lang-main/scripts/dashboard/dash_timeline.py

536 lines
16 KiB
Python

import time
import webbrowser
from pathlib import Path
from threading import Thread
from typing import Any, Final, cast
import dash_cytoscape as cyto
import plotly.express as px
from dash import (
Dash,
Input,
Output,
State,
callback,
dash_table,
dcc,
html,
)
from pandas import DataFrame
import lang_main.io
from lang_main.analysis import graphs, tokens
from lang_main.constants import SPCY_MODEL
from lang_main.types import ObjectID, TimelineCandidates
# ** data
p_df = Path(r'../results/test_20240619/TIMELINE.pkl').resolve()
(data,) = cast(tuple[DataFrame], lang_main.io.load_pickle(p_df))
p_tl = Path(r'../results/test_20240619/TIMELINE_POSTPROCESSING.pkl').resolve()
cands, texts = cast(
tuple[TimelineCandidates, dict[ObjectID, str]], lang_main.io.load_pickle(p_tl)
)
TABLE_FEATS: Final[list[str]] = [
'ErstellungsDatum',
'ErledigungsDatum',
'VorgangsTypName',
'VorgangsBeschreibung',
]
TABLE_FEATS_DATES: Final[list[str]] = [
'ErstellungsDatum',
'ErledigungsDatum',
]
# ** figure config
MARKERS: Final[dict[str, Any]] = {
'size': 12,
'color': 'yellow',
'line': {
'width': 2,
'color': 'red',
},
}
HOVER_DATA: Final[dict[str, Any]] = {
'ErstellungsDatum': '|%d.%m.%Y',
'VorgangsBeschreibung': True,
}
# ** graph
target = '../results/test_20240529/Pipe-Token_Analysis_Step-1_build_token_graph.pkl'
p = Path(target).resolve()
ret = lang_main.io.load_pickle(p)
tk_graph = cast(graphs.TokenGraph, ret[0])
tk_graph_filtered = graphs.filter_graph_by_edge_weight(tk_graph, 150, None)
tk_graph_filtered = graphs.filter_graph_by_node_degree(tk_graph_filtered, 1, None)
# tk_graph_filtered = tk_graph.filter_by_edge_weight(150, None)
# tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
cyto_data_base, weight_data = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
MIN_WEIGHT = weight_data['min']
MAX_WEIGHT = weight_data['max']
cyto.load_extra_layouts()
cose_layout = {
'name': 'cose',
'nodeOverlap': 500,
'refresh': 20,
'fit': True,
'padding': 20,
'randomize': False,
'componentSpacing': 1.2,
'nodeRepulsion': 1000,
'edgeElasticity': 1000,
'idealEdgeLength': 100,
'nestingFactor': 1.2,
'gravity': 50,
'numIter': 3000,
'initialTemp': 2000,
'coolingFactor': 0.7,
'minTemp': 1.0,
'nodeDimensionsIncludeLabels': True,
}
my_stylesheet = [
# Group selectors
{
'selector': 'node',
'style': {
'shape': 'circle',
'content': 'data(label)',
'background-color': '#B10DC9',
'border-width': 2,
'border-color': 'black',
'border-opacity': 1,
'opacity': 1,
'color': 'black',
'text-opacity': 1,
'font-size': 12,
'z-index': 9999,
},
},
{
'selector': 'edge',
'style': {
#'width': f'mapData(weight, {MIN_WEIGHT}, {MAX_WEIGHT}, 1, 10)',
# 'width': """function(ele) {
# return ele.data('weight');
# """,
'curve-style': 'bezier',
'line-color': 'grey',
'line-style': 'solid',
'line-opacity': 1,
},
},
# Class selectors
# {'selector': '.red', 'style': {'background-color': 'red', 'line-color': 'red'}},
# {'selector': '.triangle', 'style': {'shape': 'triangle'}},
]
graph_layout = html.Div(
[
html.Button('Trigger JS Weight', id='test_js_weight'),
html.Button('Trigger Candidate Graph', id='graph-build-btn'),
dcc.Store(id='graph-store', storage_type='memory'),
dcc.Store(id='graph-store-cyto-curr_cands', storage_type='memory'),
html.Div(id='output'),
html.Div(
[
html.H2('Token Graph', style={'margin': 0}),
html.Button(
'Reset Default',
id='bt-reset',
style={
'marginLeft': 'auto',
'width': '300px',
},
),
],
style={
'display': 'flex',
'marginBottom': '1em',
},
),
html.H3('Layout'),
dcc.Dropdown(
id='layout_choice',
options=[
'cose',
'cola',
'euler',
'random',
],
value='cose',
clearable=False,
),
html.Div(
[
html.H3('Graph Filter'),
dcc.Input(
id='graph-weight_min',
type='number',
min=MIN_WEIGHT,
max=MAX_WEIGHT,
step=1,
placeholder=f'Minimum edge weight: {MIN_WEIGHT} - {MAX_WEIGHT}',
debounce=True,
style={'width': '40%'},
),
dcc.Input(
id='graph-weight_max',
type='number',
min=MIN_WEIGHT,
max=MAX_WEIGHT,
step=1,
placeholder=f'Maximum edge weight: {MIN_WEIGHT} - {MAX_WEIGHT}',
debounce=True,
style={'width': '40%'},
),
html.H3('Graph'),
html.Button('Re-Layout', id='graph-trigger_relayout'),
