvklPGSsq1GCanPUiImL4ciPLQk4ogOderkpZV3/P18oYvIiIKOP8HhVxS+Kzfc2JVRnRWOuqjPzsAPwehcsOiajfY/hyIakoWPvHHWn3fK19cyemfXk4AxgREWWUBNDcEk27KuNwSxS5oYDdJRIR2Y7hy4UMy+h4z5dlQOWeLyIiyiAhJXJDgbTvTWcMHwDBWS8iIn5CdyOv4sGBxtQ19QBwoFGHV2GmJiKiDFMUNDTpGDwwC/k5AWRn+VCQE8DggVloaNIBhR85iIj4Kd2FTMuCqgClxfkAgOZIHFmaFwPyNESjcZiWxVRNREQZZVkWcrP9iMZbl70rAlAUgZDmg9+rwOJ7ExERw5cbCQCFoQBMRSASNRL3BfwehLwqDHBpBxERZZYqRLv9NFQICAE23CCifo/hy4U8igJLStQdbIHm98KSgGm13h6Yq8EjFDbcICKijBJCwJASSyo/TOnEO3t6GbxCMHwRUb/H8OVCEoAlJQqyA4gZFhQBqIpAQXYAlpQQQkDYXSQREfUrJoBVb9TgzqmjYZoy0e1QUQVWvVGD6y4qhWp3kURENmP4ciFxJGB9sJMdpYiIyBnipoFrJ5dga5puh9dOLkHcNKAK7voiov6N4cuFLCFwqDmCM0rCiESNxLeLJxdl41BzBDlZGhQGMCIiyiCf6kF9YwSDB2ZB83vRohvICngQ8Ks42KSjIFfjkngi6vcYvlxIsSzkBAPY186eL4VvbkRElGGWZSGU5ccLaz9I2fN119Qx7HZIRASe8+VKUlGgSIlwXhCqIhJ7vsJ5QShSQvIsFSIiyjQhUoIXAGzdUYcX1n6A1naHRET9Gz+lu5CQElIcbTMPtDbhiEQNSCG454uIiDJOj5kpwavN1h110GNmhisiInIeLjt0IyEAS8LnURAzWpcYCgBej9KawhS28yUiosxqjsSRF/JhzrXjUJgbSOz52t+oY8HKzWiJGAh5fXaXSURkK4Yvl5ICqG/Sk/Z8HTqkY2CuxjbzRESUcdlZXjw661wsWrctZc/Xo7POReu3g0RE/RvDlwvxnC8iInKagNeDX/zuY9x0+Uh41dPRHIkjS/MiblpYtaEGN351JLsdElG/x/DlQkJKeIRALM3SQo/gkkMiIsq8qGHg65eMwPOrq1JmvmZNL0PUMKCxIRQR9XN8FXQjISCBxH4vAInb8sg4ERFRJnlVNSV4Aa3NNp5fXQWvyu97iYj4SuhShgSWVH6Y8u3i7Oll8DJ7ERFRhukxE3sPHMaP7z8fXlVJWnb4o5+/Cz1mIOTld75E1L8xfLmQCWD9pt2Y87WxiMQMNEfiCGleBHweVL61C1POHwbV7iKJiKhficbi+OGdX8L+pgiUI82gLEsiGjPwwzu/hMbmKLsdElG/x/DlQqZlYOrEoTCO6RwlITF14lDELAMqV5QSEVEGFWRriBoWVry+I2VVxl1Tx6AgO8CGG0TU7zF8uZBP8cCUElt37EdhbgCxuIVI1MCBRh1nDB8An+LhGxwREWWUKSWWvvohSovzcdX5QxGLW/B5FWyvbcDSVz/EzKtHO/5DhxQCTbqJfbX10PweBDwKBJtYEVEPcvrrIKVhAWiJ6jijJIxI9Oiyw5OLstGiR5AV0DjvRUREGRWNm5gycRhys1uXFrbt+TovT8OYoQMQjZvweJz77mQKgYrVVdhcc3TWblxpGLOnlUFlACOiHuLcV8Ev+Oyzz1BaWpryn1WrVgEAPv74Y8yYMQNnnHEGLrzwQixZsiTp5y3LwrPPPouJEydi7NixuO2221BbW2vHr9IjFMtCtj8A00ye3TLN1vsVznoREVGGqQpQVKChurYB+w9G0Hg4hv0HI6iubUBRgQZVcW43KJkmeAHA5uo6VKypgmQXYSLqIa6Y+aqurobf78eGDRsgvvACmJ2djYaGBtx6662YPHky5s2bhy1btmDevHnIy8vD9OnTAQAVFRVYvnw5Hn/8cRQVFeHJJ5/EzJkzsX79evh8Ltz8qygwpcQHuw6kXXaoKgqXHRIRUUb5PB7sPxhJO1bfpGNAnubY96ZI3MTHn9bj2sklGFGcn7RksnLjLkTiJoIOnrUjIvdwRfiqqanBkCFDMHDgwJSxZcuWwefz4ZFHHoHH48GwYcNQW1uLRYsWYfr06YjFYvjZz36GuXPn4oILLgAAPP3005g4cSJef/11XH755Zn+dU6YBaChScfggVnQ/F606AayAh4E/CoamnQU5HLZIRERZZZpWVAE0r43KeLIuN1FtiMSNTB3xnhUvrUbKzfUJO4fOzyMuTPGIxI1EPS48MtaInIcp74OJqmursZpp52Wduy9995DeXk5PJ6jOXLChAn45JNPcODAAWzfvh3Nzc2YMGFCYjwnJwejRo3Cu+++2+u19wbLspCf7ceA3NZlHIoAVEVgQK6G/Gw/LId+s0hERH1bdsiPz/Y1o6FJx6HmGOqbdHy2rxnZIb/dpXUoO+hD5Vu70x4QXfnWbmQHGbyIqGe4ZuYrHA7j+uuvx6effori4mLMnj0bEydOxN69e1FSUpL0+LYZsj179mDv3r0AgJNOOinlMZ9//nlmfoEe5jmy9DJmJW8AtiwJX9uaem4OJiKiDFKEQEOTnnas8VAUhbkBx743GaZEdW37yw4NU8Ln4b4vIjpxjg9fsVgMn376KTRNwwMPPIBgMIjKykrMnDkTS5cuha7rKfu2/P7Wb9ii0Sgikdb15+ke09jYeEK12dW1ybAAS0rUH9KhHTnI0rQkDh3SMTBXgyIEPKoz3ySMLkzKObUbFmu3B2u3B2u3h5trjxsWLAls2ron5Zyv6yaXwJISfofWHmnW8Z2bylP2rIXzNHznpnJEonHkBAI2Vdc/qKqS9N+UGbzumef48OXz+fDuu+/C4/EkAtTo0aOxa9cuLFmyBIFAALFYLOlnotEoACAYDCJw5MUyFosl/rntMZqmHXddiiKQn5913D9/IvYdaIYpJUJa6/VQRGs9Ic0HU0oIYV9tnak70NzpY1h7z2Pt9mDt9mDt9mjedwjrN+3GlROH4pYrRiX2fO1v1LF+027ceNlIx9YeNSXihmw3OOaF/I6tva/JyTn+z2Z0/HjdM8fx4QtoDVHHKikpwaZNmzBo0CDs27cvaaztdlFREQzDSNx3yimnJD1mxIgRx12TZUk0NbUc98+fECkBCCyp/DDlTWL29DJASjQ0dP4G7lSs3R6s3R6s3R6svecZponrLx2BReu2pbw3zbx6NAzTdGztpgWs2FCTds8XAMyaVubY2vsKVVWQk6OhqSmScpQO9R5e956Rk6N1efbQ8eFr+/bt+PrXv45FixZh/Pjxifu3bduG0047DSNHjsTy5cthmiZUVQUAvP322xgyZAgKCwuRnZ2NUCiEd955JxG+mpqa8NFHH2HGjBknVJvRlfUhvcBSFLz02se46fKR8KqnJw6yjJsWXvr9dsz46kjbauuU0vkfJmvvBazdHqzdHqzdFl7Vg1//YXva96ZVG2rw9YtHOLb2aNzscM9XNG7AJ1S7y+wXTNNy7N9JX8brnjmOD18lJSUYPnw45s2bh4cffhj5+flYuXIltmzZgpdffhkDBgzA4sWL8eCDD+KOO+5AVVUVli1bhnnz5gFoXbY4Y8YMPPXUUygoKMDgwYPx5JNPYtCgQbjooots/u2OT8wwcMMlI7C/KQLlyJ4vy5KIxlrvjxkGtC68gRMREfUUU5q4/pIRqNq5P+UMyusvGQHDMgHhzPemaMzssNV8NGYi28fwRUQnzvHhS1EULFy4EE899RTuv/9+NDU1YdSoUVi6dClKS0sBAIsXL8b8+fMxdepUhMNhPPDAA5g6dWriOe69914YhoGHHnoIuq6jvLwcS5YscecBywD8qoqYKbHi9R0pSzvumjoGftUDSH57QUREmeNTVRxoTN/tsKFJR2Gu5tj3ppwsP371++oOlx0CzuzUSETu4vjwBQAFBQV47LHH2h0vKyvDihUr2h1XVRVz587F3Llze6O8jLMArHi9Ou3SjhWvV+OGS0e44wA3IiLqMywpO+l2aMGpc0eGaaUErzZbd9TBMC22mieiHuGK8EXJ4qbZ4bLDuGnCw2WHRESUQZZEp90O4dD80qLHOx0Phty5WoaInIWf0F3Ir6oAJAqyA1AVAUUAqiJQkB0AIFuXHRIREWWQYZq44asj0NCko6FJx6HmGOqP/PMNXx0BwzTtLrFdwUDH75udjRMRdRXDlwspAFQhEPtCVxoJIGZYUIWAwnXpRESUYT6PB4cOx9KOHTocg8/j3ACjeVWMKw2nHRtXGobmdeqCSSJyG4YvNxICQgKa/+gbmUDrbSFbx4mIiDKrsy/+nPvFoJASs6eVpQSwcaVhzJ5WBiGdWzsRuYtzv4aiDlkCqDvYAu3Ini/Tkqg72IKBuRoTNRERZZwE4FGBMcMKETMsNEfiCGle/NOALBxuiTo4erVSpcScaWWIxC3oMQMBnweaV2HwIqIexc/pLiQBxC2Jz/Y1J62r/2xfM+KWdPwbHBER9T0qgLxQAPWHdJiWTHwxWH9IR14o4NhOh18kpEROQEVpcQFyAiqDFxH1OM58uZAlJQ4djmLwwCxofm+io1TAr+LQ4Sjyc9zxJkdERH2HoiiImRY+29ecOGQ5Gms9ZDk/OwCfqgCWM8/5IiLKFIYvF5JSIi/bD0u2Ntn4YrdDRbSOExERZZIlJRqaomnP+RocDiGcxy8GiYi47NCFPELAIwQUJbmxhqKIxBgREVEmmZbEig01KYcVb91RhxUbamBa/GKQiIgzX24kBNDR7FZn40RERD1Mj5toaIrguQe+DNOUiYYbiirwn8veRTRuwufj3BcR9W+c+XIxccwM17G3iYiIMsU0TfzHbWej8XA0qeFG4+Eo/uO2sx19yDIRUaYwfLmYaVod3iYiIsqUvKwAzHZWXZhSIi8rkOGKiIich8sOXSzdni8iIiI7SCkhJdrtdiilBN+liKi/Y/hysbTLDrnXi4iIbCABHG6OorQ4HwDQHIkjS/NiQJ6Gw81R5GVz5ouIiMsOXcoCUHewJWldfd3BFnDhIRER2UJK5IYCqK5twP6DETQejmH/wQiqaxuQGwrwy0EiInDmy5UkWs9TKcgOpJzzZUkJIQSXdhARUUYJRUFDYwSDB2ZB83vRohvICngQ8Ks4eEhHQa7GQ5aJqN9j+HIhISU8QiCW5ltED5ceEhGRDSzLQijLjxfWfpByyPJdU8fAsiwutyGifo/hy42OBKx2G24wgBERUaYJgT++9zfMuWYsIlEjcc5XwO/BH/6vFhedfQrfm4io3+OXUC5lAti6Y39iXX3dwQi27tgPnqJCRES2kCYuOfuUtPuRLzn7FEDyHYqIiDNfLmQBaInqOKMknPTt4slF2WjRI8gKaEzVRESUUarigWFZCGk+AIAiWldkhDQfTCnhUTzc80VE/R4/o7uQYlnI9gfSHrKc7Q9A4ZsbERFlmpRQIHA4EkvMfFmWxOFIDAq4HJ6ICGD4cidFgQQQM46GrLbb8sg4ERFRRgkBCxIhzQdVEUkzXxZk635kIqJ+jp/SXUpIQPMfXTUq0Hpb8ItFIiKyg5TwQMDnOfrRQgDweRR4OPNFRASAe77cq70vEPnFIhER2UAIAQMSz69ObTV/z9fKeBQKEREYvoiIiKgHmABeXP8Rrpw4FLdcMSpxyPL+Rh0vrv8It155OlS7iyQishmXHRIREdEJi8YNzLhsBIKB5IgVDKiYcdkIROOGTZURETkHZ76IiIjohPlUBYYFrHh9R8qyw7umjoFPVdDaHoqIqP9i+CIiIqITJwSWvroNpcX5uOr8oYjFLfi8CrbXNmDpqx9i5tWjmb2IqN9j+HKxdOd8qQo7bhARUeZF4yamTByG3OzWQ5abI3FkaV6cl6dhzNABiMZNeDzc7UBE/RvDl4spxwStY28TERFliqoAAws0VKyuSll2OHt6GUzL6uCniYj6B4Yvl5IA9JiZcjvLp7LbPBERZZzX48Evf/cxbrp8JLzq6YmZr7hp4aXfb8eMr44EGMCIqJ9j+HKptkOWI9HW7lECQMDvgbAkz/oiIqKMixkGvn7JCDyfZuZr1vQyxAwDmsJlh0TUvzF8uRUPWSYiIgfxqioWrUvfcGPJK9sw8+oxgOTMFxH1bwxfREREdMKicRNXnDcUXq+A5vcmDlk+o2QATh9SiGjcYMMNIur3GL5cygSwpaYOhbkBxOIWIlEDBxp1nDF8ANROf5qIiKhnKQIYVKghGrcStxVFIKT54M9RYJjsM09ExPDlQhaAZl3HGSVhRKIGmiNxhDQvTi7KRnMkgpCmgd8tEhFRJgU8KgwJLKn8MG23w4BHAJIBjIj6N4YvF1IsC6FAAPsOtkDze2FJwLQk6g62YGCuBoXdpIiIKMMsIbB43Qdp93wtfmUb7pw6BirDFxH1cwxfLiQVBUY7AcuQEl5FgWAAIyKiDNJjRoeHLOsxA1nc80VE/RzDlwtJKSEAhLTWN7gvrqsXXxgnIiLKFFUBigo0bN25P2U/8tjTBrT7pSERUX/C8OVCAoAXAkqac75US4KLOoiIKNN8Hg8amiIoLc4HcHTma0CehsbDOvJzNB6yTET9Huf/XUgIASmQCF4AINF6W4rWcSIiokySloX8UCDtWH4oAMngRUTE8OVWQgKa/+jEpUDrbcFpLyIisoGqdPyRorNxIqL+gMsO3UoAppn8LaJpWlAVznoREZE9TLTfat4N0UsKgSbdxL7aemh+DwIeBYIdGomoBzF8uZhyTNA69jYREVGmmACW/eYjXDlxKG65YhRadANZAQ/2N+pY9puPcOuVp0O1u8gOmEKgYnUVNtccDY7jSsOYPa2MLfKJqMcwfLnYsXu7hOABlkREZI9o3MD1l47AonXbUma+Zl49GtG4gaDqzPkvmSZ4AcDm6jpUrKnCnGllnAEjoh7B8EVEREQnzKMo+PUfqnHT5SPhVU9PdDuMmxZWbajB1y8eATi0H28kbuLjT+tx7eQSjCjOTzogunLjLkTiJoI8o4yIegDDl0u1dTc89naWT+UZX0RElHGmtPD1S0bg+dVVKTNfs6aXwbRMQDgzwESiBubOGI/Kt3Zj5YaaxP1jh4cxd8Z4RKIGgh6fjRUSUV/B8OVSbd0Ojz3nS1gSTF9ERJRpXlXFr17bnnbm69e/344bLh0JSGe2m88O+vDL16qTQiOAxO1Z08bYURYR9UEMX27VXsBi8CIiIhvETbPDma+4acDj0HbzhilTglebrTvqYJgSPg/fYInoxDF8ERER0QnzqioWrduG0uJ8XHX+0KR9U0te2YaZV49x7MxXix7vdDwY4rJDIjpxDF9ERER0wqJxE5edOwT7D0aS7g/naRh5agGicQMehzatCAY6/jjU2TgRUVc581WQiIiIXEUA0HzpT/LSfCqEg9fFa14V40rDacfGlYaheZ18QhkRuQnDFxEREZ0wr0eBIoDBA7OQnxNAdpYPBTkBDB6YBUUAXgfvmRJSYva0spQA1nbIMs/4IqKewnl0IiIi6hE52X7UN+lp73c6VUrMmVaGSNyCHjMQ8HmgeRUGLyLqUZz5IiIiohOmio5ntjobdwIhJXICKkqLC5ATUBm8iKjHceaLiIiIeoRlASte35HSav6uqWMAbpsiImL4IiIiohNnAfjl7z7GlROH4pYrRqFFN5AV8GB/o45f/u5j3HLFKMcvt5FCoEk3sa+2Hprfg4CHyw6JqGcxfBEREdEJixkmrr90BBat25Yy8zXz6tGIGSY8qnPjlykEKlZXYXPN0drbGm6oDGBE1EMYvoiIiOiEeRQFv/5DNW66fCS86ulojsSRpXkRNy2s2lCDr188AoAzQ4xME7wAYHN1HSrWVGEOOx4SUQ9h+CIiIqITZkoLX79kBJ5fXZUy8zVrehlMywSEM2e+InEzJXi12Vxdh0jcRNChB0QTkbswfBEREdEJ86oqFq3bhtLifFx1/lDE4hZ8XgXbaxuw5JVtmHn1GEBadpeZVotuIOBTMeX8YRhRnJ9Ue+XGXWjRDQRDPrvLJKI+wBXh6+DBg/jJT36CN998E4cPH0ZpaSm+/e1vY/z48QCA7373u1izZk3SzxQVFWHjxo0AAMuysGDBAqxatQpNTU0488wz8fDDD6O4uDjjvwsREVFfFI2buOzcIdh/MJJ0fzhPw8hTCxCNG/A4dPYoS/Ng7ozxqHxrN1ZuqEncP3Z4GHNnjEeW5oqPS0TkAq54NfnWt76FAwcO4Cc/+QkKCgrw0ksv4fbbb8eaNWswbNgwVFdX4+6778aMGTMSP6OqR3vaVlRUYPny5Xj88cdRVFSEJ598EjNnzsT69evh8/GbLCIiohMlAGRrKk4qLETMsNAciSOkefFPA/5/e3caH0Wdrn38V92dpLMQIBjAAWFUJMiSEGRTZFXUDzDOAHpwjiDjwngCyojKcgBFx5WDgqwqCOIwj8IoyDAoRwEdRY+DogiOiIBgFBUTWRJJutNbPS9iWpuEsCVd1Z3r+4qqShdXF02q7/pvqRwtLcPAvut8JSW4+N/3vqyy1e5/3/uyfKr8kD1b7UQktti++MrPz+fdd9/lhRdeoFOnTgBMmTKFt99+m7Vr13LbbbexZ88eRo8eTWZmZqXX+3w+lixZwvjx4+nduzcAs2bNomfPnqxfv56BAwdG9f2IiIjEI7fLQWKCm/kvVR7zNeaabBw2nrCizB/gqot/XWXL19U9z6PMHyDZxjM1ikjssH3x1bBhQxYuXEj79u3D+wzDwDRNioqK+PLLLykrK+P888+v8vU7d+6kpKSE7t27h/elp6fTtm1bPvjgg5guvoLBUKVtp8O+TxZFRCR+mQ4HS//xaZXrfC1du4Mbf9POtq1HpmmwZtPeiKIRCG+P+m37ql4mInLKbF98paenh1usKqxbt46vvvqKSy+9lF27dmEYBs899xxvv/02DoeD3r17c8cdd1CvXj0OHDgAwNlnnx1xjsaNG/Pdd9+dUTar+q4Hfrp3OZ2Onzcqtn96smjXfvWBk7jvKnvNU3ZrKLs1lN0apWWBatf5KvMHSE+y59eOkD/A5/mH+I/LW1c54UbINHG5nCc+kZw2508ti061MEaVrnv02fO3YDU+/PBDJk+ezGWXXUa/fv2YM2cODoeDZs2a8dRTT5Gfn8/06dPZtWsXzz33HB5P+cDfY8d2JSUlUVRUdNo5HA6Dhg1Tz+i9nK7CgyUn/Bmrsp2IsltD2a2h7NZQdmuUFvzIS2/s5o+D2xMMmuExXw6nwctv7uGafq1tm72g+FC1E274/EEa/qq+hQnrjvT0ZKsj1Em67tETU8XXhg0buPvuu8nJyWHmzJkA3H777fzhD38gPT0dgNatW5OZmcmwYcP45JNPcLvdQPnYr4o/A5SVlZGcfPoftFDIpLi49AzeTe06fPjEN3C7UnZrKLs1lN0ayl7zQoS47vLWlPqC4X0mEAyaXHd5a3yhoG2zpyUnsmzdzuN2O8wbkm3b7PHC6XSQnp5McbGn0rAKqT267jUjPT35pFsPY6b4+utf/8pDDz1E//79eeyxx8ItWYZhhAuvCq1btwbgwIED4e6GBQUFtGjRIvwzBQUFtGnT5owyBU6mf0htcJz4H9eybCei7NZQdmsouzWU3RJup4tQ6DiTapjlx+2aPRA0yf+uiKk3daNRfXfEeLV5f9tKIBgiYGhMdTQEgyHbfk7ima579MRE8fX888/zwAMPMGLECCZPnozjFzenu+66iyNHjrB48eLwvk8++QSAVq1acc4555CWlsbmzZvDxVdxcTE7duyImJo+1piApyxQaTs10WnjyXxFRCSeBYHFaz6tNOZr9NBs7DyixOvz82BejyrHqz2Y1wNvmZ8Ul5amEZEzZ/via9++fTz88MP079+fW2+9lYMHD4aPud1uBg0aRF5eHk8++SQDBw5k3759/PnPf2bQoEHhGRCHDx/OY489RkZGBs2aNWPGjBk0bdqU/v37W/W2zphhQnKSK1yAGYA7yYURMlH1JSIi0RYEVr+1h9FDsynzB8NjvhITnKx+aw9D+l6AXaesSE9NYtHqf1e5ztdza3cw6nftwxNaiYicCdsXX6+99hp+v5/169ezfv36iGODBw/m0UcfZfbs2Tz11FM89dRT1KtXj9/85jfccccd4Z8bO3YsgUCAqVOn4vV66dKlC4sXL47tBZYNMI+5EZimCi8REbFGIBRgSJ9WfLz7BxrVd+Pzh/CUBThY5GVIn1YEQgGcNm3/KvMHGdDjXH444onYn9kgmQt/nUGZP2jbWSZFJLYY5rHf4OWkBIMhDh2yaPCto3xK+aBh4CkLhJ8uupNcOE0TDMO2a6kou0WU3RrKbg1lt0TI4eDIjx7SUpLwBULh7AkuB0dLy2hQLxmHTbOXBkIUl/hZsWFXpW6Hwy5vTXpqIikuPd2sTS6Xg4YNUzl8uERjj6JI171mZGSknvSEG3qME8OqWmRZRETEEqEQ9dPcfPLFQX444qHoqI/CIx4++eIg9dPcti0aAVxOR6XCC8pnO1yxYRcupwovEakZtu92KMdX3SLLIiIiUeVwcPCYbnsVDhZ5OatBsm0LsDJ/sNpFlsv8QRIT7TpiTURiiYqvGFZVy5fToadzIiISfcETFFbBUMi23W3KfMFqF1ku8wWpp+JLRGqAiq8YppYvERGxCxNwGNCscSrJSQnhtbLcSU4cRvlxu0pPTeL/vfZ5tYss2/sdiEissOtDKBEREYkhBlAvLYlvCko4XOzlxxIfh4q9fFNQQr20JFtPxhsIhioVXhW27S4koDHVIlJD1PIlIiIiZ8xhGBQf9ZLVsiEAJR4/qckJnNUgmaMlZTSo57Zt74xSr/+Ex1PSYnh5GhGxDRVfIiIicuZMk4w0N37TxPdTl3gDSHA5SE1wE7Jp4QWQ4q7+69CJjouInCx1OxQREZEz5nQ4MAxwHDPxk8NhYBjlx+0qOcFJblZmlcdyszJJTtBkGyJSM+z7m1BERERiTihkVrttR4ZpMnpIdqUCLDcrk9FDsjFs3GonIrFF7egiIiJSY2J1Jl6naTJmaA6lZYHwTI3JSS4cNl2bTERik4ovERERqREm4CkLVNpOTXTaerZDgKBhsOClbWzd9fOshxUtX84YKB5FJDao26GIiIjUCMME9y8WIzYo3zZsXruYhsGCldsjCi+ArZ8XsmDVdkzD7qWjiMQKFV8xLHjMuiPHbouIiESTaYDXF/x5m/Jt0+a1i8cfrFR4Vdj6eSEef7DKYyIip0rdDmNYrParFxGROGVCostRaap5zJ82bKrUG8Cd6OTqXufTpmVDfP4QiQkOduYfZs3bX1DqDWidLxGpESq+REREpGYY4PP//FDQBHyBEAmJ9p6qPTXZxfjhnVmzaS9/27ArvD/ngkzGD+9MarK+LolIzVC3QxEREakRhgnJST8XKgbl23Yf85WU4GLNpr1s2x3Z9XDb7kLWbNpLUoKKLxGpGSq+REREpEYEDfh4VyE/HPFQdNRH4REPH+8qJGjjLocAXl+gUuFVYdvuQry+QJXHREROlR7liIiIyBkLAcUlXnIuOAuvL0iJx09acgLNG6dRXOKlflqybZ/4lnqrL6405ktEaopdfw+KiIhIDDFCIeqnuvmhyEMwZBIyIRgy+aHIQ/1UN4