176 lines
4.4 KiB
Python

from typing import cast
from pathlib import Path
import pandas as pd
import plotly.express as px
from dash import (
Dash,
Input,
Output,
State,
callback,
dash_table,
dcc,
html,
)
from lang_main import load_pickle
from lang_main.types import ObjectID, TimelineCandidates
from pandas import DataFrame
# df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminder_unfiltered.csv')
# ** data
p_df = Path(r'.\test-notebooks\dashboard\Pipe-TargetFeature_Step-3_remove_NA.pkl')
p_tl = Path(
r'.\test-notebooks\dashboard\Pipe-Timeline_Analysis_Step-4_get_timeline_candidates.pkl'
)
ret = cast(DataFrame, load_pickle(p_df))
data = ret[0]
ret = cast(tuple[TimelineCandidates, dict[ObjectID, str]], load_pickle(p_tl))
cands = ret[0]
texts = ret[1]
# p_df = Path(r'.\test-notebooks\dashboard\data.pkl')
# p_cands = Path(r'.\test-notebooks\dashboard\map_candidates.pkl')
# p_map = Path(r'.\test-notebooks\dashboard\map_texts.pkl')
# data = cast(DataFrame, load_pickle(p_df))
# cands = cast(TimelineCandidates, load_pickle(p_cands))
# texts = cast(dict[ObjectID, str], load_pickle(p_map))
table_feats = [
'ErstellungsDatum',
'ErledigungsDatum',
'VorgangsTypName',
'VorgangsBeschreibung',
]
table_feats_dates = [
'ErstellungsDatum',
'ErledigungsDatum',
]
# ** graph config
markers = {
'size': 12,
'color': 'yellow',
'line': {
'width': 2,
'color': 'red',
},
}
hover_data = {
'ErstellungsDatum': '|%d.%m.%Y',
'VorgangsBeschreibung': True,
}
app = Dash(prevent_initial_callbacks=True)
app.layout = [
html.H1(children='Demo Zeitreihenanalyse', style={'textAlign': 'center'}),
html.Div(
children=[
html.H2('Wählen Sie ein Objekt aus (ObjektID):'),
dcc.Dropdown(
list(cands.keys()),
id='dropdown-selection',
placeholder='ObjektID auswählen...',
),
]
),
html.Div(
children=[
html.H3(id='object_text'),
dcc.Dropdown(id='choice-candidates'),
dcc.Graph(id='graph-output'),
]
),
html.Div(children=[dash_table.DataTable(id='table-candidates')]),
]
@callback(
Output('object_text', 'children'),
Input('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_obj_text(obj_id):
obj_id = int(obj_id)
obj_text = texts[obj_id]
headline = f'HObjektText: {obj_text}'
return headline
@callback(
Output('choice-candidates', 'options'),
Input('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_choice_candidates(obj_id):
obj_id = int(obj_id)
cands_obj_id = cands[obj_id]
choices = list(range(1, len(cands_obj_id) + 1))
return choices
@callback(
Output('graph-output', 'figure'),
Input('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_timeline(index, obj_id):
obj_id = int(obj_id)
# title
obj_text = texts[obj_id]
title = f'HObjektText: {obj_text}'
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(index) - 1]
# data
df = data.loc[list(cands_choice)].sort_index()
# figure
fig = px.line(
data_frame=df,
x='ErstellungsDatum',
y='ObjektID',
title=title,
hover_data=hover_data,
)
fig.update_traces(mode='markers+lines', marker=markers, marker_symbol='diamond')
fig.update_xaxes(
tickformat='%B\n%Y',
rangeslider_visible=True,
)
fig.update_yaxes(type='category')
fig.update_layout(hovermode='x unified')
return fig
@callback(
[Output('table-candidates', 'data'), Output('table-candidates', 'columns')],
Input('choice-candidates', 'value'),
State('dropdown-selection', 'value'),
prevent_initial_call=True,
)
def update_table_candidates(index, obj_id):
obj_id = int(obj_id)
# cands
cands_obj_id = cands[obj_id]
cands_choice = cands_obj_id[int(index) - 1]
# data
df = data.loc[list(cands_choice)].sort_index()
df = df.filter(items=table_feats, axis=1).sort_values(
by='ErstellungsDatum', ascending=True
)
cols = [{'name': i, 'id': i} for i in df.columns]
# convert dates to strings
for col in table_feats_dates:
df[col] = df[col].dt.strftime(r'%Y-%m-%d')
table_data = df.to_dict('records')
return table_data, cols
if __name__ == '__main__':
app.run(debug=True)