html.Div(
[
cyto.Cytoscape(
id='cytoscape-graph',
style={'width': '100%', 'height': '600px'},
layout=cose_layout,
stylesheet=my_stylesheet,
elements=cyto_data_base,
zoom=1,
),
],
style={
'border': '3px solid black',
'borderRadius': '25px',
'marginTop': '1em',
'marginBottom': '2em',
'padding': '7px',
},
),
],
style={'marginTop': '1em'},
),
],
)
# ** app
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div(
[
html.H1(children='Demo Zeitreihenanalyse', style={'textAlign': 'center'}),
html.Div(
children=[
html.H2('Wählen Sie ein Objekt aus (ObjektID):'),
dcc.Dropdown(
list(cands.keys()),
id='selector-obj_id',
placeholder='ObjektID auswählen...',
),
]
),
html.Div(
children=[
html.H3(id='object-text'),
dcc.Dropdown(id='selector-candidates'),
dcc.Graph(id='graph-candidates'),
]
),
html.Div(
[dash_table.DataTable(id='table-candidates')], style={'marginBottom': '2em'}
),
graph_layout,
],
style={'margin': '2em'},
)
@callback(
Output('object-text', 'children'),
Input('selector-obj_id', 'value'),
prevent_initial_call=True,
)
def update_obj_text(obj_id):
obj_id = int(obj_id)
obj_text = texts[obj_id]
headline = f'HObjektText: {obj_text}'
return headline
@callback(
[Output('selector-candidates', 'options'), Output('selector-candidates', 'value')],
Input('selector-obj_id', 'value'),
prevent_initial_call=True,
)
def update_choice_candidates(obj_id):
obj_id = int(obj_id)
cands_obj_id = cands[obj_id]
choices = list(range(1, len(cands_obj_id) + 1))
return choices, choices[0]
# TODO check possible storage of pre-filtered result
# TODO change input of ``update_table_candidates`` and ``display_candidates_as_graph``
# TODO to storage component
@callback(
Output('graph-candidates', 'figure'),
Input('selector-candidates', 'value'),
State('selector-obj_id', 'value'),
prevent_initial_call=True,
)
def update_timeline(index, obj_id):
obj_id = int(obj_id)
# title
obj_text = texts[obj_id]
title = f'HObjektText: {obj_text}'
# cands
# cands_per_obj_id = cands[obj_id]
# cands_similar = cands_per_obj_id[int(index) - 1]
# data
# df = data.loc[list(cands_similar)].sort_index() # type: ignore
df = pre_filter_data(data, idx=index, obj_id=obj_id)
# figure
fig = px.line(
data_frame=df,
x='ErstellungsDatum',
y='ObjektID',
title=title,
hover_data=HOVER_DATA,
)
fig.update_traces(mode='markers+lines', marker=MARKERS, marker_symbol='diamond')
fig.update_xaxes(
tickformat='%B\n%Y',
rangeslider_visible=True,
)
fig.update_yaxes(type='category')
fig.update_layout(hovermode='x unified')
return fig
@callback(
[Output('table-candidates', 'data'), Output('table-candidates', 'columns')],
Input('selector-candidates', 'value'),
State('selector-obj_id', 'value'),
prevent_initial_call=True,
)
def update_table_candidates(index, obj_id):
df = pre_filter_data(data, idx=index, obj_id=obj_id)
df = df.filter(items=TABLE_FEATS, axis=1).sort_values(
by='ErstellungsDatum', ascending=True
)
cols = [{'name': i, 'id': i} for i in df.columns]
# convert dates to strings
for col in TABLE_FEATS_DATES:
df[col] = df[col].dt.strftime(r'%Y-%m-%d')
table_data = df.to_dict('records')
return table_data, cols
def pre_filter_data(
data: DataFrame,
idx: int,
obj_id: ObjectID,
) -> DataFrame:
idx = int(idx)
obj_id = int(obj_id)
data = data.copy()
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(idx) - 1]
# data
data = data.loc[list(cands_choice)].sort_index() # type: ignore
return data
# ** graph callbacks
# TODO store pre-calculated graph
@app.callback(
Output('cytoscape-graph', 'elements', allow_duplicate=True),
Output('graph-weight_min', 'min', allow_duplicate=True),
Output('graph-weight_min', 'max', allow_duplicate=True),
Output('graph-weight_min', 'placeholder', allow_duplicate=True),
Output('graph-weight_max', 'min', allow_duplicate=True),
Output('graph-weight_max', 'max', allow_duplicate=True),
Output('graph-weight_max', 'placeholder', allow_duplicate=True),
Output('graph-store', 'data'),
Output('graph-store-cyto-curr_cands', 'data'),
# Input('graph-build-btn', 'n_clicks'),
Input('selector-candidates', 'value'),
State('selector-obj_id', 'value'),
prevent_initial_call=True,
)
def display_candidates_as_graph(index, obj_id):
t1 = time.perf_counter()