aNFytOcVf/LPpEx0VETpaKLxERETlzjvIZdzMbpOB0GDgMcDoMMhuklM/E67DvV47kBCe5WZlVHsvNyiQ5wd4ThohI7LDvb0IRERGJGYZpYhgGnrKfu/CZgKcsgGEYGDZeCsUwTUYPya5UgOVmZTJ6SLats4tIbFE7uoiIiJw5w4CQefx1vhyGrdeidJomtw3JxuMP4fUFcCe6SE5wqPASkRqlli8RERGpEaYBh370Roz5OvSjF9Pmsx1WMEyTdLeTrJYZpLudKrxEpMap+BIREZEzZkK1Y75UxoiIqPgSERGRGmCYJg6j6iYuh83HfImIRIuKLxERETlzPxVewWDklPLh7eMUZiIidYmKLxEREakRJoQn2/jldqy0eZmGQbE3yOf5h/ixLIipglFEaphmOxQREZGaYXL82Q5tXscEDYMFK7ezdVdheF/FVPNOdZkUkRqili8RERGpGUbVLV92L7zMKgovgK2fF7Jg1Xa1gIlIjVHxJSIiIjXCMCE56edONQbl24bNG448/mClwqvC1s8L8fiDUU4kIvFKxZeIiIjUCNMAT1ng523Kt+2+zlepN3BGx0VETpaKLxEREakZP435qmDw07bNW75S3NUPgT/RcRGRk6XiS0RERGpGjI75Sk5wkpuVWeWx3KxMkhOcUU4kIvFKxZeIiIjUiJAJRz0+giGTkAmhkMlRj4+QzVu+DNNk9JDsSgVYxWyHWiBaRGqK2tFjVEU/+mO3UxOddn/AKCIiccgETEwy6rnxBUI4DHA6DDLquTExMTFsfX9ymia3DcnG4w/h9QVwJ7pITnCo8BKRGqWWrxgVqzNKiYhIfDJME5dh4HBEllgOh4HLMGKiiDFMk3S3k6yWGaS7nTGRWURii1q+YtXxHh/a+bGiiIjEL8OA6oqVEx23AdMwKPYGKcg/RHKSC7dLLV8iUrNUfImIiEidF6xioeWKMV9OFWAiUkPU7VBERERqjGEY1W7bkVlF4QXlCywvWLUdMwbeg8ipqmjp/Tz/ED+WBfU5jxK1fMWwYDBUadvp0H8cERGxjnlMK9Gx23bk8Qf57MtD/MflrWnTsiE+f4jEBAc78w+z5u0v8PiDpLj0vFrih1p6raPiK0aF1045ZjtBsx2KiIhFTMDrC1batvtMvJ6yAOOHd2bNpr38bcOu8P6cCzIZP7wznrIAKa5ECxOK1JwTtfTepuUVapUe48QozXYoIiK2Y0LiL1qIDH7atvm9qV5KIms27WXb7sgvo9t2F7Jm017qpajwkvjh8QcrFV4Vtn5eiMcfrPKY1AwVX7FKsx2KiIjdGFX3yrD7vSkQNCsVXhW27S4kELR59ShyCkq9gTM6LmdG3Q5FRESkRgRMWLzm04hCJueCTEYPzSbBxgVYqdd/wuMpaWr9kviQ4q7+6/+JjsuZ0dUVERGRMxYE1r6zl9uuycHjC1Di8ZOWnIA70cWaTV9wda/zcVod8jj0ZVTqkuQEJ93aNaHl2fUrTTCT/10RyQlO26/JF8v020RERETOWDAUYHDP8wge28JlwOCe5+ELBXDadLSDvoxKXWKYJjdf3Z75L22vNMHMmGs02UZtU/ElIiIiZyzR4SJkmhQeKSU5KYGQCcFQ+Xbj+skkOlwQCp34RBbQl1GpS0zD4MmV26ucYOZJzXZY6+z5CEpERERiigkETZO05EScDgOHAQ6HQVpyIkHTtPWEhyf6MqrFZyWeaLZDa6nlS0RERM6caeLCwHQ5wjMeGkCCy4ELw9bd9jz+IPu+LWLqTd1oVN9NqTdAqtvFD0Ve5v1tqxZZlrhyMrMdaoKZ2qPiK4YFg6FK206Hns6JiEj0GYYBmDgdDvjFdPNOp6O8C5Nh3wLM6wvwYF4PFq3+d6WZGh/M64G3zK9FliVuaIIZa+kxTowKr51yzLY9b2siIiL2lZ6aVKnwgvJuh4tW/5v01CSLkonUvOQEJ7lZmVUey83KLJ9gRmqNStsYZZiQnOTCU1bedGwA7iQXRsi0/WKWIiISv2KxV4bXFyT/u+N3O/T6gqQl6Hm1xAfDNBk9JJsFq7az9fOfHzjkZmUyWpNt1DoVX7HqePcxe9/fREQkzjmdlbsd2rW7YQVvmb/abocej5+0BHU7lPjhNE1uG5KNxx/C6wvgTnSRnOBQ4RUFeowTo0JA4ZFSgiEzYjpfe07iKyIiYl8N6rmr7XZYv566HUr8MUyTdLeTrJYZpLudKryiRMVXDDIBh2mS2SAlPJ2v02GQ2SAFh82n8xUREbEbry9YqfCqsG13IV6fpt4WkZqh4isGhWeNqvKgoScXIiJiiSDw8a5Cfjjioeioj8IjHj7eVYjdS5cSj7/a46We6qfmFhE5WRrzFYtONF2vjafzFRGR+BQCfEEvHVtn4ikLUOLxk5acwDlN6uELeEhyJdv2iW9qckK1x1OS9XVJRGqGfpuIiIjIGXOEQiQ73VW2ciU73RCy76jklCQXXS5swrnN6tOmZUN8/hCJCQ525h9m3zdFpCS5bJ1fRGKHiq8YFovT+YqISJxynGBWQ4fDtgWMIxQi73ftCVA+/qui1a554zRcXc6xbW4RiT127QEgJxACDv3ojZjt8NCPXs12KCIicqoMgxDwQ5En4r76Q5Gn/L56vHHWNmIaBqWBED8c9VEaCGHGQGaRukjFVwwyKZ90o6rZDg3NdigiInJKTMMgZJpk1HNH3Fcz6rkJmab9CxnDoNQXDBeNIRNKfcGYKBpF6po6U3yFQiHmzJlDz549ycnJ4aabbiI/P9/qWKfFME2M4/xCNTTboYiIyCkxTBOXYZQvCP0LTqcDl93vq4ZByKTSg1cTCJmoAJPjMg2DYm+Qz/MP8WNZ0P4PGeJEnSm+FixYwPLly3nwwQdZsWIFhmEwatQofD6f1dFO3U//Oaoa8/XL4yIiInISTnTftPN91TBwAMlJPw/jN37advx03O5CDgdHPAH+/cUPFHkChByx8/U05HBw1B/i++IySvyh2MluGIR+avH1B0KEQiYhw4iJzwvE8HWnjky44fP5WLJkCePHj6d3794AzJo1i549e7J+/XoGDhxoccJTFwCeXPVJxKKQORdkMuaabNv/owaA+S9uU/YoU3ZrKLs1lN0aym6NgBHL2Y3jZ7dziyMxnN0wqv+823zJopi97j+JnTLxDOzcuZOSkhK6d+8e3peenk7btm354IMPLEx2eoLA/Je2R3zoALbtLmT+S9ttvZilsltD2a2h7NZQdmsouzViOXvI4ag2u51bM2I5e9Awqv/M2Lj1K5avewW7PxCpEQcOHADg7LPPjtjfuHFjvvvuu9M+r8tlzT/wUU+g0oeuwrbdhXjKAjSw6YKQym4NZbeGsltD2a2h7NaI5exHTpC9VNlrhT4z1rJ3uhri8XgASExMjNiflJREUVHRaZ3T4TBo2DD1jLOdjm8O/VDt8RJPgHN/VT9KaU6NsltD2a2h7NZQdmsouzWU3RrKbo1Yzl6hThRfbrcbKB/7VfFngLKyMpKTk0/rnKGQSXFxaY3kO1WpyQknOO7i8OGSKKU5NcpuDWW3hrJbQ9mtoezWUHZrKLs17Jo9PT250mypx1Mniq+K7oYFBQW0aNEivL+goIA2bdqc9nkDAWuWNE5JcpFzQWaVza45F2SSkuSyLNuJKLs1lN0aym4NZbeGsltD2a2h7NaI5ewV7D8qrQa0adOGtLQ0Nm/eHN5XXFzMjh076Ny5s4XJTo8jFGLMNdnkXJAZsb9iphdHyL4fOmW3hrJbQ9mtoezWUHZrKLs1lN0asZy9gmGaMTAnYw2YNWsWy5cv5+GHH6ZZs2bMmDGD/fv3849//KPSWLCTEQyGOHTI2ibZkMNBaVmAEk+A1GQXKUmumPjQgbJbRdmtoezWUHZrKLs1lN0aym4Nu2XPyEg96W6Hdab4CgaDzJw5k1WrVuH1eunSpQv33nsvzZs3P83zWV98QfmMiw0bpnL4cIntm1njia67NXTdraHrbg1dd2voultD190auu4141SKrzox5gvA6XQyfvx4xo8fb3UUERERERGpg+rEmC8RERERERGrqfgSERERERGJAhVfIiIiIiIiUaDiS0REREREJApUfImIiIiIiESBii8REREREZEoUPElIiIiIiISBSq+REREREREokDFl4iIiIiISBSo+BIREREREYkCFV8iIiIiIiJRoOJLREREREQkClR8iYiIiIiIRIGKLxERERERkShQ8SUiIiIiIhIFKr5ERERERESiQMWXiIiIiIhIFKj4EhERERERiQIVXyIiIiIiIlGg4ktERERERCQKDNM0TatDxCLTNAmF7HHpnE4HwWDI6hh1jq67NXTdraHrbg1dd2voultD190auu5nzuEwMAzjpH5WxZeIiIiIiEgUqNuhiIiIiIhIFKj4EhERERERiQIVXyIiIiIiIlGg4ktERERERCQKVHyJiIiIiIhEgYovERERERGRKFDxJSIiIiIiEgUqvkRERERERKJAxZeIiIiIiEgUqPgSERERERGJAhVfIiIiIiIiUaDiS0REREREJApUfMWwUCjEnDlz6NmzJzk5Odx0003k5+dbHSuuHTlyhHvvvZdevXrRqVMnfv/737NlyxarY9Up+/btIzc3l1WrVlkdpU5YvXo1AwYMoEOHDgwcOJB169ZZHSnu+f1+Zs2aRZ8+fcjNzeU///M/+eijj6yOFdcWLFjAiBEjIvZ99tlnDB8+nI4dO9KnTx8WL15sUbr4VdV1f+ONNxg6dCi5ubn069eP6dOn4/V6LUoYn6q67r80depU+vXrF8VEdYuKrxi2YMECli9fzoMPPsiKFSswDINRo0bh8/msjha37rzzTrZt28bMmTN56aWXaNeuHTfffDNffPGF1dHqBL/fz913301paanVUeqEv//970yePJlhw4axdu1aBgwYwJ133snWrVutjhbXnnzySVauXMmDDz7I6tWrOe+88xg1ahTff/+91dHi0tKlS5kzZ07EvsOHD3PjjTfy61//mpUrV3L77bcze/ZsVq5caVHK+FPVdd+yZQu33XYbV155JatXr+a+++5j3bp13H///RaljD9VXfdf2rBhAy+++GIUE9U9Kr5ilM/nY8mSJdx+++307t2bNm3aMGvWLL7//nvWr19vdby4lJ+fz7vvvsu0adPo3Lkz5513HlOmTKFJkyasXbvW6nh1wty5c0lNTbU6Rp1gmiazZ89m5MiRjBw5kpYtWzJmzBguueQS3n//favjxbWNGzcyaNAgLr30Ulq2bMmkSZM4evQoH3/8sdXR4sr333/PLbfcwuzZszn33HMjjv3tb38jMTGR++67j/PPP5+hQ4fyhz/8gUWLFlmUNn5Ud92XL19O9+7d+eMf/0jLli3p1asX48aNY82aNXqwfIaqu+4VCgoKuOeee+jatWuU09UtKr5i1M6dOykpKaF79+7hfenp6bRt25YPPvjAwmTxq2HDhixcuJD27duH9xmGgWmaFBUVWZisbvjggw9YsWIF06dPtzpKnbB3716++eYbfvOb30TsX7x4MbfeeqtFqeqGBg0a8Oabb7J//36CwSArVqwgMTGRCy+80OpoceXTTz+lfv36rFmzhpycnIhjW7ZsoUuXLrhcrvC+7t27s2/fPg4ePBjtqHGluut+0003MWHChEqvCQQCHD16NFoR41J11x3KH7hNmjSJ3/72tyq+apnrxD8idnTgwAEAzj777Ij9jRs35rvvvrMiUtxLT0+nd+/eEfvWrVvHV199xaWXXmpRqrqhuLiYCRMmMHXq1EqfeakdX375JQClpaXcfPPN7Nixg+bNm5OXl6exALVsypQpjBs3jssuuwyn04nD4WD27Nm0aNHC6mhxpV+/fsf9LB84cIDWrVtH7GvcuDEA3377LY0aNar1fPGquuvetm3biG2fz8ezzz5Lu3btyMjIiEa8uFXddYfy7oiFhYU89dRTPP3001FMVveo5StGeTweABITEyP2JyUlUVZWZkWkOufDDz9k8uTJXHbZZfoyWsvuu+8+OnbsWKkVRmpPxVPmiRMnMmjQIJYsWUKPHj0YPXo07733nsXp4tsXX3xBeno68+fPZ8WKFQwZMoSJEyeyc+dOq6PVGV6vt8r7K6B7bJQEAgEmTJjAnj17mDZtmtVx4trOnTuZN28eM2bMqPS5l5qnlq8Y5Xa7gfKnQhV/hvKbQnJyslWx6owNGzZw9913k5OTw8yZM62OE9dWr17Nli1b+Mc//mF1lDolISEBgJtvvpnBgwcDcOGFF7Jjxw6effZZLr74Yivjxa1vvvmG8ePHs3TpUjp37gxAhw4d2LNnD3PnzmX+/PkWJ6wb3G53pTFGFUVXSkqKFZHqlKNHj3LHHXewefNm5syZU2U3OakZZWVl3H333eTl5dGmTRur49QJavmKURVdrwoKCiL2FxQU0LRpUysi1Rl//etfuf322+nVqxeLFi2KKH6l5q1cuZKDBw+Gp93Ozc0FYNq0aQwcONDidPGr4vfIsV2vWrVqxf79+62IVCds374dv99Phw4dIvbn5OSEu4JK7WvatGmV91eAJk2aWBGpzigoKOD6669n69atLFq0SD1Latm2bdvYvXs38+bNC99jn376ab799ltyc3NZs2aN1RHjjlq+YlSbNm1IS0tj8+bN4XEAxcXF7Nixg+HDh1ucLn49//zzPPDAA4wYMYLJkyfjcOj5RW177LHHKq3xcsUVVzB27FgGDBhgUar417ZtW1JTU9m2bVu4BQZg165dGntUiyoerH3++edkZ2eH9+/atYuWLVtaFavO6dKlC8uXLycYDOJ0OgF47733OPfcczXeqxYVFRUxcuRIjh49yvPPP09WVpbVkeJednY2r7/+esS+ZcuW8frrr7Ns2TJ93muBiq8YlZiYyPDhw3nsscfIyMigWbNmzJgxg6ZNm9K/f3+r48Wlffv28fDDD9O/f39uvfXWiBmv3G439erVszBd/DreU+ZGjRrRrFmzKKepO9xuN7fccgvz58+nSZMmZGdn88orr/Duu++ydOlSq+PFrezsbDp37szEiROZNm0aTZs2ZfXq1bz33ns8//zzVserM4YOHcozzzzDlClTuOWWW9i+fTvPPfec1puqZY888ghff/01zzzzDBkZGRQWFoaPZWRkhAthqTlut7vSg5369evjcrn0wKeWqPiKYWPHjiUQCDB16lS8Xi9dunRh8eLFGixZS1577TX8fj/r16+vtJba4MGDefTRRy1KJlI7Ro8eTXJycngNwfPPP5+5c+fSrVs3q6PFLYfDwYIFC3jiiSf47//+b4qKimjdujVLly6lY8eOVserMxo1asQzzzzDQw89xODBg8nMzGTChAnh8Y9S80KhEK+++ip+v5+RI0dWOr5x40aaN29uQTKRmmWYpmlaHUJERERERCTeacCKiIiIiIhIFKj4EhERERERiQIVXyIiIiIiIlGg4ktERERERCQKVHyJiIiIiIhEgYovERERERGRKFDxJSIiIiIiEgUqvkREpM7TkpciIhINKr5ERKRO27NnD7///e9P6TUjRoxgxIgR1f7M3LlzycrKOpNoIiISZ1xWBxAREbHSunXr2Lp1a42f99prr6Vnz541fl4REYldKr5ERERqQdOmTWnatKnVMURExEbU7VBEpI7r168fc+bMYfr06VxyySVkZ2dz8803s2/fPgAmTZpEv379Il6zf/9+srKyWLVqFQCbN28mKyuL9957jxEjRpCdnU2fPn148cUXKSgo4LbbbiM3N5fevXuzdOnS08o4b948HnnkEbp160Zubi533XUXJSUlLFy4kF69enHRRRdx++23c/jw4fDrvF4vjz/+OFdccQXt27enU6dO3HjjjXz22WdAedfAefPmAZCVlcXcuXMB8Pv9zJ8/n8svv5zs7GwGDhzIypUrIzKZpsmiRYvo06cP2dnZDBs2jE8++SR8/NhuhyNGjGDKlCksXLiQPn360KFDB6677jq2bdsWcd5//vOfDBkyhOzsbK688krWrl1L//79w9lO5ZrNmjWLRx55hK5du9K1a1fGjx8fcX0mTZrEyJEjmTZtGp07d2bw4MEEAgHKysqYP38+V111FR06dOCKK65g4cKFhEKhiPczadIknn76aXr06EGnTp3Iy8vj66+/Dv9MWVkZ999/P7169aJ9+/ZcddVVLFmy5JTeh4hIPFHLl4iI8Je//IWLLrqIRx55hKKiIh566CEmTZrEihUrTuk8d955J3/84x/Jy8tj4cKFTJs2jRYtWjBgwACGDRvGCy+8wCOPPEKnTp3Izs4+pXM/++yzXHLJJcyaNYtPPvmEmTNn8umnn9KkSRMeeOAB9u3bx//8z/9w1llnMW3aNAAmTJjABx98wF133UWLFi348ssvmT17NuPGjWPdunVce+21HDhwgJdeeokVK1aEW6omTpzIxo0bycvLIycnh02bNjF58mScTie/+93vAPjwww/x+Xzcc889+Hw+pk+fzn/913/x1ltv4XJVfXt97bXXOP/885k6dSqmaTJ9+nTGjh3LG2+8gdPp5F//+hejR4+mb9++/OlPfyI/P59p06ZRVlZ2SteqwvPPP0/Lli15+OGHOXToEI8//jh79+7lxRdfxOEof/66ZcsWDMNg7ty5lJSU4HQ6GTVqFB9//DFjxozhwgsvZPPmzTzxxBN8/fXXPPDAA+Hzb9y4kYYNGzJlyhRCoRCPP/44N9xwA6+88gopKSk89NBDvPPOO0ycOJGzzjqLt99+m+nTp9OgQQOGDBlyWu9JRCSWqfgSERHS09NZsGABTqcTgK+++oq5c+dGtJKcjKFDh3LjjTcCkJKSwrBhw8jOzmbs2LEAtG/fno0bN/LRRx+dcvGVmprKrFmzcLlcXHLJJbz88ssUFBTw4osvUq9ePXr37s2//vUvPvroIwB8Ph8lJSXcc889DBgwAICuXbtSUlLCo48+SmFhYUTXwI4dOwKwe/duXnnlFaZMmcINN9wAwMUXX8y3337L5s2bw8VXYmIiCxcupEGDBgAcPXqUqVOnsmfPHtq0aVPlewgEAixevJi0tDQASkpKmDhxIp999hnt27dn7ty5tGrVinnz5mEYBgCNGjXizjvvPKVrVcEwDJ599lnq1asHQEZGBmPGjOHtt9+mT58+4Uz3338/LVu2BOCtt97i//7v/5gxYwZXX301AD169MDtdjN79mxGjhxJq1atACgtLWXlypW0aNECgPPOO4/Bgwfz8ssvc/311/P+++9zySWXMHDgQAC6detGSkoKDRs2PK33IyIS61R8iYgIHTp0CBdeQLgg8Xg8p3Se3Nzc8J/POussAHJycsL7Kr50//jjj6ecMTs7O6JFKTMzk7S0tHBhAdCgQQN27doFlBdHixcvBqCgoID8/Hz27t3Lm2++CZR3LazKli1bAOjfv3/E/ieeeCJiu1WrVuHCC6B58+YnfG+tWrUKF14ATZo0Acqvs8/nY+vWrYwZMyZceAFceeWVx21JO5G+fftGXJ9+/fqRkJDAli1bwsWX2+0OF08A77//Pk6nM1ywVrj66quZPXs2mzdvDhdfubm5Ea9t27Yt55xzDlu2bOH666+nW7duLF++nO+//56+ffvSu3dvxowZc1rvRUQkHqj4EhERkpOTI7YruqT9cozPyfhlYXG8c5+u0zn3pk2bePjhh9m7dy+pqalkZWWRmpoKHH9tryNHjgDlLU7VSUlJidg+mWtW3XU+cuQIwWCw0t/rcrlOu6WocePGlf6+Bg0aUFxcHN7XqFGjiGKvqKiIhg0bVir4MjMzgcji8tjzV5yv4vxTpkyhadOmrFmzhvvvvx8oL9juvfde2rZte1rvSUQklmnCDRERqZZhGASDwYh9paWlFqU5eV999RVjxoyhTZs2rF+/no8++ogXXniBvn37Vvu69PR0AA4dOhSxf+/eveFWsdrQqFEjEhISOHjwYMT+UCh0yt0/K1QUkhWCwSCHDx8mIyPjuK+pX78+hw8fJhAIROwvKCgAiCgEjz0/wA8//BA+f2JiInl5eaxbt44333yTe++9l6+//pq77rrrtN6PiEisU/ElIiLVSk1N5fDhwxGTPlSMq7Kzf//735SVlXHrrbdGdI3btGkT8HPLV0XrU4WLLroIgA0bNkTsnzVrVsRkEzXN6XTSqVOnSn/vG2+8UakQOlmbNm3C5/OFtzdu3EggEODiiy8+7mu6du1KMBjk1Vdfjdi/Zs0a4OfrA7B169aIIvXTTz9l//79XHzxxXi9Xq688srw7Ia/+tWvuP766xk4cCAHDhw4rfcjIhLr1O1QRESq1bdvX5YtW8bkyZO59tpr2b17N0uWLIkYI2ZH7dq1w+VyMWPGDG666SZ8Ph+rVq3in//8J/Bz611FS9fatWvJycmhTZs2XHXVVTz22GN4vV7atWvHO++8w/r16yuN+6ppY8eOZcSIEYwdO5ZrrrmGb7/9ltmzZwNEdA08WQcOHCAvL48bbriB7777jpkzZ3LppZfSrVu3476mV69edOvWjWnTplFQUEDbtm15//33WbRoEYMHDw6P94LysWqjRo0iLy+PkpISZs2aRevWrRk0aBCJiYm0a9eOefPmkZCQQFZWFvv27ePll1/myiuvPPWLIyISB1R8iYhItXr06MHEiRNZtmwZr7/+evgL9XXXXWd1tGq1bNmSxx9/nHnz5pGXl0f9+vXp2LEjy5YtY8SIEWzZsoWsrCyuuOIK/v73vzNp0iSuueYa7rvvPmbMmMG8efNYtmwZhw8f5txzz+WJJ57gqquuqtXMnTt3Zu7cucyePZvRo0fTrFkz7rnnHsaNGxceq3YqBg4cSHp6OnfccQcpKSkMHjyYcePGVfsawzB4+umnmTNnDn/5y184dOgQzZs3Z9y4ceGZLH+Zt3v37kyZMgUon9BjwoQJJCYmAvDnP/+ZJ554giVLllBYWEijRo245ppr+NOf/nTK70VEJB4Y5vFGHIuIiEhUbdy4kaZNm9KuXbvwvt27dzNo0CAWLFjAZZdddtLn6tevH127duXRRx+tjaiMGDECgGXLltXK+UVE4pFavkRExBKhUOikZlM83WnWY9E777zDq6++yt133825557LgQMHePLJJznvvPO49NJLdc1ERGKcfjuLiIglJk+ezMsvv3zCn9u4cWN4Da14N3HiRNxuN08++SQFBQU0aNCAnj17ctddd5GUlMSkSZNO+pqJiIj9qNuhiIhYYv/+/Sc1hXpWVlZ4DFFdp2smIhLbVHyJiIiIiIhEgdb5EhERERERiQIVXyIiIiIiIlGg4ktERERERCQKVHyJiIiIiIhEgYovERERERGRKFDxJSIiIiIiEgUqvkRERERERKJAxZeIiIiIiEgU/H+OL4zTOpHKlAAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(1, 1, figsize=(10,8))\n",
"axes = sns.scatterplot(data=df_date_sorted, x='num_matching_props', y='date_range')\n",
"axes.set_ylabel('date_range [days]')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}