df = pre_filter_data(data, idx=index, obj_id=obj_id)
t2 = time.perf_counter()
print(f'Time for filtering: {t2 - t1} s')
t1 = time.perf_counter()
tk_graph_cands, _ = tokens.build_token_graph(
data=df,
model=SPCY_MODEL,
target_feature='VorgangsBeschreibung',
build_map=False,
logging_graph=False,
)
t2 = time.perf_counter()
print(f'Time for graph building: {t2 - t1} s')
t1 = time.perf_counter()
cyto_data, weight_info = graphs.convert_graph_to_cytoscape(tk_graph_cands)
weight_min = weight_info['min']
weight_max = weight_info['max']
placeholder_min = f'Minimum edge weight: {weight_min} - {weight_max}'
placeholder_max = f'Maximum edge weight: {weight_min} - {weight_max}'
t2 = time.perf_counter()
print(f'Time for graph metadata and conversion: {t2 - t1} s')
t1 = time.perf_counter()
graph_to_store = lang_main.io.encode_to_base64_str(tk_graph_cands)
t2 = time.perf_counter()
print(f'Time for encoding: {t2 - t1} s')
return (
cyto_data,
weight_min,
weight_max,
placeholder_min,
weight_min,
weight_max,
placeholder_max,
graph_to_store,
cyto_data,
)
@app.callback(
Output('cytoscape-graph', 'layout', allow_duplicate=True),
Input('layout_choice', 'value'),
prevent_initial_call=True,
)
def update_layout_internal(layout_choice):
# return {'name': layout_choice}
return cose_layout
# return cose_bilkent_layout
# return cola_layout
@app.callback(
Output('cytoscape-graph', 'zoom'),
Output('cytoscape-graph', 'elements', allow_duplicate=True),
Output('graph-weight_min', 'value'),
Output('graph-weight_max', 'value'),
Input('bt-reset', 'n_clicks'),
State('graph-store-cyto-curr_cands', 'data'),
prevent_initial_call=True,
)
def reset_layout(_, current_cands_cyto_elements):
return (1, current_cands_cyto_elements, None, None)
# update edge weight
@app.callback(
Output('cytoscape-graph', 'elements', allow_duplicate=True),
Input('graph-weight_min', 'value'),
Input('graph-weight_max', 'value'),
State('graph-store', 'data'),
State('graph-store-cyto-curr_cands', 'data'),
State('graph-weight_min', 'min'),
State('graph-weight_min', 'max'),
prevent_initial_call=True,
)
def update_edge_weight(
weight_min,
weight_max,
current_graph,
current_cands_cyto_elements,
current_min,
current_max,
):
if not any((weight_min, weight_max)):
return current_cands_cyto_elements
if weight_min is None:
weight_min = current_min
if weight_max is None:
weight_max = current_max
tk_graph = cast(graphs.TokenGraph, lang_main.io.decode_from_base64_str(current_graph))
tk_graph_filtered = graphs.filter_graph_by_edge_weight(tk_graph, weight_min, weight_max)
# tk_graph_filtered = tk_graph.filter_by_edge_weight(weight_min, weight_max)
tk_graph_filtered = graphs.filter_graph_by_node_degree(tk_graph_filtered, 1, None)
# tk_graph_filtered = tk_graph_filtered.filter_by_node_degree(1, None)
cyto_data, _ = graphs.convert_graph_to_cytoscape(tk_graph_filtered)
return cyto_data
# ** graph: layout with edge weight
app.clientside_callback(
"""
function(n_clicks, layout) {
layout.edgeElasticity = function(edge) {
return edge.data().weight * 0.05;
};
layout.idealEdgeLength = function(edge) {
return edge.data().weight * 0.4;
};
cy.layout(layout).run();
return layout;
}
""",
Output('cytoscape-graph', 'layout', allow_duplicate=True),
Input('graph-trigger_relayout', 'n_clicks'),
State('cytoscape-graph', 'layout'),
prevent_initial_call=True,
)
# ** graph: display edge weight (line thickness)
app.clientside_callback(
"""
function(n_clicks, stylesheet) {
function edge_weight(ele) {
let threshold = 1000;
let weight = ele.data('weight');
if (weight > threshold) {
weight = 12;
} else {
weight = weight / threshold * 10;
weight = Math.max(1, weight);
}
return weight;
}
stylesheet[1].style.width = edge_weight;
cy.style(stylesheet).update();
return stylesheet;
}
""",
Output('cytoscape-graph', 'stylesheet'),
Input('test_js_weight', 'n_clicks'),
State('cytoscape-graph', 'stylesheet'),
prevent_initial_call=False,
)
def _start_webbrowser():
host = '127.0.0.1'
port = '8050'
adress = f'http://{host}:{port}/'
time.sleep(2)
webbrowser.open_new(adress)
def main():
webbrowser_thread = Thread(target=_start_webbrowser, daemon=True)
webbrowser_thread.start()
app.run(debug=True)
if __name__ == '__main__':
main()